summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/code.h
blob: f3c3c0b5b35a756cae2e9f262750cf2b0569c3eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_CODE_H_
#define V8_OBJECTS_CODE_H_

#include "src/handler-table.h"
#include "src/objects.h"
#include "src/objects/fixed-array.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

class ByteArray;
class BytecodeArray;
class CodeDataContainer;
class MaybeObject;

namespace interpreter {
class Register;
}

// Code describes objects with on-the-fly generated machine code.
class Code : public HeapObject, public NeverReadOnlySpaceObject {
 public:
  using NeverReadOnlySpaceObject::GetHeap;
  using NeverReadOnlySpaceObject::GetIsolate;
  // Opaque data type for encapsulating code flags like kind, inline
  // cache state, and arguments count.
  typedef uint32_t Flags;

#define CODE_KIND_LIST(V)   \
  V(OPTIMIZED_FUNCTION)     \
  V(BYTECODE_HANDLER)       \
  V(STUB)                   \
  V(BUILTIN)                \
  V(REGEXP)                 \
  V(WASM_FUNCTION)          \
  V(WASM_TO_JS_FUNCTION)    \
  V(JS_TO_WASM_FUNCTION)    \
  V(WASM_INTERPRETER_ENTRY) \
  V(C_WASM_ENTRY)

  enum Kind {
#define DEFINE_CODE_KIND_ENUM(name) name,
    CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
#undef DEFINE_CODE_KIND_ENUM
        NUMBER_OF_KINDS
  };

  static const char* Kind2String(Kind kind);

#ifdef ENABLE_DISASSEMBLER
  const char* GetName(Isolate* isolate) const;
  void PrintBuiltinCode(Isolate* isolate, const char* name);
  void Disassemble(const char* name, std::ostream& os,
                   Address current_pc = kNullAddress);
#endif

  // [instruction_size]: Size of the native instructions, including embedded
  // data such as the safepoints table.
  inline int raw_instruction_size() const;
  inline void set_raw_instruction_size(int value);

  // Returns the size of the native instructions, including embedded
  // data such as the safepoints table. For off-heap code objects
  // this may from instruction_size in that this will return the size of the
  // off-heap instruction stream rather than the on-heap trampoline located
  // at instruction_start.
  inline int InstructionSize() const;
  int OffHeapInstructionSize() const;

  // [relocation_info]: Code relocation information
  DECL_ACCESSORS(relocation_info, ByteArray)
  void InvalidateEmbeddedObjects(Heap* heap);

  // [deoptimization_data]: Array containing data for deopt.
  DECL_ACCESSORS(deoptimization_data, FixedArray)

  // [source_position_table]: ByteArray for the source positions table or
  // SourcePositionTableWithFrameCache.
  DECL_ACCESSORS(source_position_table, Object)
  inline ByteArray* SourcePositionTable() const;

  // [code_data_container]: A container indirection for all mutable fields.
  DECL_ACCESSORS(code_data_container, CodeDataContainer)

  // [stub_key]: The major/minor key of a code stub.
  inline uint32_t stub_key() const;
  inline void set_stub_key(uint32_t key);

  // [next_code_link]: Link for lists of optimized or deoptimized code.
  // Note that this field is stored in the {CodeDataContainer} to be mutable.
  inline Object* next_code_link() const;
  inline void set_next_code_link(Object* value);

  // [constant_pool offset]: Offset of the constant pool.
  // Valid for FLAG_enable_embedded_constant_pool only
  inline int constant_pool_offset() const;
  inline void set_constant_pool_offset(int offset);

  // Unchecked accessors to be used during GC.
  inline ByteArray* unchecked_relocation_info() const;

  inline int relocation_size() const;

  // [kind]: Access to specific code kind.
  inline Kind kind() const;

  inline bool is_stub() const;
  inline bool is_optimized_code() const;
  inline bool is_wasm_code() const;

  // Testers for interpreter builtins.
  inline bool is_interpreter_trampoline_builtin() const;

  // Tells whether the code checks the optimization marker in the function's
  // feedback vector.
  inline bool checks_optimization_marker() const;

  // Tells whether the outgoing parameters of this code are tagged pointers.
  inline bool has_tagged_params() const;

  // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
  // code object was generated by the TurboFan optimizing compiler.
  inline bool is_turbofanned() const;

  // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
  // embedded objects in code should be treated weakly.
  inline bool can_have_weak_objects() const;
  inline void set_can_have_weak_objects(bool value);

  // [is_construct_stub]: For kind BUILTIN, tells whether the code object
  // represents a hand-written construct stub
  // (e.g., NumberConstructor_ConstructStub).
  inline bool is_construct_stub() const;
  inline void set_is_construct_stub(bool value);

  // [builtin_index]: For builtins, tells which builtin index the code object
  // has. The builtin index is a non-negative integer for builtins, and -1
  // otherwise.
  inline int builtin_index() const;
  inline void set_builtin_index(int id);
  inline bool is_builtin() const;

  inline bool has_safepoint_info() const;

  // [stack_slots]: If {has_safepoint_info()}, the number of stack slots
  // reserved in the code prologue.
  inline int stack_slots() const;

  // [safepoint_table_offset]: If {has_safepoint_info()}, the offset in the
  // instruction stream where the safepoint table starts.
  inline int safepoint_table_offset() const;
  inline void set_safepoint_table_offset(int offset);

  // [handler_table_offset]: The offset in the instruction stream where the
  // exception handler table starts.
  inline int handler_table_offset() const;
  inline void set_handler_table_offset(int offset);

  // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
  // the code is going to be deoptimized because of dead embedded maps.
  inline bool marked_for_deoptimization() const;
  inline void set_marked_for_deoptimization(bool flag);

  // [deopt_already_counted]: For kind OPTIMIZED_FUNCTION tells whether
  // the code was already deoptimized.
  inline bool deopt_already_counted() const;
  inline void set_deopt_already_counted(bool flag);

  // [is_promise_rejection]: For kind BUILTIN tells whether the
  // exception thrown by the code will lead to promise rejection or
  // uncaught if both this and is_exception_caught is set.
  // Use GetBuiltinCatchPrediction to access this.
  inline void set_is_promise_rejection(bool flag);

  // [is_exception_caught]: For kind BUILTIN tells whether the
  // exception thrown by the code will be caught internally or
  // uncaught if both this and is_promise_rejection is set.
  // Use GetBuiltinCatchPrediction to access this.
  inline void set_is_exception_caught(bool flag);

  // [is_off_heap_trampoline]: For kind BUILTIN tells whether
  // this is a trampoline to an off-heap builtin.
  inline bool is_off_heap_trampoline() const;

  // [constant_pool]: The constant pool for this function.
  inline Address constant_pool() const;

  // Get the safepoint entry for the given pc.
  SafepointEntry GetSafepointEntry(Address pc);

  // The entire code object including its header is copied verbatim to the
  // snapshot so that it can be written in one, fast, memcpy during
  // deserialization. The deserializer will overwrite some pointers, rather
  // like a runtime linker, but the random allocation addresses used in the
  // mksnapshot process would still be present in the unlinked snapshot data,
  // which would make snapshot production non-reproducible. This method wipes
  // out the to-be-overwritten header data for reproducible snapshots.
  inline void WipeOutHeader();

  // Clear uninitialized padding space. This ensures that the snapshot content
  // is deterministic.
  inline void clear_padding();
  // Initialize the flags field. Similar to clear_padding above this ensure that
  // the snapshot content is deterministic.
  inline void initialize_flags(Kind kind, bool has_unwinding_info,
                               bool is_turbofanned, int stack_slots,
                               bool is_off_heap_trampoline);

  // Convert a target address into a code object.
  static inline Code* GetCodeFromTargetAddress(Address address);

  // Convert an entry address into an object.
  static inline Object* GetObjectFromEntryAddress(Address location_of_address);

  // Convert a code entry into an object.
  static inline Object* GetObjectFromCodeEntry(Address code_entry);

  // Returns the address of the first instruction.
  inline Address raw_instruction_start() const;

  // Returns the address of the first instruction. For off-heap code objects
  // this differs from instruction_start (which would point to the off-heap
  // trampoline instead).
  inline Address InstructionStart() const;
  Address OffHeapInstructionStart() const;

  // Returns the address right after the last instruction.
  inline Address raw_instruction_end() const;

  // Returns the address right after the last instruction. For off-heap code
  // objects this differs from instruction_end (which would point to the
  // off-heap trampoline instead).
  inline Address InstructionEnd() const;
  Address OffHeapInstructionEnd() const;

  // Returns the size of the instructions, padding, relocation and unwinding
  // information.
  inline int body_size() const;

  // Returns the size of code and its metadata. This includes the size of code
  // relocation information, deoptimization data and handler table.
  inline int SizeIncludingMetadata() const;

  // Returns the address of the first relocation info (read backwards!).
  inline byte* relocation_start() const;

  // Returns the address right after the relocation info (read backwards!).
  inline byte* relocation_end() const;

  // [has_unwinding_info]: Whether this code object has unwinding information.
  // If it doesn't, unwinding_information_start() will point to invalid data.
  //
  // The body of all code objects has the following layout.
  //
  //  +--------------------------+  <-- raw_instruction_start()
  //  |       instructions       |
  //  |           ...            |
  //  +--------------------------+
  //  |      relocation info     |
  //  |           ...            |
  //  +--------------------------+  <-- raw_instruction_end()
  //
  // If has_unwinding_info() is false, raw_instruction_end() points to the first
  // memory location after the end of the code object. Otherwise, the body
  // continues as follows:
  //
  //  +--------------------------+
  //  |    padding to the next   |
  //  |  8-byte aligned address  |
  //  +--------------------------+  <-- raw_instruction_end()
  //  |   [unwinding_info_size]  |
  //  |        as uint64_t       |
  //  +--------------------------+  <-- unwinding_info_start()
  //  |       unwinding info     |
  //  |            ...           |
  //  +--------------------------+  <-- unwinding_info_end()
  //
  // and unwinding_info_end() points to the first memory location after the end
  // of the code object.
  //
  inline bool has_unwinding_info() const;

  // [unwinding_info_size]: Size of the unwinding information.
  inline int unwinding_info_size() const;
  inline void set_unwinding_info_size(int value);

  // Returns the address of the unwinding information, if any.
  inline Address unwinding_info_start() const;

  // Returns the address right after the end of the unwinding information.
  inline Address unwinding_info_end() const;

  // Code entry point.
  inline Address entry() const;

  // Returns true if pc is inside this object's instructions.
  inline bool contains(Address pc);

  // Relocate the code by delta bytes. Called to signal that this code
  // object has been moved by delta bytes.
  void Relocate(intptr_t delta);

  // Migrate code described by desc.
  void CopyFrom(Heap* heap, const CodeDesc& desc);

  // Migrate code from desc without flushing the instruction cache.
  void CopyFromNoFlush(Heap* heap, const CodeDesc& desc);

  // Flushes the instruction cache for the executable instructions of this code
  // object.
  void FlushICache() const;

  // Returns the object size for a given body (used for allocation).
  static int SizeFor(int body_size) {
    DCHECK_SIZE_TAG_ALIGNED(body_size);
    return RoundUp(kHeaderSize + body_size, kCodeAlignment);
  }

  // Calculate the size of the code object to report for log events. This takes
  // the layout of the code object into account.
  inline int ExecutableSize() const;

  DECL_CAST(Code)

  // Dispatched behavior.
  inline int CodeSize() const;

  DECL_PRINTER(Code)
  DECL_VERIFIER(Code)

  void PrintDeoptLocation(FILE* out, const char* str, Address pc);
  bool CanDeoptAt(Address pc);

  void SetMarkedForDeoptimization(const char* reason);

  inline HandlerTable::CatchPrediction GetBuiltinCatchPrediction();

#ifdef DEBUG
  enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
  void VerifyEmbeddedObjects(Isolate* isolate,
                             VerifyMode mode = kNoContextRetainingPointers);
#endif  // DEBUG

  bool IsIsolateIndependent(Isolate* isolate);

  inline bool CanContainWeakObjects();

  inline bool IsWeakObject(Object* object);

  static inline bool IsWeakObjectInOptimizedCode(Object* object);

  // Return true if the function is inlined in the code.
  bool Inlines(SharedFunctionInfo* sfi);

  class OptimizedCodeIterator {
   public:
    explicit OptimizedCodeIterator(Isolate* isolate);
    Code* Next();

   private:
    Context* next_context_;
    Code* current_code_;
    Isolate* isolate_;

    DisallowHeapAllocation no_gc;
    DISALLOW_COPY_AND_ASSIGN(OptimizedCodeIterator)
  };

  static const int kConstantPoolSize =
      FLAG_enable_embedded_constant_pool ? kIntSize : 0;

  // Layout description.
  static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
  static const int kDeoptimizationDataOffset =
      kRelocationInfoOffset + kPointerSize;
  static const int kSourcePositionTableOffset =
      kDeoptimizationDataOffset + kPointerSize;
  static const int kCodeDataContainerOffset =
      kSourcePositionTableOffset + kPointerSize;
  static const int kInstructionSizeOffset =
      kCodeDataContainerOffset + kPointerSize;
  static const int kFlagsOffset = kInstructionSizeOffset + kIntSize;
  static const int kSafepointTableOffsetOffset = kFlagsOffset + kIntSize;
  static const int kHandlerTableOffsetOffset =
      kSafepointTableOffsetOffset + kIntSize;
  static const int kStubKeyOffset = kHandlerTableOffsetOffset + kIntSize;
  static const int kConstantPoolOffset = kStubKeyOffset + kIntSize;
  static const int kBuiltinIndexOffset =
      kConstantPoolOffset + kConstantPoolSize;
  static const int kHeaderPaddingStart = kBuiltinIndexOffset + kIntSize;

  // Add padding to align the instruction start following right after
  // the Code object header.
  static const int kHeaderSize =
      (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;

  // Data or code not directly visited by GC directly starts here.
  // The serializer needs to copy bytes starting from here verbatim.
  // Objects embedded into code is visited via reloc info.
  static const int kDataStart = kInstructionSizeOffset;

  inline int GetUnwindingInfoSizeOffset() const;

  class BodyDescriptor;

  // Flags layout.  BitField<type, shift, size>.
#define CODE_FLAGS_BIT_FIELDS(V, _)    \
  V(HasUnwindingInfoField, bool, 1, _) \
  V(KindField, Kind, 5, _)             \
  V(IsTurbofannedField, bool, 1, _)    \
  V(StackSlotsField, int, 24, _)       \
  V(IsOffHeapTrampoline, bool, 1, _)
  DEFINE_BIT_FIELDS(CODE_FLAGS_BIT_FIELDS)
#undef CODE_FLAGS_BIT_FIELDS
  static_assert(NUMBER_OF_KINDS <= KindField::kMax, "Code::KindField size");
  static_assert(IsOffHeapTrampoline::kNext <= 32,
                "Code::flags field exhausted");

  // KindSpecificFlags layout (STUB, BUILTIN and OPTIMIZED_FUNCTION)
#define CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS(V, _) \
  V(MarkedForDeoptimizationField, bool, 1, _)     \
  V(DeoptAlreadyCountedField, bool, 1, _)         \
  V(CanHaveWeakObjectsField, bool, 1, _)          \
  V(IsConstructStubField, bool, 1, _)             \
  V(IsPromiseRejectionField, bool, 1, _)          \
  V(IsExceptionCaughtField, bool, 1, _)
  DEFINE_BIT_FIELDS(CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS)
#undef CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS
  static_assert(IsExceptionCaughtField::kNext <= 32, "KindSpecificFlags full");

  // The {marked_for_deoptimization} field is accessed from generated code.
  static const int kMarkedForDeoptimizationBit =
      MarkedForDeoptimizationField::kShift;

  static const int kArgumentsBits = 16;
  // Reserve one argument count value as the "don't adapt arguments" sentinel.
  static const int kMaxArguments = (1 << kArgumentsBits) - 2;

 private:
  friend class RelocIterator;

  bool is_promise_rejection() const;
  bool is_exception_caught() const;

  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
};

// CodeDataContainer is a container for all mutable fields associated with its
// referencing {Code} object. Since {Code} objects reside on write-protected
// pages within the heap, its header fields need to be immutable. There always
// is a 1-to-1 relation between {Code} and {CodeDataContainer}, the referencing
// field {Code::code_data_container} itself is immutable.
class CodeDataContainer : public HeapObject, public NeverReadOnlySpaceObject {
 public:
  using NeverReadOnlySpaceObject::GetHeap;
  using NeverReadOnlySpaceObject::GetIsolate;

  DECL_ACCESSORS(next_code_link, Object)
  DECL_INT_ACCESSORS(kind_specific_flags)

  // Clear uninitialized padding space. This ensures that the snapshot content
  // is deterministic.
  inline void clear_padding();

  DECL_CAST(CodeDataContainer)

  // Dispatched behavior.
  DECL_PRINTER(CodeDataContainer)
  DECL_VERIFIER(CodeDataContainer)

  static const int kNextCodeLinkOffset = HeapObject::kHeaderSize;
  static const int kKindSpecificFlagsOffset =
      kNextCodeLinkOffset + kPointerSize;
  static const int kUnalignedSize = kKindSpecificFlagsOffset + kIntSize;
  static const int kSize = OBJECT_POINTER_ALIGN(kUnalignedSize);

  // During mark compact we need to take special care for weak fields.
  static const int kPointerFieldsStrongEndOffset = kNextCodeLinkOffset;
  static const int kPointerFieldsWeakEndOffset = kKindSpecificFlagsOffset;

  // Ignores weakness.
  typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
                              kPointerFieldsWeakEndOffset, kSize>
      BodyDescriptor;

  // Respects weakness.
  typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
                              kPointerFieldsStrongEndOffset, kSize>
      BodyDescriptorWeak;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeDataContainer);
};

class AbstractCode : public HeapObject, public NeverReadOnlySpaceObject {
 public:
  using NeverReadOnlySpaceObject::GetHeap;
  using NeverReadOnlySpaceObject::GetIsolate;

  // All code kinds and INTERPRETED_FUNCTION.
  enum Kind {
#define DEFINE_CODE_KIND_ENUM(name) name,
    CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
#undef DEFINE_CODE_KIND_ENUM
        INTERPRETED_FUNCTION,
    NUMBER_OF_KINDS
  };

  static const char* Kind2String(Kind kind);

  int SourcePosition(int offset);
  int SourceStatementPosition(int offset);

  // Returns the address of the first instruction.
  inline Address raw_instruction_start();

  // Returns the address of the first instruction. For off-heap code objects
  // this differs from instruction_start (which would point to the off-heap
  // trampoline instead).
  inline Address InstructionStart();

  // Returns the address right after the last instruction.
  inline Address raw_instruction_end();

  // Returns the address right after the last instruction. For off-heap code
  // objects this differs from instruction_end (which would point to the
  // off-heap trampoline instead).
  inline Address InstructionEnd();

  // Returns the size of the code instructions.
  inline int raw_instruction_size();

  // Returns the size of the native instructions, including embedded
  // data such as the safepoints table. For off-heap code objects
  // this may from instruction_size in that this will return the size of the
  // off-heap instruction stream rather than the on-heap trampoline located
  // at instruction_start.
  inline int InstructionSize();

  // Return the source position table.
  inline ByteArray* source_position_table();

  inline Object* stack_frame_cache();
  static void SetStackFrameCache(Handle<AbstractCode> abstract_code,
                                 Handle<SimpleNumberDictionary> cache);
  void DropStackFrameCache();

  // Returns the size of instructions and the metadata.
  inline int SizeIncludingMetadata();

  // Returns true if pc is inside this object's instructions.
  inline bool contains(Address pc);

  // Returns the AbstractCode::Kind of the code.
  inline Kind kind();

  // Calculate the size of the code object to report for log events. This takes
  // the layout of the code object into account.
  inline int ExecutableSize();

  DECL_CAST(AbstractCode)
  inline Code* GetCode();
  inline BytecodeArray* GetBytecodeArray();

  // Max loop nesting marker used to postpose OSR. We don't take loop
  // nesting that is deeper than 5 levels into account.
  static const int kMaxLoopNestingMarker = 6;
};

// Dependent code is a singly linked list of weak fixed arrays. Each array
// contains weak pointers to code objects for one dependent group. The suffix of
// the array can be filled with the undefined value if the number of codes is
// less than the length of the array.
//
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
// | next | count & group 1 | code 1 | code 2 | ... | code n | undefined | ... |
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
//    |
//    V
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
// | next | count & group 2 | code 1 | code 2 | ... | code m | undefined | ... |
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
//    |
//    V
// empty_weak_fixed_array()
//
// The list of weak fixed arrays is ordered by dependency groups.

class DependentCode : public WeakFixedArray {
 public:
  DECL_CAST(DependentCode)

  enum DependencyGroup {
    // Group of code that embed a transition to this map, and depend on being
    // deoptimized when the transition is replaced by a new version.
    kTransitionGroup,
    // Group of code that omit run-time prototype checks for prototypes
    // described by this map. The group is deoptimized whenever an object
    // described by this map changes shape (and transitions to a new map),
    // possibly invalidating the assumptions embedded in the code.
    kPrototypeCheckGroup,
    // Group of code that depends on global property values in property cells
    // not being changed.
    kPropertyCellChangedGroup,
    // Group of code that omit run-time checks for field(s) introduced by
    // this map, i.e. for the field type.
    kFieldOwnerGroup,
    // Group of code that omit run-time type checks for initial maps of
    // constructors.
    kInitialMapChangedGroup,
    // Group of code that depends on tenuring information in AllocationSites
    // not being changed.
    kAllocationSiteTenuringChangedGroup,
    // Group of code that depends on element transition information in
    // AllocationSites not being changed.
    kAllocationSiteTransitionChangedGroup
  };

  // Register a code dependency of {cell} on {object}.
  static void InstallDependency(Isolate* isolate, MaybeObjectHandle code,
                                Handle<HeapObject> object,
                                DependencyGroup group);

  bool Contains(DependencyGroup group, MaybeObject* code);
  bool IsEmpty(DependencyGroup group);

  void DeoptimizeDependentCodeGroup(Isolate* isolate, DependencyGroup group);

  bool MarkCodeForDeoptimization(Isolate* isolate, DependencyGroup group);

  // The following low-level accessors are exposed only for tests.
  inline DependencyGroup group();
  inline MaybeObject* object_at(int i);
  inline int count();
  inline DependentCode* next_link();

 private:
  static const char* DependencyGroupName(DependencyGroup group);

  // Get/Set {object}'s {DependentCode}.
  static DependentCode* GetDependentCode(Handle<HeapObject> object);
  static void SetDependentCode(Handle<HeapObject> object,
                               Handle<DependentCode> dep);

  static Handle<DependentCode> New(Isolate* isolate, DependencyGroup group,
                                   MaybeObjectHandle object,
                                   Handle<DependentCode> next);
  static Handle<DependentCode> EnsureSpace(Isolate* isolate,
                                           Handle<DependentCode> entries);
  static Handle<DependentCode> InsertWeakCode(Isolate* isolate,
                                              Handle<DependentCode> entries,
                                              DependencyGroup group,
                                              MaybeObjectHandle code);

  // Compact by removing cleared weak cells and return true if there was
  // any cleared weak cell.
  bool Compact();

  static int Grow(int number_of_entries) {
    if (number_of_entries < 5) return number_of_entries + 1;
    return number_of_entries * 5 / 4;
  }

  static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
  static const int kNextLinkIndex = 0;
  static const int kFlagsIndex = 1;
  static const int kCodesStartIndex = 2;

  inline void set_next_link(DependentCode* next);
  inline void set_count(int value);
  inline void set_object_at(int i, MaybeObject* object);
  inline void clear_at(int i);
  inline void copy(int from, int to);

  inline int flags();
  inline void set_flags(int flags);
  class GroupField : public BitField<int, 0, 3> {};
  class CountField : public BitField<int, 3, 27> {};
  STATIC_ASSERT(kGroupCount <= GroupField::kMax + 1);
};

// BytecodeArray represents a sequence of interpreter bytecodes.
class BytecodeArray : public FixedArrayBase {
 public:
  enum Age {
    kNoAgeBytecodeAge = 0,
    kQuadragenarianBytecodeAge,
    kQuinquagenarianBytecodeAge,
    kSexagenarianBytecodeAge,
    kSeptuagenarianBytecodeAge,
    kOctogenarianBytecodeAge,
    kAfterLastBytecodeAge,
    kFirstBytecodeAge = kNoAgeBytecodeAge,
    kLastBytecodeAge = kAfterLastBytecodeAge - 1,
    kBytecodeAgeCount = kAfterLastBytecodeAge - kFirstBytecodeAge - 1,
    kIsOldBytecodeAge = kSexagenarianBytecodeAge
  };

  static int SizeFor(int length) {
    return OBJECT_POINTER_ALIGN(kHeaderSize + length);
  }

  // Setter and getter
  inline byte get(int index);
  inline void set(int index, byte value);

  // Returns data start address.
  inline Address GetFirstBytecodeAddress();

  // Accessors for frame size.
  inline int frame_size() const;
  inline void set_frame_size(int frame_size);

  // Accessor for register count (derived from frame_size).
  inline int register_count() const;

  // Accessors for parameter count (including implicit 'this' receiver).
  inline int parameter_count() const;
  inline void set_parameter_count(int number_of_parameters);

  // Register used to pass the incoming new.target or generator object from the
  // fucntion call.
  inline interpreter::Register incoming_new_target_or_generator_register()
      const;
  inline void set_incoming_new_target_or_generator_register(
      interpreter::Register incoming_new_target_or_generator_register);

  // Accessors for profiling count.
  inline int interrupt_budget() const;
  inline void set_interrupt_budget(int interrupt_budget);

  // Accessors for OSR loop nesting level.
  inline int osr_loop_nesting_level() const;
  inline void set_osr_loop_nesting_level(int depth);

  // Accessors for bytecode's code age.
  inline Age bytecode_age() const;
  inline void set_bytecode_age(Age age);

  // Accessors for the constant pool.
  DECL_ACCESSORS(constant_pool, FixedArray)

  // Accessors for handler table containing offsets of exception handlers.
  DECL_ACCESSORS(handler_table, ByteArray)

  // Accessors for source position table containing mappings between byte code
  // offset and source position or SourcePositionTableWithFrameCache.
  DECL_ACCESSORS(source_position_table, Object)

  inline ByteArray* SourcePositionTable();
  inline void ClearFrameCacheFromSourcePositionTable();

  DECL_CAST(BytecodeArray)

  // Dispatched behavior.
  inline int BytecodeArraySize();

  inline int raw_instruction_size();

  // Returns the size of bytecode and its metadata. This includes the size of
  // bytecode, constant pool, source position table, and handler table.
  inline int SizeIncludingMetadata();

  int SourcePosition(int offset);
  int SourceStatementPosition(int offset);

  DECL_PRINTER(BytecodeArray)
  DECL_VERIFIER(BytecodeArray)

  void Disassemble(std::ostream& os);

  void CopyBytecodesTo(BytecodeArray* to);

  // Bytecode aging
  bool IsOld() const;
  void MakeOlder();

  // Clear uninitialized padding space. This ensures that the snapshot content
  // is deterministic.
  inline void clear_padding();

// Layout description.
#define BYTECODE_ARRAY_FIELDS(V)                           \
  /* Pointer fields. */                                    \
  V(kConstantPoolOffset, kPointerSize)                     \
  V(kHandlerTableOffset, kPointerSize)                     \
  V(kSourcePositionTableOffset, kPointerSize)              \
  V(kFrameSizeOffset, kIntSize)                            \
  V(kParameterSizeOffset, kIntSize)                        \
  V(kIncomingNewTargetOrGeneratorRegisterOffset, kIntSize) \
  V(kInterruptBudgetOffset, kIntSize)                      \
  V(kOSRNestingLevelOffset, kCharSize)                     \
  V(kBytecodeAgeOffset, kCharSize)                         \
  /* Total size. */                                        \
  V(kHeaderSize, 0)

  DEFINE_FIELD_OFFSET_CONSTANTS(FixedArrayBase::kHeaderSize,
                                BYTECODE_ARRAY_FIELDS)
#undef BYTECODE_ARRAY_FIELDS

  // Maximal memory consumption for a single BytecodeArray.
  static const int kMaxSize = 512 * MB;
  // Maximal length of a single BytecodeArray.
  static const int kMaxLength = kMaxSize - kHeaderSize;

  class BodyDescriptor;
  // No weak fields.
  typedef BodyDescriptor BodyDescriptorWeak;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(BytecodeArray);
};

// DeoptimizationData is a fixed array used to hold the deoptimization data for
// optimized code.  It also contains information about functions that were
// inlined.  If N different functions were inlined then the first N elements of
// the literal array will contain these functions.
//
// It can be empty.
class DeoptimizationData : public FixedArray {
 public:
  // Layout description.  Indices in the array.
  static const int kTranslationByteArrayIndex = 0;
  static const int kInlinedFunctionCountIndex = 1;
  static const int kLiteralArrayIndex = 2;
  static const int kOsrBytecodeOffsetIndex = 3;
  static const int kOsrPcOffsetIndex = 4;
  static const int kOptimizationIdIndex = 5;
  static const int kSharedFunctionInfoIndex = 6;
  static const int kInliningPositionsIndex = 7;
  static const int kFirstDeoptEntryIndex = 8;

  // Offsets of deopt entry elements relative to the start of the entry.
  static const int kBytecodeOffsetRawOffset = 0;
  static const int kTranslationIndexOffset = 1;
  static const int kPcOffset = 2;
  static const int kDeoptEntrySize = 3;

// Simple element accessors.
#define DECL_ELEMENT_ACCESSORS(name, type) \
  inline type* name();                     \
  inline void Set##name(type* value);

  DECL_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
  DECL_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
  DECL_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
  DECL_ELEMENT_ACCESSORS(OsrBytecodeOffset, Smi)
  DECL_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
  DECL_ELEMENT_ACCESSORS(OptimizationId, Smi)
  DECL_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
  DECL_ELEMENT_ACCESSORS(InliningPositions, PodArray<InliningPosition>)

#undef DECL_ELEMENT_ACCESSORS

// Accessors for elements of the ith deoptimization entry.
#define DECL_ENTRY_ACCESSORS(name, type) \
  inline type* name(int i);              \
  inline void Set##name(int i, type* value);

  DECL_ENTRY_ACCESSORS(BytecodeOffsetRaw, Smi)
  DECL_ENTRY_ACCESSORS(TranslationIndex, Smi)
  DECL_ENTRY_ACCESSORS(Pc, Smi)

#undef DECL_ENTRY_ACCESSORS

  inline BailoutId BytecodeOffset(int i);

  inline void SetBytecodeOffset(int i, BailoutId value);

  inline int DeoptCount();

  static const int kNotInlinedIndex = -1;

  // Returns the inlined function at the given position in LiteralArray, or the
  // outer function if index == kNotInlinedIndex.
  class SharedFunctionInfo* GetInlinedFunction(int index);

  // Allocates a DeoptimizationData.
  static Handle<DeoptimizationData> New(Isolate* isolate, int deopt_entry_count,
                                        PretenureFlag pretenure);

  // Return an empty DeoptimizationData.
  static Handle<DeoptimizationData> Empty(Isolate* isolate);

  DECL_CAST(DeoptimizationData)

#ifdef ENABLE_DISASSEMBLER
  void DeoptimizationDataPrint(std::ostream& os);  // NOLINT
#endif

 private:
  static int IndexForEntry(int i) {
    return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
  }

  static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
};

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_CODE_H_