summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/hash-table-inl.h
blob: 1f2c09316d16c6d28733ff80db3006087f36a9f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_HASH_TABLE_INL_H_
#define V8_OBJECTS_HASH_TABLE_INL_H_

#include "src/objects/hash-table.h"

#include "src/heap/heap.h"
#include "src/objects-inl.h"
#include "src/objects/fixed-array-inl.h"
#include "src/roots-inl.h"

namespace v8 {
namespace internal {

int HashTableBase::NumberOfElements() const {
  return Smi::ToInt(get(kNumberOfElementsIndex));
}

int HashTableBase::NumberOfDeletedElements() const {
  return Smi::ToInt(get(kNumberOfDeletedElementsIndex));
}

int HashTableBase::Capacity() const { return Smi::ToInt(get(kCapacityIndex)); }

void HashTableBase::ElementAdded() {
  SetNumberOfElements(NumberOfElements() + 1);
}

void HashTableBase::ElementRemoved() {
  SetNumberOfElements(NumberOfElements() - 1);
  SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
}

void HashTableBase::ElementsRemoved(int n) {
  SetNumberOfElements(NumberOfElements() - n);
  SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
}

// static
int HashTableBase::ComputeCapacity(int at_least_space_for) {
  // Add 50% slack to make slot collisions sufficiently unlikely.
  // See matching computation in HashTable::HasSufficientCapacityToAdd().
  // Must be kept in sync with CodeStubAssembler::HashTableComputeCapacity().
  int raw_cap = at_least_space_for + (at_least_space_for >> 1);
  int capacity = base::bits::RoundUpToPowerOfTwo32(raw_cap);
  return Max(capacity, kMinCapacity);
}

void HashTableBase::SetNumberOfElements(int nof) {
  set(kNumberOfElementsIndex, Smi::FromInt(nof));
}

void HashTableBase::SetNumberOfDeletedElements(int nod) {
  set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
}

template <typename Key>
int BaseShape<Key>::GetMapRootIndex() {
  return Heap::kHashTableMapRootIndex;
}

int EphemeronHashTableShape::GetMapRootIndex() {
  return Heap::kEphemeronHashTableMapRootIndex;
}

template <typename Derived, typename Shape>
int HashTable<Derived, Shape>::FindEntry(Isolate* isolate, Key key) {
  return FindEntry(ReadOnlyRoots(isolate), key, Shape::Hash(isolate, key));
}

// Find entry for key otherwise return kNotFound.
template <typename Derived, typename Shape>
int HashTable<Derived, Shape>::FindEntry(ReadOnlyRoots roots, Key key,
                                         int32_t hash) {
  uint32_t capacity = Capacity();
  uint32_t entry = FirstProbe(hash, capacity);
  uint32_t count = 1;
  // EnsureCapacity will guarantee the hash table is never full.
  Object* undefined = roots.undefined_value();
  Object* the_hole = roots.the_hole_value();
  USE(the_hole);
  while (true) {
    Object* element = KeyAt(entry);
    // Empty entry. Uses raw unchecked accessors because it is called by the
    // string table during bootstrapping.
    if (element == undefined) break;
    if (!(Shape::kNeedsHoleCheck && the_hole == element)) {
      if (Shape::IsMatch(key, element)) return entry;
    }
    entry = NextProbe(entry, count++, capacity);
  }
  return kNotFound;
}

template <typename Derived, typename Shape>
bool HashTable<Derived, Shape>::IsKey(ReadOnlyRoots roots, Object* k) {
  return Shape::IsKey(roots, k);
}

template <typename Derived, typename Shape>
bool HashTable<Derived, Shape>::ToKey(ReadOnlyRoots roots, int entry,
                                      Object** out_k) {
  Object* k = KeyAt(entry);
  if (!IsKey(roots, k)) return false;
  *out_k = Shape::Unwrap(k);
  return true;
}

template <typename KeyT>
bool BaseShape<KeyT>::IsKey(ReadOnlyRoots roots, Object* key) {
  return IsLive(roots, key);
}

template <typename KeyT>
bool BaseShape<KeyT>::IsLive(ReadOnlyRoots roots, Object* k) {
  return k != roots.the_hole_value() && k != roots.undefined_value();
}

template <typename Derived, typename Shape>
HashTable<Derived, Shape>* HashTable<Derived, Shape>::cast(Object* obj) {
  SLOW_DCHECK(obj->IsHashTable());
  return reinterpret_cast<HashTable*>(obj);
}

template <typename Derived, typename Shape>
const HashTable<Derived, Shape>* HashTable<Derived, Shape>::cast(
    const Object* obj) {
  SLOW_DCHECK(obj->IsHashTable());
  return reinterpret_cast<const HashTable*>(obj);
}

bool ObjectHashSet::Has(Isolate* isolate, Handle<Object> key, int32_t hash) {
  return FindEntry(ReadOnlyRoots(isolate), key, hash) != kNotFound;
}

bool ObjectHashSet::Has(Isolate* isolate, Handle<Object> key) {
  Object* hash = key->GetHash();
  if (!hash->IsSmi()) return false;
  return FindEntry(ReadOnlyRoots(isolate), key, Smi::ToInt(hash)) != kNotFound;
}

}  // namespace internal
}  // namespace v8

#endif  // V8_OBJECTS_HASH_TABLE_INL_H_