summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/code-inl.h
blob: 57e5f2a565c0f835bcb5bc601fa773a6c1e7e0b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_CODE_INL_H_
#define V8_OBJECTS_CODE_INL_H_

#include "src/objects/code.h"

#include "src/interpreter/bytecode-register.h"
#include "src/isolate.h"
#include "src/objects/dictionary.h"
#include "src/objects/map-inl.h"
#include "src/v8memory.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

CAST_ACCESSOR(AbstractCode)
CAST_ACCESSOR(BytecodeArray)
CAST_ACCESSOR(Code)
CAST_ACCESSOR(CodeDataContainer)
CAST_ACCESSOR(DependentCode)
CAST_ACCESSOR(DeoptimizationData)

int AbstractCode::raw_instruction_size() {
  if (IsCode()) {
    return GetCode()->raw_instruction_size();
  } else {
    return GetBytecodeArray()->length();
  }
}

int AbstractCode::InstructionSize() {
  if (IsCode()) {
    return GetCode()->InstructionSize();
  } else {
    return GetBytecodeArray()->length();
  }
}

ByteArray* AbstractCode::source_position_table() {
  if (IsCode()) {
    return GetCode()->SourcePositionTable();
  } else {
    return GetBytecodeArray()->SourcePositionTable();
  }
}

Object* AbstractCode::stack_frame_cache() {
  Object* maybe_table;
  if (IsCode()) {
    maybe_table = GetCode()->source_position_table();
  } else {
    maybe_table = GetBytecodeArray()->source_position_table();
  }
  if (maybe_table->IsSourcePositionTableWithFrameCache()) {
    return SourcePositionTableWithFrameCache::cast(maybe_table)
        ->stack_frame_cache();
  }
  return Smi::kZero;
}

int AbstractCode::SizeIncludingMetadata() {
  if (IsCode()) {
    return GetCode()->SizeIncludingMetadata();
  } else {
    return GetBytecodeArray()->SizeIncludingMetadata();
  }
}
int AbstractCode::ExecutableSize() {
  if (IsCode()) {
    return GetCode()->ExecutableSize();
  } else {
    return GetBytecodeArray()->BytecodeArraySize();
  }
}

Address AbstractCode::raw_instruction_start() {
  if (IsCode()) {
    return GetCode()->raw_instruction_start();
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress();
  }
}

Address AbstractCode::InstructionStart() {
  if (IsCode()) {
    return GetCode()->InstructionStart();
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress();
  }
}

Address AbstractCode::raw_instruction_end() {
  if (IsCode()) {
    return GetCode()->raw_instruction_end();
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress() +
           GetBytecodeArray()->length();
  }
}

Address AbstractCode::InstructionEnd() {
  if (IsCode()) {
    return GetCode()->InstructionEnd();
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress() +
           GetBytecodeArray()->length();
  }
}

bool AbstractCode::contains(Address inner_pointer) {
  return (address() <= inner_pointer) && (inner_pointer <= address() + Size());
}

AbstractCode::Kind AbstractCode::kind() {
  if (IsCode()) {
    return static_cast<AbstractCode::Kind>(GetCode()->kind());
  } else {
    return INTERPRETED_FUNCTION;
  }
}

Code* AbstractCode::GetCode() { return Code::cast(this); }

BytecodeArray* AbstractCode::GetBytecodeArray() {
  return BytecodeArray::cast(this);
}

DependentCode* DependentCode::next_link() {
  return DependentCode::cast(get(kNextLinkIndex));
}

void DependentCode::set_next_link(DependentCode* next) {
  set(kNextLinkIndex, next);
}

int DependentCode::flags() { return Smi::ToInt(get(kFlagsIndex)); }

void DependentCode::set_flags(int flags) {
  set(kFlagsIndex, Smi::FromInt(flags));
}

int DependentCode::count() { return CountField::decode(flags()); }

void DependentCode::set_count(int value) {
  set_flags(CountField::update(flags(), value));
}

DependentCode::DependencyGroup DependentCode::group() {
  return static_cast<DependencyGroup>(GroupField::decode(flags()));
}

void DependentCode::set_object_at(int i, Object* object) {
  set(kCodesStartIndex + i, object);
}

Object* DependentCode::object_at(int i) { return get(kCodesStartIndex + i); }

void DependentCode::clear_at(int i) { set_undefined(kCodesStartIndex + i); }

void DependentCode::copy(int from, int to) {
  set(kCodesStartIndex + to, get(kCodesStartIndex + from));
}

INT_ACCESSORS(Code, raw_instruction_size, kInstructionSizeOffset)
INT_ACCESSORS(Code, handler_table_offset, kHandlerTableOffsetOffset)
#define CODE_ACCESSORS(name, type, offset) \
  ACCESSORS_CHECKED2(Code, name, type, offset, true, !Heap::InNewSpace(value))
CODE_ACCESSORS(relocation_info, ByteArray, kRelocationInfoOffset)
CODE_ACCESSORS(deoptimization_data, FixedArray, kDeoptimizationDataOffset)
CODE_ACCESSORS(source_position_table, Object, kSourcePositionTableOffset)
CODE_ACCESSORS(code_data_container, CodeDataContainer, kCodeDataContainerOffset)
#undef CODE_ACCESSORS

void Code::WipeOutHeader() {
  WRITE_FIELD(this, kRelocationInfoOffset, nullptr);
  WRITE_FIELD(this, kDeoptimizationDataOffset, nullptr);
  WRITE_FIELD(this, kSourcePositionTableOffset, nullptr);
  WRITE_FIELD(this, kCodeDataContainerOffset, nullptr);
}

void Code::clear_padding() {
  memset(reinterpret_cast<void*>(address() + kHeaderPaddingStart), 0,
         kHeaderSize - kHeaderPaddingStart);
  Address data_end =
      has_unwinding_info() ? unwinding_info_end() : raw_instruction_end();
  memset(reinterpret_cast<void*>(data_end), 0,
         CodeSize() - (data_end - address()));
}

ByteArray* Code::SourcePositionTable() const {
  Object* maybe_table = source_position_table();
  if (maybe_table->IsByteArray()) return ByteArray::cast(maybe_table);
  DCHECK(maybe_table->IsSourcePositionTableWithFrameCache());
  return SourcePositionTableWithFrameCache::cast(maybe_table)
      ->source_position_table();
}

uint32_t Code::stub_key() const {
  DCHECK(is_stub());
  return READ_UINT32_FIELD(this, kStubKeyOffset);
}

void Code::set_stub_key(uint32_t key) {
  DCHECK(is_stub() || key == 0);  // Allow zero initialization.
  WRITE_UINT32_FIELD(this, kStubKeyOffset, key);
}

Object* Code::next_code_link() const {
  return code_data_container()->next_code_link();
}

void Code::set_next_code_link(Object* value) {
  code_data_container()->set_next_code_link(value);
}

int Code::InstructionSize() const {
  if (is_off_heap_trampoline()) {
    DCHECK(FLAG_embedded_builtins);
    return OffHeapInstructionSize();
  }
  return raw_instruction_size();
}

Address Code::raw_instruction_start() const {
  return FIELD_ADDR(this, kHeaderSize);
}

Address Code::InstructionStart() const {
  if (is_off_heap_trampoline()) {
    DCHECK(FLAG_embedded_builtins);
    return OffHeapInstructionStart();
  }
  return raw_instruction_start();
}

Address Code::raw_instruction_end() const {
  return raw_instruction_start() + raw_instruction_size();
}

Address Code::InstructionEnd() const {
  if (is_off_heap_trampoline()) {
    DCHECK(FLAG_embedded_builtins);
    return OffHeapInstructionEnd();
  }
  return raw_instruction_end();
}

int Code::GetUnwindingInfoSizeOffset() const {
  DCHECK(has_unwinding_info());
  return RoundUp(kHeaderSize + raw_instruction_size(), kInt64Size);
}

int Code::unwinding_info_size() const {
  DCHECK(has_unwinding_info());
  return static_cast<int>(
      READ_UINT64_FIELD(this, GetUnwindingInfoSizeOffset()));
}

void Code::set_unwinding_info_size(int value) {
  DCHECK(has_unwinding_info());
  WRITE_UINT64_FIELD(this, GetUnwindingInfoSizeOffset(), value);
}

Address Code::unwinding_info_start() const {
  DCHECK(has_unwinding_info());
  return FIELD_ADDR(this, GetUnwindingInfoSizeOffset()) + kInt64Size;
}

Address Code::unwinding_info_end() const {
  DCHECK(has_unwinding_info());
  return unwinding_info_start() + unwinding_info_size();
}

int Code::body_size() const {
  int unpadded_body_size =
      has_unwinding_info()
          ? static_cast<int>(unwinding_info_end() - raw_instruction_start())
          : raw_instruction_size();
  return RoundUp(unpadded_body_size, kObjectAlignment);
}

int Code::SizeIncludingMetadata() const {
  int size = CodeSize();
  size += relocation_info()->Size();
  size += deoptimization_data()->Size();
  return size;
}

ByteArray* Code::unchecked_relocation_info() const {
  return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
}

byte* Code::relocation_start() const {
  return unchecked_relocation_info()->GetDataStartAddress();
}

byte* Code::relocation_end() const {
  return unchecked_relocation_info()->GetDataStartAddress() +
         unchecked_relocation_info()->length();
}

int Code::relocation_size() const {
  return unchecked_relocation_info()->length();
}

Address Code::entry() const { return raw_instruction_start(); }

bool Code::contains(Address inner_pointer) {
  if (is_off_heap_trampoline()) {
    DCHECK(FLAG_embedded_builtins);
    return (OffHeapInstructionStart() <= inner_pointer) &&
           (inner_pointer < OffHeapInstructionEnd());
  }
  return (address() <= inner_pointer) && (inner_pointer < address() + Size());
}

int Code::ExecutableSize() const {
  // Check that the assumptions about the layout of the code object holds.
  DCHECK_EQ(static_cast<int>(raw_instruction_start() - address()),
            Code::kHeaderSize);
  return raw_instruction_size() + Code::kHeaderSize;
}

int Code::CodeSize() const { return SizeFor(body_size()); }

Code::Kind Code::kind() const {
  return KindField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
}

void Code::initialize_flags(Kind kind, bool has_unwinding_info,
                            bool is_turbofanned, int stack_slots,
                            bool is_off_heap_trampoline) {
  CHECK(0 <= stack_slots && stack_slots < StackSlotsField::kMax);
  static_assert(Code::NUMBER_OF_KINDS <= KindField::kMax + 1, "field overflow");
  uint32_t flags = HasUnwindingInfoField::encode(has_unwinding_info) |
                   KindField::encode(kind) |
                   IsTurbofannedField::encode(is_turbofanned) |
                   StackSlotsField::encode(stack_slots) |
                   IsOffHeapTrampoline::encode(is_off_heap_trampoline);
  WRITE_UINT32_FIELD(this, kFlagsOffset, flags);
  DCHECK_IMPLIES(stack_slots != 0, has_safepoint_info());
}

inline bool Code::is_interpreter_trampoline_builtin() const {
  Builtins* builtins = GetIsolate()->builtins();
  Code* interpreter_entry_trampoline =
      builtins->builtin(Builtins::kInterpreterEntryTrampoline);
  bool is_interpreter_trampoline =
      (builtin_index() == interpreter_entry_trampoline->builtin_index() ||
       this == builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance) ||
       this == builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch));
  DCHECK_IMPLIES(is_interpreter_trampoline, !Builtins::IsLazy(builtin_index()));
  return is_interpreter_trampoline;
}

inline bool Code::checks_optimization_marker() const {
  Builtins* builtins = GetIsolate()->builtins();
  Code* interpreter_entry_trampoline =
      builtins->builtin(Builtins::kInterpreterEntryTrampoline);
  bool checks_marker =
      (this == builtins->builtin(Builtins::kCompileLazy) ||
       builtin_index() == interpreter_entry_trampoline->builtin_index());
  DCHECK_IMPLIES(checks_marker, !Builtins::IsLazy(builtin_index()));
  return checks_marker ||
         (kind() == OPTIMIZED_FUNCTION && marked_for_deoptimization());
}

inline bool Code::has_tagged_params() const {
  return kind() != JS_TO_WASM_FUNCTION && kind() != C_WASM_ENTRY &&
         kind() != WASM_FUNCTION;
}

inline bool Code::has_unwinding_info() const {
  return HasUnwindingInfoField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
}

inline bool Code::is_turbofanned() const {
  return IsTurbofannedField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
}

inline bool Code::can_have_weak_objects() const {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  int flags = code_data_container()->kind_specific_flags();
  return CanHaveWeakObjectsField::decode(flags);
}

inline void Code::set_can_have_weak_objects(bool value) {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  int previous = code_data_container()->kind_specific_flags();
  int updated = CanHaveWeakObjectsField::update(previous, value);
  code_data_container()->set_kind_specific_flags(updated);
}

inline bool Code::is_construct_stub() const {
  DCHECK(kind() == BUILTIN);
  int flags = code_data_container()->kind_specific_flags();
  return IsConstructStubField::decode(flags);
}

inline void Code::set_is_construct_stub(bool value) {
  DCHECK(kind() == BUILTIN);
  int previous = code_data_container()->kind_specific_flags();
  int updated = IsConstructStubField::update(previous, value);
  code_data_container()->set_kind_specific_flags(updated);
}

inline bool Code::is_promise_rejection() const {
  DCHECK(kind() == BUILTIN);
  int flags = code_data_container()->kind_specific_flags();
  return IsPromiseRejectionField::decode(flags);
}

inline void Code::set_is_promise_rejection(bool value) {
  DCHECK(kind() == BUILTIN);
  int previous = code_data_container()->kind_specific_flags();
  int updated = IsPromiseRejectionField::update(previous, value);
  code_data_container()->set_kind_specific_flags(updated);
}

inline bool Code::is_exception_caught() const {
  DCHECK(kind() == BUILTIN);
  int flags = code_data_container()->kind_specific_flags();
  return IsExceptionCaughtField::decode(flags);
}

inline void Code::set_is_exception_caught(bool value) {
  DCHECK(kind() == BUILTIN);
  int previous = code_data_container()->kind_specific_flags();
  int updated = IsExceptionCaughtField::update(previous, value);
  code_data_container()->set_kind_specific_flags(updated);
}

inline bool Code::is_off_heap_trampoline() const {
  return IsOffHeapTrampoline::decode(READ_UINT32_FIELD(this, kFlagsOffset));
}

inline HandlerTable::CatchPrediction Code::GetBuiltinCatchPrediction() {
  if (is_promise_rejection()) return HandlerTable::PROMISE;
  if (is_exception_caught()) return HandlerTable::CAUGHT;
  return HandlerTable::UNCAUGHT;
}

int Code::builtin_index() const {
  int index = READ_INT_FIELD(this, kBuiltinIndexOffset);
  DCHECK(index == -1 || Builtins::IsBuiltinId(index));
  return index;
}

void Code::set_builtin_index(int index) {
  DCHECK(index == -1 || Builtins::IsBuiltinId(index));
  WRITE_INT_FIELD(this, kBuiltinIndexOffset, index);
}

bool Code::is_builtin() const { return builtin_index() != -1; }

bool Code::has_safepoint_info() const {
  return is_turbofanned() || is_wasm_code();
}

int Code::stack_slots() const {
  DCHECK(has_safepoint_info());
  return StackSlotsField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
}

int Code::safepoint_table_offset() const {
  DCHECK(has_safepoint_info());
  return READ_INT32_FIELD(this, kSafepointTableOffsetOffset);
}

void Code::set_safepoint_table_offset(int offset) {
  CHECK_LE(0, offset);
  DCHECK(has_safepoint_info() || offset == 0);  // Allow zero initialization.
  DCHECK(IsAligned(offset, static_cast<unsigned>(kIntSize)));
  WRITE_INT32_FIELD(this, kSafepointTableOffsetOffset, offset);
}

bool Code::marked_for_deoptimization() const {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  int flags = code_data_container()->kind_specific_flags();
  return MarkedForDeoptimizationField::decode(flags);
}

void Code::set_marked_for_deoptimization(bool flag) {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  DCHECK_IMPLIES(flag, AllowDeoptimization::IsAllowed(GetIsolate()));
  int previous = code_data_container()->kind_specific_flags();
  int updated = MarkedForDeoptimizationField::update(previous, flag);
  code_data_container()->set_kind_specific_flags(updated);
}

bool Code::deopt_already_counted() const {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  int flags = code_data_container()->kind_specific_flags();
  return DeoptAlreadyCountedField::decode(flags);
}

void Code::set_deopt_already_counted(bool flag) {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  DCHECK_IMPLIES(flag, AllowDeoptimization::IsAllowed(GetIsolate()));
  int previous = code_data_container()->kind_specific_flags();
  int updated = DeoptAlreadyCountedField::update(previous, flag);
  code_data_container()->set_kind_specific_flags(updated);
}

bool Code::is_stub() const { return kind() == STUB; }
bool Code::is_optimized_code() const { return kind() == OPTIMIZED_FUNCTION; }
bool Code::is_wasm_code() const { return kind() == WASM_FUNCTION; }

int Code::constant_pool_offset() const {
  if (!FLAG_enable_embedded_constant_pool) return InstructionSize();
  return READ_INT_FIELD(this, kConstantPoolOffset);
}

void Code::set_constant_pool_offset(int value) {
  if (!FLAG_enable_embedded_constant_pool) return;
  WRITE_INT_FIELD(this, kConstantPoolOffset, value);
}

Address Code::constant_pool() const {
  if (FLAG_enable_embedded_constant_pool) {
    int offset = constant_pool_offset();
    if (offset < InstructionSize()) {
      return InstructionStart() + offset;
    }
  }
  return kNullAddress;
}

Code* Code::GetCodeFromTargetAddress(Address address) {
  {
    // TODO(jgruber,v8:6666): Support embedded builtins here. We'd need to pass
    // in the current isolate.
    Address start = reinterpret_cast<Address>(Isolate::CurrentEmbeddedBlob());
    Address end = start + Isolate::CurrentEmbeddedBlobSize();
    CHECK(address < start || address >= end);
  }

  HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
  // GetCodeFromTargetAddress might be called when marking objects during mark
  // sweep. reinterpret_cast is therefore used instead of the more appropriate
  // Code::cast. Code::cast does not work when the object's map is
  // marked.
  Code* result = reinterpret_cast<Code*>(code);
  return result;
}

Object* Code::GetObjectFromCodeEntry(Address code_entry) {
  return HeapObject::FromAddress(code_entry - Code::kHeaderSize);
}

Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
  return GetObjectFromCodeEntry(Memory::Address_at(location_of_address));
}

bool Code::CanContainWeakObjects() {
  return is_optimized_code() && can_have_weak_objects();
}

bool Code::IsWeakObject(Object* object) {
  return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object));
}

bool Code::IsWeakObjectInOptimizedCode(Object* object) {
  if (object->IsMap()) {
    return Map::cast(object)->CanTransition();
  }
  if (object->IsCell()) {
    object = Cell::cast(object)->value();
  } else if (object->IsPropertyCell()) {
    object = PropertyCell::cast(object)->value();
  }
  if (object->IsJSReceiver() || object->IsContext()) {
    return true;
  }
  return false;
}

INT_ACCESSORS(CodeDataContainer, kind_specific_flags, kKindSpecificFlagsOffset)
ACCESSORS(CodeDataContainer, next_code_link, Object, kNextCodeLinkOffset)

void CodeDataContainer::clear_padding() {
  memset(reinterpret_cast<void*>(address() + kUnalignedSize), 0,
         kSize - kUnalignedSize);
}

byte BytecodeArray::get(int index) {
  DCHECK(index >= 0 && index < this->length());
  return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}

void BytecodeArray::set(int index, byte value) {
  DCHECK(index >= 0 && index < this->length());
  WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}

void BytecodeArray::set_frame_size(int frame_size) {
  DCHECK_GE(frame_size, 0);
  DCHECK(IsAligned(frame_size, static_cast<unsigned>(kPointerSize)));
  WRITE_INT_FIELD(this, kFrameSizeOffset, frame_size);
}

int BytecodeArray::frame_size() const {
  return READ_INT_FIELD(this, kFrameSizeOffset);
}

int BytecodeArray::register_count() const {
  return frame_size() / kPointerSize;
}

void BytecodeArray::set_parameter_count(int number_of_parameters) {
  DCHECK_GE(number_of_parameters, 0);
  // Parameter count is stored as the size on stack of the parameters to allow
  // it to be used directly by generated code.
  WRITE_INT_FIELD(this, kParameterSizeOffset,
                  (number_of_parameters << kPointerSizeLog2));
}

interpreter::Register BytecodeArray::incoming_new_target_or_generator_register()
    const {
  int register_operand =
      READ_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset);
  if (register_operand == 0) {
    return interpreter::Register::invalid_value();
  } else {
    return interpreter::Register::FromOperand(register_operand);
  }
}

void BytecodeArray::set_incoming_new_target_or_generator_register(
    interpreter::Register incoming_new_target_or_generator_register) {
  if (!incoming_new_target_or_generator_register.is_valid()) {
    WRITE_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset, 0);
  } else {
    DCHECK(incoming_new_target_or_generator_register.index() <
           register_count());
    DCHECK_NE(0, incoming_new_target_or_generator_register.ToOperand());
    WRITE_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset,
                    incoming_new_target_or_generator_register.ToOperand());
  }
}

int BytecodeArray::interrupt_budget() const {
  return READ_INT_FIELD(this, kInterruptBudgetOffset);
}

void BytecodeArray::set_interrupt_budget(int interrupt_budget) {
  DCHECK_GE(interrupt_budget, 0);
  WRITE_INT_FIELD(this, kInterruptBudgetOffset, interrupt_budget);
}

int BytecodeArray::osr_loop_nesting_level() const {
  return READ_INT8_FIELD(this, kOSRNestingLevelOffset);
}

void BytecodeArray::set_osr_loop_nesting_level(int depth) {
  DCHECK(0 <= depth && depth <= AbstractCode::kMaxLoopNestingMarker);
  STATIC_ASSERT(AbstractCode::kMaxLoopNestingMarker < kMaxInt8);
  WRITE_INT8_FIELD(this, kOSRNestingLevelOffset, depth);
}

BytecodeArray::Age BytecodeArray::bytecode_age() const {
  // Bytecode is aged by the concurrent marker.
  return static_cast<Age>(RELAXED_READ_INT8_FIELD(this, kBytecodeAgeOffset));
}

void BytecodeArray::set_bytecode_age(BytecodeArray::Age age) {
  DCHECK_GE(age, kFirstBytecodeAge);
  DCHECK_LE(age, kLastBytecodeAge);
  STATIC_ASSERT(kLastBytecodeAge <= kMaxInt8);
  // Bytecode is aged by the concurrent marker.
  RELAXED_WRITE_INT8_FIELD(this, kBytecodeAgeOffset, static_cast<int8_t>(age));
}

int BytecodeArray::parameter_count() const {
  // Parameter count is stored as the size on stack of the parameters to allow
  // it to be used directly by generated code.
  return READ_INT_FIELD(this, kParameterSizeOffset) >> kPointerSizeLog2;
}

ACCESSORS(BytecodeArray, constant_pool, FixedArray, kConstantPoolOffset)
ACCESSORS(BytecodeArray, handler_table, ByteArray, kHandlerTableOffset)
ACCESSORS(BytecodeArray, source_position_table, Object,
          kSourcePositionTableOffset)

void BytecodeArray::clear_padding() {
  int data_size = kHeaderSize + length();
  memset(reinterpret_cast<void*>(address() + data_size), 0,
         SizeFor(length()) - data_size);
}

Address BytecodeArray::GetFirstBytecodeAddress() {
  return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}

ByteArray* BytecodeArray::SourcePositionTable() {
  Object* maybe_table = source_position_table();
  if (maybe_table->IsByteArray()) return ByteArray::cast(maybe_table);
  DCHECK(maybe_table->IsSourcePositionTableWithFrameCache());
  return SourcePositionTableWithFrameCache::cast(maybe_table)
      ->source_position_table();
}

void BytecodeArray::ClearFrameCacheFromSourcePositionTable() {
  Object* maybe_table = source_position_table();
  if (maybe_table->IsByteArray()) return;
  DCHECK(maybe_table->IsSourcePositionTableWithFrameCache());
  set_source_position_table(SourcePositionTableWithFrameCache::cast(maybe_table)
                                ->source_position_table());
}

int BytecodeArray::BytecodeArraySize() { return SizeFor(this->length()); }

int BytecodeArray::SizeIncludingMetadata() {
  int size = BytecodeArraySize();
  size += constant_pool()->Size();
  size += handler_table()->Size();
  size += SourcePositionTable()->Size();
  return size;
}

BailoutId DeoptimizationData::BytecodeOffset(int i) {
  return BailoutId(BytecodeOffsetRaw(i)->value());
}

void DeoptimizationData::SetBytecodeOffset(int i, BailoutId value) {
  SetBytecodeOffsetRaw(i, Smi::FromInt(value.ToInt()));
}

int DeoptimizationData::DeoptCount() {
  return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
}

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_CODE_INL_H_