summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/fixed-array-inl.h
blob: d494f8d15b1d623b67d25821784579a83c9da1f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_FIXED_ARRAY_INL_H_
#define V8_OBJECTS_FIXED_ARRAY_INL_H_

#include "src/objects/fixed-array.h"

#include "src/base/tsan.h"
#include "src/conversions.h"
#include "src/handles-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/objects-inl.h"
#include "src/objects/bigint.h"
#include "src/objects/compressed-slots.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/map.h"
#include "src/objects/maybe-object-inl.h"
#include "src/objects/oddball.h"
#include "src/objects/slots.h"
#include "src/roots-inl.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

OBJECT_CONSTRUCTORS_IMPL(FixedArrayBase, HeapObject)
OBJECT_CONSTRUCTORS_IMPL(FixedArray, FixedArrayBase)
OBJECT_CONSTRUCTORS_IMPL(FixedDoubleArray, FixedArrayBase)
OBJECT_CONSTRUCTORS_IMPL(FixedTypedArrayBase, FixedArrayBase)
OBJECT_CONSTRUCTORS_IMPL(ArrayList, FixedArray)
OBJECT_CONSTRUCTORS_IMPL(ByteArray, FixedArrayBase)
OBJECT_CONSTRUCTORS_IMPL(TemplateList, FixedArray)
OBJECT_CONSTRUCTORS_IMPL(WeakFixedArray, HeapObject)
OBJECT_CONSTRUCTORS_IMPL(WeakArrayList, HeapObject)

FixedArrayBase::FixedArrayBase(Address ptr, AllowInlineSmiStorage allow_smi)
    : HeapObject(ptr, allow_smi) {
  SLOW_DCHECK(
      (allow_smi == AllowInlineSmiStorage::kAllowBeingASmi && IsSmi()) ||
      IsFixedArrayBase());
}

ByteArray::ByteArray(Address ptr, AllowInlineSmiStorage allow_smi)
    : FixedArrayBase(ptr, allow_smi) {
  SLOW_DCHECK(
      (allow_smi == AllowInlineSmiStorage::kAllowBeingASmi && IsSmi()) ||
      IsByteArray());
}

NEVER_READ_ONLY_SPACE_IMPL(WeakArrayList)

CAST_ACCESSOR(ArrayList)
CAST_ACCESSOR(ByteArray)
CAST_ACCESSOR(FixedArray)
CAST_ACCESSOR(FixedArrayBase)
CAST_ACCESSOR(FixedDoubleArray)
CAST_ACCESSOR(FixedTypedArrayBase)
CAST_ACCESSOR(TemplateList)
CAST_ACCESSOR(WeakFixedArray)
CAST_ACCESSOR(WeakArrayList)

SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset)
SYNCHRONIZED_SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset)

SMI_ACCESSORS(WeakArrayList, capacity, kCapacityOffset)
SYNCHRONIZED_SMI_ACCESSORS(WeakArrayList, capacity, kCapacityOffset)
SMI_ACCESSORS(WeakArrayList, length, kLengthOffset)

Object FixedArrayBase::unchecked_synchronized_length() const {
  return ACQUIRE_READ_FIELD(*this, kLengthOffset);
}

ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset)

ObjectSlot FixedArray::GetFirstElementAddress() {
  return RawField(OffsetOfElementAt(0));
}

bool FixedArray::ContainsOnlySmisOrHoles() {
  Object the_hole = GetReadOnlyRoots().the_hole_value();
  ObjectSlot current = GetFirstElementAddress();
  for (int i = 0; i < length(); ++i, ++current) {
    Object candidate = *current;
    if (!candidate->IsSmi() && candidate != the_hole) return false;
  }
  return true;
}

Object FixedArray::get(int index) const {
  DCHECK(index >= 0 && index < this->length());
  return RELAXED_READ_FIELD(*this, kHeaderSize + index * kTaggedSize);
}

Handle<Object> FixedArray::get(FixedArray array, int index, Isolate* isolate) {
  return handle(array->get(index), isolate);
}

template <class T>
MaybeHandle<T> FixedArray::GetValue(Isolate* isolate, int index) const {
  Object obj = get(index);
  if (obj->IsUndefined(isolate)) return MaybeHandle<T>();
  return Handle<T>(T::cast(obj), isolate);
}

template <class T>
Handle<T> FixedArray::GetValueChecked(Isolate* isolate, int index) const {
  Object obj = get(index);
  CHECK(!obj->IsUndefined(isolate));
  return Handle<T>(T::cast(obj), isolate);
}

bool FixedArray::is_the_hole(Isolate* isolate, int index) {
  return get(index)->IsTheHole(isolate);
}

void FixedArray::set(int index, Smi value) {
  DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
  DCHECK_LT(index, this->length());
  DCHECK(Object(value).IsSmi());
  int offset = kHeaderSize + index * kTaggedSize;
  RELAXED_WRITE_FIELD(*this, offset, value);
}

void FixedArray::set(int index, Object value) {
  DCHECK_NE(GetReadOnlyRoots().fixed_cow_array_map(), map());
  DCHECK(IsFixedArray());
  DCHECK_GE(index, 0);
  DCHECK_LT(index, this->length());
  int offset = kHeaderSize + index * kTaggedSize;
  RELAXED_WRITE_FIELD(*this, offset, value);
  WRITE_BARRIER(*this, offset, value);
}

void FixedArray::set(int index, Object value, WriteBarrierMode mode) {
  DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
  DCHECK_GE(index, 0);
  DCHECK_LT(index, this->length());
  int offset = kHeaderSize + index * kTaggedSize;
  RELAXED_WRITE_FIELD(*this, offset, value);
  CONDITIONAL_WRITE_BARRIER(*this, offset, value, mode);
}

void FixedArray::NoWriteBarrierSet(FixedArray array, int index, Object value) {
  DCHECK_NE(array->map(), array->GetReadOnlyRoots().fixed_cow_array_map());
  DCHECK_GE(index, 0);
  DCHECK_LT(index, array->length());
  DCHECK(!ObjectInYoungGeneration(value));
  RELAXED_WRITE_FIELD(array, kHeaderSize + index * kTaggedSize, value);
}

void FixedArray::set_undefined(int index) {
  set_undefined(GetReadOnlyRoots(), index);
}

void FixedArray::set_undefined(Isolate* isolate, int index) {
  set_undefined(ReadOnlyRoots(isolate), index);
}

void FixedArray::set_undefined(ReadOnlyRoots ro_roots, int index) {
  FixedArray::NoWriteBarrierSet(*this, index, ro_roots.undefined_value());
}

void FixedArray::set_null(int index) { set_null(GetReadOnlyRoots(), index); }

void FixedArray::set_null(Isolate* isolate, int index) {
  set_null(ReadOnlyRoots(isolate), index);
}

void FixedArray::set_null(ReadOnlyRoots ro_roots, int index) {
  FixedArray::NoWriteBarrierSet(*this, index, ro_roots.null_value());
}

void FixedArray::set_the_hole(int index) {
  set_the_hole(GetReadOnlyRoots(), index);
}

void FixedArray::set_the_hole(Isolate* isolate, int index) {
  set_the_hole(ReadOnlyRoots(isolate), index);
}

void FixedArray::set_the_hole(ReadOnlyRoots ro_roots, int index) {
  FixedArray::NoWriteBarrierSet(*this, index, ro_roots.the_hole_value());
}

void FixedArray::FillWithHoles(int from, int to) {
  for (int i = from; i < to; i++) {
    set_the_hole(i);
  }
}

ObjectSlot FixedArray::data_start() {
  return RawField(OffsetOfElementAt(0));
}

ObjectSlot FixedArray::RawFieldOfElementAt(int index) {
  return RawField(OffsetOfElementAt(index));
}

void FixedArray::MoveElements(Heap* heap, int dst_index, int src_index, int len,
                              WriteBarrierMode mode) {
  DisallowHeapAllocation no_gc;
  heap->MoveElements(*this, dst_index, src_index, len, mode);
}

void FixedArray::CopyElements(Heap* heap, int dst_index, FixedArray src,
                              int src_index, int len, WriteBarrierMode mode) {
  DisallowHeapAllocation no_gc;
  heap->CopyElements(*this, src, dst_index, src_index, len, mode);
}

// Perform a binary search in a fixed array.
template <SearchMode search_mode, typename T>
int BinarySearch(T* array, Name name, int valid_entries,
                 int* out_insertion_index) {
  DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == nullptr);
  int low = 0;
  int high = array->number_of_entries() - 1;
  uint32_t hash = name->hash_field();
  int limit = high;

  DCHECK(low <= high);

  while (low != high) {
    int mid = low + (high - low) / 2;
    Name mid_name = array->GetSortedKey(mid);
    uint32_t mid_hash = mid_name->hash_field();

    if (mid_hash >= hash) {
      high = mid;
    } else {
      low = mid + 1;
    }
  }

  for (; low <= limit; ++low) {
    int sort_index = array->GetSortedKeyIndex(low);
    Name entry = array->GetKey(sort_index);
    uint32_t current_hash = entry->hash_field();
    if (current_hash != hash) {
      if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
        *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1);
      }
      return T::kNotFound;
    }
    if (entry == name) {
      if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
        return sort_index;
      }
      return T::kNotFound;
    }
  }

  if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
    *out_insertion_index = limit + 1;
  }
  return T::kNotFound;
}

// Perform a linear search in this fixed array. len is the number of entry
// indices that are valid.
template <SearchMode search_mode, typename T>
int LinearSearch(T* array, Name name, int valid_entries,
                 int* out_insertion_index) {
  if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
    uint32_t hash = name->hash_field();
    int len = array->number_of_entries();
    for (int number = 0; number < len; number++) {
      int sorted_index = array->GetSortedKeyIndex(number);
      Name entry = array->GetKey(sorted_index);
      uint32_t current_hash = entry->hash_field();
      if (current_hash > hash) {
        *out_insertion_index = sorted_index;
        return T::kNotFound;
      }
      if (entry == name) return sorted_index;
    }
    *out_insertion_index = len;
    return T::kNotFound;
  } else {
    DCHECK_LE(valid_entries, array->number_of_entries());
    DCHECK_NULL(out_insertion_index);  // Not supported here.
    for (int number = 0; number < valid_entries; number++) {
      if (array->GetKey(number) == name) return number;
    }
    return T::kNotFound;
  }
}

template <SearchMode search_mode, typename T>
int Search(T* array, Name name, int valid_entries, int* out_insertion_index) {
  SLOW_DCHECK(array->IsSortedNoDuplicates());

  if (valid_entries == 0) {
    if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
      *out_insertion_index = 0;
    }
    return T::kNotFound;
  }

  // Fast case: do linear search for small arrays.
  const int kMaxElementsForLinearSearch = 8;
  if (valid_entries <= kMaxElementsForLinearSearch) {
    return LinearSearch<search_mode>(array, name, valid_entries,
                                     out_insertion_index);
  }

  // Slow case: perform binary search.
  return BinarySearch<search_mode>(array, name, valid_entries,
                                   out_insertion_index);
}

double FixedDoubleArray::get_scalar(int index) {
  DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
         map() != GetReadOnlyRoots().fixed_array_map());
  DCHECK(index >= 0 && index < this->length());
  DCHECK(!is_the_hole(index));
  return READ_DOUBLE_FIELD(*this, kHeaderSize + index * kDoubleSize);
}

uint64_t FixedDoubleArray::get_representation(int index) {
  DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
         map() != GetReadOnlyRoots().fixed_array_map());
  DCHECK(index >= 0 && index < this->length());
  int offset = kHeaderSize + index * kDoubleSize;
  return READ_UINT64_FIELD(*this, offset);
}

Handle<Object> FixedDoubleArray::get(FixedDoubleArray array, int index,
                                     Isolate* isolate) {
  if (array->is_the_hole(index)) {
    return ReadOnlyRoots(isolate).the_hole_value_handle();
  } else {
    return isolate->factory()->NewNumber(array->get_scalar(index));
  }
}

void FixedDoubleArray::set(int index, double value) {
  DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
         map() != GetReadOnlyRoots().fixed_array_map());
  int offset = kHeaderSize + index * kDoubleSize;
  if (std::isnan(value)) {
    WRITE_DOUBLE_FIELD(*this, offset, std::numeric_limits<double>::quiet_NaN());
  } else {
    WRITE_DOUBLE_FIELD(*this, offset, value);
  }
  DCHECK(!is_the_hole(index));
}

void FixedDoubleArray::set_the_hole(Isolate* isolate, int index) {
  set_the_hole(index);
}

void FixedDoubleArray::set_the_hole(int index) {
  DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
         map() != GetReadOnlyRoots().fixed_array_map());
  int offset = kHeaderSize + index * kDoubleSize;
  WRITE_UINT64_FIELD(*this, offset, kHoleNanInt64);
}

bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) {
  return is_the_hole(index);
}

bool FixedDoubleArray::is_the_hole(int index) {
  return get_representation(index) == kHoleNanInt64;
}

void FixedDoubleArray::MoveElements(Heap* heap, int dst_index, int src_index,
                                    int len, WriteBarrierMode mode) {
  DCHECK_EQ(SKIP_WRITE_BARRIER, mode);
  double* data_start =
      reinterpret_cast<double*>(FIELD_ADDR(*this, kHeaderSize));
  MemMove(data_start + dst_index, data_start + src_index, len * kDoubleSize);
}

void FixedDoubleArray::FillWithHoles(int from, int to) {
  for (int i = from; i < to; i++) {
    set_the_hole(i);
  }
}

MaybeObject WeakFixedArray::Get(int index) const {
  DCHECK(index >= 0 && index < this->length());
  return RELAXED_READ_WEAK_FIELD(*this, OffsetOfElementAt(index));
}

void WeakFixedArray::Set(int index, MaybeObject value) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, length());
  int offset = OffsetOfElementAt(index);
  RELAXED_WRITE_WEAK_FIELD(*this, offset, value);
  WEAK_WRITE_BARRIER(*this, offset, value);
}

void WeakFixedArray::Set(int index, MaybeObject value, WriteBarrierMode mode) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, length());
  int offset = OffsetOfElementAt(index);
  RELAXED_WRITE_WEAK_FIELD(*this, offset, value);
  CONDITIONAL_WEAK_WRITE_BARRIER(*this, offset, value, mode);
}

MaybeObjectSlot WeakFixedArray::data_start() {
  return RawMaybeWeakField(kHeaderSize);
}

MaybeObjectSlot WeakFixedArray::RawFieldOfElementAt(int index) {
  return RawMaybeWeakField(OffsetOfElementAt(index));
}

MaybeObject WeakArrayList::Get(int index) const {
  DCHECK(index >= 0 && index < this->capacity());
  return RELAXED_READ_WEAK_FIELD(*this, OffsetOfElementAt(index));
}

void WeakArrayList::Set(int index, MaybeObject value, WriteBarrierMode mode) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, this->capacity());
  int offset = OffsetOfElementAt(index);
  RELAXED_WRITE_WEAK_FIELD(*this, offset, value);
  CONDITIONAL_WEAK_WRITE_BARRIER(*this, offset, value, mode);
}

MaybeObjectSlot WeakArrayList::data_start() {
  return RawMaybeWeakField(kHeaderSize);
}

HeapObject WeakArrayList::Iterator::Next() {
  if (!array_.is_null()) {
    while (index_ < array_->length()) {
      MaybeObject item = array_->Get(index_++);
      DCHECK(item->IsWeakOrCleared());
      if (!item->IsCleared()) return item->GetHeapObjectAssumeWeak();
    }
    array_ = WeakArrayList();
  }
  return HeapObject();
}

int ArrayList::Length() const {
  if (FixedArray::cast(*this)->length() == 0) return 0;
  return Smi::ToInt(FixedArray::cast(*this)->get(kLengthIndex));
}

void ArrayList::SetLength(int length) {
  return FixedArray::cast(*this)->set(kLengthIndex, Smi::FromInt(length));
}

Object ArrayList::Get(int index) const {
  return FixedArray::cast(*this)->get(kFirstIndex + index);
}

ObjectSlot ArrayList::Slot(int index) {
  return RawField(OffsetOfElementAt(kFirstIndex + index));
}

void ArrayList::Set(int index, Object obj, WriteBarrierMode mode) {
  FixedArray::cast(*this)->set(kFirstIndex + index, obj, mode);
}

void ArrayList::Clear(int index, Object undefined) {
  DCHECK(undefined->IsUndefined());
  FixedArray::cast(*this)->set(kFirstIndex + index, undefined,
                               SKIP_WRITE_BARRIER);
}

int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kTaggedSize); }

byte ByteArray::get(int index) const {
  DCHECK(index >= 0 && index < this->length());
  return READ_BYTE_FIELD(*this, kHeaderSize + index * kCharSize);
}

void ByteArray::set(int index, byte value) {
  DCHECK(index >= 0 && index < this->length());
  WRITE_BYTE_FIELD(*this, kHeaderSize + index * kCharSize, value);
}

void ByteArray::copy_in(int index, const byte* buffer, int length) {
  DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index &&
         index + length <= this->length());
  Address dst_addr = FIELD_ADDR(*this, kHeaderSize + index * kCharSize);
  memcpy(reinterpret_cast<void*>(dst_addr), buffer, length);
}

void ByteArray::copy_out(int index, byte* buffer, int length) {
  DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index &&
         index + length <= this->length());
  Address src_addr = FIELD_ADDR(*this, kHeaderSize + index * kCharSize);
  memcpy(buffer, reinterpret_cast<void*>(src_addr), length);
}

int ByteArray::get_int(int index) const {
  DCHECK(index >= 0 && index < this->length() / kIntSize);
  return READ_INT_FIELD(*this, kHeaderSize + index * kIntSize);
}

void ByteArray::set_int(int index, int value) {
  DCHECK(index >= 0 && index < this->length() / kIntSize);
  WRITE_INT_FIELD(*this, kHeaderSize + index * kIntSize, value);
}

uint32_t ByteArray::get_uint32(int index) const {
  DCHECK(index >= 0 && index < this->length() / kUInt32Size);
  return READ_UINT32_FIELD(*this, kHeaderSize + index * kUInt32Size);
}

void ByteArray::set_uint32(int index, uint32_t value) {
  DCHECK(index >= 0 && index < this->length() / kUInt32Size);
  WRITE_UINT32_FIELD(*this, kHeaderSize + index * kUInt32Size, value);
}

void ByteArray::clear_padding() {
  int data_size = length() + kHeaderSize;
  memset(reinterpret_cast<void*>(address() + data_size), 0, Size() - data_size);
}

ByteArray ByteArray::FromDataStartAddress(Address address) {
  DCHECK_TAG_ALIGNED(address);
  return ByteArray::cast(Object(address - kHeaderSize + kHeapObjectTag));
}

int ByteArray::DataSize() const { return RoundUp(length(), kTaggedSize); }

int ByteArray::ByteArraySize() { return SizeFor(this->length()); }

byte* ByteArray::GetDataStartAddress() {
  return reinterpret_cast<byte*>(address() + kHeaderSize);
}

byte* ByteArray::GetDataEndAddress() {
  return GetDataStartAddress() + length();
}

template <class T>
PodArray<T>::PodArray(Address ptr) : ByteArray(ptr) {}

template <class T>
PodArray<T> PodArray<T>::cast(Object object) {
  return PodArray<T>(object.ptr());
}

// static
template <class T>
Handle<PodArray<T>> PodArray<T>::New(Isolate* isolate, int length,
                                     AllocationType allocation) {
  return Handle<PodArray<T>>::cast(
      isolate->factory()->NewByteArray(length * sizeof(T), allocation));
}

template <class T>
int PodArray<T>::length() const {
  return ByteArray::length() / sizeof(T);
}

void* FixedTypedArrayBase::external_pointer() const {
  intptr_t ptr = READ_INTPTR_FIELD(*this, kExternalPointerOffset);
  return reinterpret_cast<void*>(ptr);
}

void FixedTypedArrayBase::set_external_pointer(void* value) {
  intptr_t ptr = reinterpret_cast<intptr_t>(value);
  WRITE_INTPTR_FIELD(*this, kExternalPointerOffset, ptr);
}

void* FixedTypedArrayBase::DataPtr() {
  return reinterpret_cast<void*>(
      base_pointer()->ptr() + reinterpret_cast<intptr_t>(external_pointer()));
}

int FixedTypedArrayBase::ElementSize(InstanceType type) {
  int element_size;
  switch (type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
  case FIXED_##TYPE##_ARRAY_TYPE:                 \
    element_size = sizeof(ctype);                 \
    break;

    TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
    default:
      UNREACHABLE();
  }
  return element_size;
}

int FixedTypedArrayBase::DataSize(InstanceType type) const {
  if (base_pointer() == Smi::kZero) return 0;
  return length() * ElementSize(type);
}

int FixedTypedArrayBase::DataSize() const {
  return DataSize(map()->instance_type());
}

size_t FixedTypedArrayBase::ByteLength() const {
  return static_cast<size_t>(length()) *
         static_cast<size_t>(ElementSize(map()->instance_type()));
}

int FixedTypedArrayBase::size() const {
  return OBJECT_POINTER_ALIGN(kDataOffset + DataSize());
}

int FixedTypedArrayBase::TypedArraySize(InstanceType type) const {
  return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type));
}

// static
int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) {
  return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type));
}

uint8_t Uint8ArrayTraits::defaultValue() { return 0; }

uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; }

int8_t Int8ArrayTraits::defaultValue() { return 0; }

uint16_t Uint16ArrayTraits::defaultValue() { return 0; }

int16_t Int16ArrayTraits::defaultValue() { return 0; }

uint32_t Uint32ArrayTraits::defaultValue() { return 0; }

int32_t Int32ArrayTraits::defaultValue() { return 0; }

float Float32ArrayTraits::defaultValue() {
  return std::numeric_limits<float>::quiet_NaN();
}

double Float64ArrayTraits::defaultValue() {
  return std::numeric_limits<double>::quiet_NaN();
}

template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::get_scalar(int index) {
  DCHECK((index >= 0) && (index < this->length()));
  return FixedTypedArray<Traits>::get_scalar_from_data_ptr(DataPtr(), index);
}

// static
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::get_scalar_from_data_ptr(
    void* data_ptr, int index) {
  typename Traits::ElementType* ptr = reinterpret_cast<ElementType*>(data_ptr);
  // The JavaScript memory model allows for racy reads and writes to a
  // SharedArrayBuffer's backing store, which will always be a FixedTypedArray.
  // ThreadSanitizer will catch these racy accesses and warn about them, so we
  // disable TSAN for these reads and writes using annotations.
  //
  // We don't use relaxed atomics here, as it is not a requirement of the
  // JavaScript memory model to have tear-free reads of overlapping accesses,
  // and using relaxed atomics may introduce overhead.
  TSAN_ANNOTATE_IGNORE_READS_BEGIN;
  ElementType result;
  if (COMPRESS_POINTERS_BOOL && alignof(ElementType) > kTaggedSize) {
    // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
    // fields (external pointers, doubles and BigInt data) are only kTaggedSize
    // aligned so we have to use unaligned pointer friendly way of accessing
    // them in order to avoid undefined behavior in C++ code.
    result = ReadUnalignedValue<ElementType>(reinterpret_cast<Address>(ptr) +
                                             index * sizeof(ElementType));
  } else {
    result = ptr[index];
  }
  TSAN_ANNOTATE_IGNORE_READS_END;
  return result;
}

template <class Traits>
void FixedTypedArray<Traits>::set(int index, ElementType value) {
  CHECK((index >= 0) && (index < this->length()));
  // See the comment in FixedTypedArray<Traits>::get_scalar.
  auto* ptr = reinterpret_cast<ElementType*>(DataPtr());
  TSAN_ANNOTATE_IGNORE_WRITES_BEGIN;
  if (COMPRESS_POINTERS_BOOL && alignof(ElementType) > kTaggedSize) {
    // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
    // fields (external pointers, doubles and BigInt data) are only kTaggedSize
    // aligned so we have to use unaligned pointer friendly way of accessing
    // them in order to avoid undefined behavior in C++ code.
    WriteUnalignedValue<ElementType>(
        reinterpret_cast<Address>(ptr) + index * sizeof(ElementType), value);
  } else {
    ptr[index] = value;
  }
  TSAN_ANNOTATE_IGNORE_WRITES_END;
}

template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(int value) {
  return static_cast<ElementType>(value);
}

template <>
inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(int value) {
  if (value < 0) return 0;
  if (value > 0xFF) return 0xFF;
  return static_cast<uint8_t>(value);
}

template <>
inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(int value) {
  UNREACHABLE();
}

template <>
inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(int value) {
  UNREACHABLE();
}

template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(uint32_t value) {
  return static_cast<ElementType>(value);
}

template <>
inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(uint32_t value) {
  // We need this special case for Uint32 -> Uint8Clamped, because the highest
  // Uint32 values will be negative as an int, clamping to 0, rather than 255.
  if (value > 0xFF) return 0xFF;
  return static_cast<uint8_t>(value);
}

template <>
inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(uint32_t value) {
  UNREACHABLE();
}

template <>
inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(uint32_t value) {
  UNREACHABLE();
}

template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(double value) {
  return static_cast<ElementType>(DoubleToInt32(value));
}

template <>
inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(double value) {
  // Handle NaNs and less than zero values which clamp to zero.
  if (!(value > 0)) return 0;
  if (value > 0xFF) return 0xFF;
  return static_cast<uint8_t>(lrint(value));
}

template <>
inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(double value) {
  UNREACHABLE();
}

template <>
inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(double value) {
  UNREACHABLE();
}

template <>
inline float FixedTypedArray<Float32ArrayTraits>::from(double value) {
  using limits = std::numeric_limits<float>;
  if (value > limits::max()) return limits::infinity();
  if (value < limits::lowest()) return -limits::infinity();
  return static_cast<float>(value);
}

template <>
inline double FixedTypedArray<Float64ArrayTraits>::from(double value) {
  return value;
}

template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(int64_t value) {
  UNREACHABLE();
}

template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(uint64_t value) {
  UNREACHABLE();
}

template <>
inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(int64_t value) {
  return value;
}

template <>
inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(uint64_t value) {
  return value;
}

template <>
inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(int64_t value) {
  return static_cast<uint64_t>(value);
}

template <>
inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(uint64_t value) {
  return static_cast<int64_t>(value);
}

template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::FromHandle(
    Handle<Object> value, bool* lossless) {
  if (value->IsSmi()) {
    return from(Smi::ToInt(*value));
  }
  DCHECK(value->IsHeapNumber());
  return from(HeapNumber::cast(*value)->value());
}

template <>
inline int64_t FixedTypedArray<BigInt64ArrayTraits>::FromHandle(
    Handle<Object> value, bool* lossless) {
  DCHECK(value->IsBigInt());
  return BigInt::cast(*value)->AsInt64(lossless);
}

template <>
inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::FromHandle(
    Handle<Object> value, bool* lossless) {
  DCHECK(value->IsBigInt());
  return BigInt::cast(*value)->AsUint64(lossless);
}

template <class Traits>
Handle<Object> FixedTypedArray<Traits>::get(Isolate* isolate,
                                            FixedTypedArray<Traits> array,
                                            int index) {
  return Traits::ToHandle(isolate, array->get_scalar(index));
}

template <class Traits>
void FixedTypedArray<Traits>::SetValue(uint32_t index, Object value) {
  ElementType cast_value = Traits::defaultValue();
  if (value->IsSmi()) {
    int int_value = Smi::ToInt(value);
    cast_value = from(int_value);
  } else if (value->IsHeapNumber()) {
    double double_value = HeapNumber::cast(value)->value();
    cast_value = from(double_value);
  } else {
    // Clamp undefined to the default value. All other types have been
    // converted to a number type further up in the call chain.
    DCHECK(value->IsUndefined());
  }
  set(index, cast_value);
}

template <>
inline void FixedTypedArray<BigInt64ArrayTraits>::SetValue(uint32_t index,
                                                           Object value) {
  DCHECK(value->IsBigInt());
  set(index, BigInt::cast(value)->AsInt64());
}

template <>
inline void FixedTypedArray<BigUint64ArrayTraits>::SetValue(uint32_t index,
                                                            Object value) {
  DCHECK(value->IsBigInt());
  set(index, BigInt::cast(value)->AsUint64());
}

Handle<Object> Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) {
  return handle(Smi::FromInt(scalar), isolate);
}

Handle<Object> Uint8ClampedArrayTraits::ToHandle(Isolate* isolate,
                                                 uint8_t scalar) {
  return handle(Smi::FromInt(scalar), isolate);
}

Handle<Object> Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) {
  return handle(Smi::FromInt(scalar), isolate);
}

Handle<Object> Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) {
  return handle(Smi::FromInt(scalar), isolate);
}

Handle<Object> Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) {
  return handle(Smi::FromInt(scalar), isolate);
}

Handle<Object> Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) {
  return isolate->factory()->NewNumberFromUint(scalar);
}

Handle<Object> Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) {
  return isolate->factory()->NewNumberFromInt(scalar);
}

Handle<Object> Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) {
  return isolate->factory()->NewNumber(scalar);
}

Handle<Object> Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) {
  return isolate->factory()->NewNumber(scalar);
}

Handle<Object> BigInt64ArrayTraits::ToHandle(Isolate* isolate, int64_t scalar) {
  return BigInt::FromInt64(isolate, scalar);
}

Handle<Object> BigUint64ArrayTraits::ToHandle(Isolate* isolate,
                                              uint64_t scalar) {
  return BigInt::FromUint64(isolate, scalar);
}

// static
template <class Traits>
STATIC_CONST_MEMBER_DEFINITION const InstanceType
    FixedTypedArray<Traits>::kInstanceType;

template <class Traits>
FixedTypedArray<Traits>::FixedTypedArray(Address ptr)
    : FixedTypedArrayBase(ptr) {
  DCHECK(IsHeapObject() && map()->instance_type() == Traits::kInstanceType);
}

template <class Traits>
FixedTypedArray<Traits> FixedTypedArray<Traits>::cast(Object object) {
  return FixedTypedArray<Traits>(object.ptr());
}

int TemplateList::length() const {
  return Smi::ToInt(FixedArray::cast(*this)->get(kLengthIndex));
}

Object TemplateList::get(int index) const {
  return FixedArray::cast(*this)->get(kFirstElementIndex + index);
}

void TemplateList::set(int index, Object value) {
  FixedArray::cast(*this)->set(kFirstElementIndex + index, value);
}

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_FIXED_ARRAY_INL_H_