summaryrefslogtreecommitdiff
path: root/deps/v8/src/numbers/conversions.cc
blob: faf3e33df37542f6b3dc25f6ca0b47a09b32293c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/numbers/conversions.h"

#include <limits.h>
#include <stdarg.h>
#include <cmath>

#include "src/common/assert-scope.h"
#include "src/handles/handles.h"
#include "src/heap/factory.h"
#include "src/numbers/dtoa.h"
#include "src/numbers/strtod.h"
#include "src/objects/bigint.h"
#include "src/objects/objects-inl.h"
#include "src/strings/char-predicates-inl.h"
#include "src/utils/allocation.h"
#include "src/utils/utils.h"

#if defined(_STLP_VENDOR_CSTD)
// STLPort doesn't import fpclassify into the std namespace.
#define FPCLASSIFY_NAMESPACE
#else
#define FPCLASSIFY_NAMESPACE std
#endif

namespace v8 {
namespace internal {

inline double JunkStringValue() {
  return bit_cast<double, uint64_t>(kQuietNaNMask);
}

inline double SignedZero(bool negative) {
  return negative ? uint64_to_double(Double::kSignMask) : 0.0;
}

inline bool isDigit(int x, int radix) {
  return (x >= '0' && x <= '9' && x < '0' + radix) ||
         (radix > 10 && x >= 'a' && x < 'a' + radix - 10) ||
         (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
}

inline bool isBinaryDigit(int x) { return x == '0' || x == '1'; }

template <class Iterator, class EndMark>
bool SubStringEquals(Iterator* current, EndMark end, const char* substring) {
  DCHECK(**current == *substring);
  for (substring++; *substring != '\0'; substring++) {
    ++*current;
    if (*current == end || **current != *substring) return false;
  }
  ++*current;
  return true;
}

// Returns true if a nonspace character has been found and false if the
// end was been reached before finding a nonspace character.
template <class Iterator, class EndMark>
inline bool AdvanceToNonspace(Iterator* current, EndMark end) {
  while (*current != end) {
    if (!IsWhiteSpaceOrLineTerminator(**current)) return true;
    ++*current;
  }
  return false;
}

// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
template <int radix_log_2, class Iterator, class EndMark>
double InternalStringToIntDouble(Iterator current, EndMark end, bool negative,
                                 bool allow_trailing_junk) {
  DCHECK(current != end);

  // Skip leading 0s.
  while (*current == '0') {
    ++current;
    if (current == end) return SignedZero(negative);
  }

  int64_t number = 0;
  int exponent = 0;
  const int radix = (1 << radix_log_2);

  int lim_0 = '0' + (radix < 10 ? radix : 10);
  int lim_a = 'a' + (radix - 10);
  int lim_A = 'A' + (radix - 10);

  do {
    int digit;
    if (*current >= '0' && *current < lim_0) {
      digit = static_cast<char>(*current) - '0';
    } else if (*current >= 'a' && *current < lim_a) {
      digit = static_cast<char>(*current) - 'a' + 10;
    } else if (*current >= 'A' && *current < lim_A) {
      digit = static_cast<char>(*current) - 'A' + 10;
    } else {
      if (allow_trailing_junk || !AdvanceToNonspace(&current, end)) {
        break;
      } else {
        return JunkStringValue();
      }
    }

    number = number * radix + digit;
    int overflow = static_cast<int>(number >> 53);
    if (overflow != 0) {
      // Overflow occurred. Need to determine which direction to round the
      // result.
      int overflow_bits_count = 1;
      while (overflow > 1) {
        overflow_bits_count++;
        overflow >>= 1;
      }

      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
      number >>= overflow_bits_count;
      exponent = overflow_bits_count;

      bool zero_tail = true;
      while (true) {
        ++current;
        if (current == end || !isDigit(*current, radix)) break;
        zero_tail = zero_tail && *current == '0';
        exponent += radix_log_2;
      }

      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
        return JunkStringValue();
      }

      int middle_value = (1 << (overflow_bits_count - 1));
      if (dropped_bits > middle_value) {
        number++;  // Rounding up.
      } else if (dropped_bits == middle_value) {
        // Rounding to even to consistency with decimals: half-way case rounds
        // up if significant part is odd and down otherwise.
        if ((number & 1) != 0 || !zero_tail) {
          number++;  // Rounding up.
        }
      }

      // Rounding up may cause overflow.
      if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
        exponent++;
        number >>= 1;
      }
      break;
    }
    ++current;
  } while (current != end);

  DCHECK(number < ((int64_t)1 << 53));
  DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);

  if (exponent == 0) {
    if (negative) {
      if (number == 0) return -0.0;
      number = -number;
    }
    return static_cast<double>(number);
  }

  DCHECK_NE(number, 0);
  return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
}

// ES6 18.2.5 parseInt(string, radix) (with NumberParseIntHelper subclass);
// and BigInt parsing cases from https://tc39.github.io/proposal-bigint/
// (with StringToBigIntHelper subclass).
class StringToIntHelper {
 public:
  StringToIntHelper(Isolate* isolate, Handle<String> subject, int radix)
      : isolate_(isolate), subject_(subject), radix_(radix) {
    DCHECK(subject->IsFlat());
  }

  // Used for the StringToBigInt operation.
  StringToIntHelper(Isolate* isolate, Handle<String> subject)
      : isolate_(isolate), subject_(subject) {
    DCHECK(subject->IsFlat());
  }

  // Used for parsing BigInt literals, where the input is a Zone-allocated
  // buffer of one-byte digits, along with an optional radix prefix.
  StringToIntHelper(Isolate* isolate, const uint8_t* subject, int length)
      : isolate_(isolate), raw_one_byte_subject_(subject), length_(length) {}
  virtual ~StringToIntHelper() = default;

 protected:
  // Subclasses must implement these:
  virtual void AllocateResult() = 0;
  virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) = 0;

  // Subclasses must call this to do all the work.
  void ParseInt();

  // Subclasses may override this.
  virtual void HandleSpecialCases() {}

  // Subclass constructors should call these for configuration before calling
  // ParseInt().
  void set_allow_binary_and_octal_prefixes() {
    allow_binary_and_octal_prefixes_ = true;
  }
  void set_disallow_trailing_junk() { allow_trailing_junk_ = false; }

  bool IsOneByte() const {
    return raw_one_byte_subject_ != nullptr ||
           String::IsOneByteRepresentationUnderneath(*subject_);
  }

  Vector<const uint8_t> GetOneByteVector() {
    if (raw_one_byte_subject_ != nullptr) {
      return Vector<const uint8_t>(raw_one_byte_subject_, length_);
    }
    DisallowHeapAllocation no_gc;
    return subject_->GetFlatContent(no_gc).ToOneByteVector();
  }

  Vector<const uc16> GetTwoByteVector() {
    DisallowHeapAllocation no_gc;
    return subject_->GetFlatContent(no_gc).ToUC16Vector();
  }

  // Subclasses get access to internal state:
  enum State { kRunning, kError, kJunk, kEmpty, kZero, kDone };

  enum class Sign { kNegative, kPositive, kNone };

  Isolate* isolate() { return isolate_; }
  int radix() { return radix_; }
  int cursor() { return cursor_; }
  int length() { return length_; }
  bool negative() { return sign_ == Sign::kNegative; }
  Sign sign() { return sign_; }
  State state() { return state_; }
  void set_state(State state) { state_ = state; }

 private:
  template <class Char>
  void DetectRadixInternal(Char current, int length);
  template <class Char>
  void ParseInternal(Char start);

  Isolate* isolate_;
  Handle<String> subject_;
  const uint8_t* raw_one_byte_subject_ = nullptr;
  int radix_ = 0;
  int cursor_ = 0;
  int length_ = 0;
  Sign sign_ = Sign::kNone;
  bool leading_zero_ = false;
  bool allow_binary_and_octal_prefixes_ = false;
  bool allow_trailing_junk_ = true;
  State state_ = kRunning;
};

void StringToIntHelper::ParseInt() {
  {
    DisallowHeapAllocation no_gc;
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
      DetectRadixInternal(vector.begin(), vector.length());
    } else {
      Vector<const uc16> vector = GetTwoByteVector();
      DetectRadixInternal(vector.begin(), vector.length());
    }
  }
  if (state_ != kRunning) return;
  AllocateResult();
  HandleSpecialCases();
  if (state_ != kRunning) return;
  {
    DisallowHeapAllocation no_gc;
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
      DCHECK_EQ(length_, vector.length());
      ParseInternal(vector.begin());
    } else {
      Vector<const uc16> vector = GetTwoByteVector();
      DCHECK_EQ(length_, vector.length());
      ParseInternal(vector.begin());
    }
  }
  DCHECK_NE(state_, kRunning);
}

template <class Char>
void StringToIntHelper::DetectRadixInternal(Char current, int length) {
  Char start = current;
  length_ = length;
  Char end = start + length;

  if (!AdvanceToNonspace(&current, end)) {
    return set_state(kEmpty);
  }

  if (*current == '+') {
    // Ignore leading sign; skip following spaces.
    ++current;
    if (current == end) {
      return set_state(kJunk);
    }
    sign_ = Sign::kPositive;
  } else if (*current == '-') {
    ++current;
    if (current == end) {
      return set_state(kJunk);
    }
    sign_ = Sign::kNegative;
  }

  if (radix_ == 0) {
    // Radix detection.
    radix_ = 10;
    if (*current == '0') {
      ++current;
      if (current == end) return set_state(kZero);
      if (*current == 'x' || *current == 'X') {
        radix_ = 16;
        ++current;
        if (current == end) return set_state(kJunk);
      } else if (allow_binary_and_octal_prefixes_ &&
                 (*current == 'o' || *current == 'O')) {
        radix_ = 8;
        ++current;
        if (current == end) return set_state(kJunk);
      } else if (allow_binary_and_octal_prefixes_ &&
                 (*current == 'b' || *current == 'B')) {
        radix_ = 2;
        ++current;
        if (current == end) return set_state(kJunk);
      } else {
        leading_zero_ = true;
      }
    }
  } else if (radix_ == 16) {
    if (*current == '0') {
      // Allow "0x" prefix.
      ++current;
      if (current == end) return set_state(kZero);
      if (*current == 'x' || *current == 'X') {
        ++current;
        if (current == end) return set_state(kJunk);
      } else {
        leading_zero_ = true;
      }
    }
  }
  // Skip leading zeros.
  while (*current == '0') {
    leading_zero_ = true;
    ++current;
    if (current == end) return set_state(kZero);
  }

  if (!leading_zero_ && !isDigit(*current, radix_)) {
    return set_state(kJunk);
  }

  DCHECK(radix_ >= 2 && radix_ <= 36);
  STATIC_ASSERT(String::kMaxLength <= INT_MAX);
  cursor_ = static_cast<int>(current - start);
}

template <class Char>
void StringToIntHelper::ParseInternal(Char start) {
  Char current = start + cursor_;
  Char end = start + length_;

  // The following code causes accumulating rounding error for numbers greater
  // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
  // 16, or 32, then mathInt may be an implementation-dependent approximation to
  // the mathematical integer value" (15.1.2.2).

  int lim_0 = '0' + (radix_ < 10 ? radix_ : 10);
  int lim_a = 'a' + (radix_ - 10);
  int lim_A = 'A' + (radix_ - 10);

  // NOTE: The code for computing the value may seem a bit complex at
  // first glance. It is structured to use 32-bit multiply-and-add
  // loops as long as possible to avoid losing precision.

  bool done = false;
  do {
    // Parse the longest part of the string starting at {current}
    // possible while keeping the multiplier, and thus the part
    // itself, within 32 bits.
    uint32_t part = 0, multiplier = 1;
    while (true) {
      uint32_t d;
      if (*current >= '0' && *current < lim_0) {
        d = *current - '0';
      } else if (*current >= 'a' && *current < lim_a) {
        d = *current - 'a' + 10;
      } else if (*current >= 'A' && *current < lim_A) {
        d = *current - 'A' + 10;
      } else {
        done = true;
        break;
      }

      // Update the value of the part as long as the multiplier fits
      // in 32 bits. When we can't guarantee that the next iteration
      // will not overflow the multiplier, we stop parsing the part
      // by leaving the loop.
      const uint32_t kMaximumMultiplier = 0xFFFFFFFFU / 36;
      uint32_t m = multiplier * static_cast<uint32_t>(radix_);
      if (m > kMaximumMultiplier) break;
      part = part * radix_ + d;
      multiplier = m;
      DCHECK(multiplier > part);

      ++current;
      if (current == end) {
        done = true;
        break;
      }
    }

    // Update the value and skip the part in the string.
    ResultMultiplyAdd(multiplier, part);
  } while (!done);

  if (!allow_trailing_junk_ && AdvanceToNonspace(&current, end)) {
    return set_state(kJunk);
  }

  return set_state(kDone);
}

class NumberParseIntHelper : public StringToIntHelper {
 public:
  NumberParseIntHelper(Isolate* isolate, Handle<String> string, int radix)
      : StringToIntHelper(isolate, string, radix) {}

  double GetResult() {
    ParseInt();
    switch (state()) {
      case kJunk:
      case kEmpty:
        return JunkStringValue();
      case kZero:
        return SignedZero(negative());
      case kDone:
        return negative() ? -result_ : result_;
      case kError:
      case kRunning:
        break;
    }
    UNREACHABLE();
  }

 protected:
  void AllocateResult() override {}
  void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) override {
    result_ = result_ * multiplier + part;
  }

 private:
  void HandleSpecialCases() override {
    bool is_power_of_two = base::bits::IsPowerOfTwo(radix());
    if (!is_power_of_two && radix() != 10) return;
    DisallowHeapAllocation no_gc;
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
      DCHECK_EQ(length(), vector.length());
      result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.begin())
                                : HandleBaseTenCase(vector.begin());
    } else {
      Vector<const uc16> vector = GetTwoByteVector();
      DCHECK_EQ(length(), vector.length());
      result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.begin())
                                : HandleBaseTenCase(vector.begin());
    }
    set_state(kDone);
  }

  template <class Char>
  double HandlePowerOfTwoCase(Char start) {
    Char current = start + cursor();
    Char end = start + length();
    const bool allow_trailing_junk = true;
    // GetResult() will take care of the sign bit, so ignore it for now.
    const bool negative = false;
    switch (radix()) {
      case 2:
        return InternalStringToIntDouble<1>(current, end, negative,
                                            allow_trailing_junk);
      case 4:
        return InternalStringToIntDouble<2>(current, end, negative,
                                            allow_trailing_junk);
      case 8:
        return InternalStringToIntDouble<3>(current, end, negative,
                                            allow_trailing_junk);

      case 16:
        return InternalStringToIntDouble<4>(current, end, negative,
                                            allow_trailing_junk);

      case 32:
        return InternalStringToIntDouble<5>(current, end, negative,
                                            allow_trailing_junk);
      default:
        UNREACHABLE();
    }
  }

  template <class Char>
  double HandleBaseTenCase(Char start) {
    // Parsing with strtod.
    Char current = start + cursor();
    Char end = start + length();
    const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
    // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
    // end.
    const int kBufferSize = kMaxSignificantDigits + 2;
    char buffer[kBufferSize];
    int buffer_pos = 0;
    while (*current >= '0' && *current <= '9') {
      if (buffer_pos <= kMaxSignificantDigits) {
        // If the number has more than kMaxSignificantDigits it will be parsed
        // as infinity.
        DCHECK_LT(buffer_pos, kBufferSize);
        buffer[buffer_pos++] = static_cast<char>(*current);
      }
      ++current;
      if (current == end) break;
    }

    SLOW_DCHECK(buffer_pos < kBufferSize);
    buffer[buffer_pos] = '\0';
    Vector<const char> buffer_vector(buffer, buffer_pos);
    return Strtod(buffer_vector, 0);
  }

  double result_ = 0;
};

// Converts a string to a double value. Assumes the Iterator supports
// the following operations:
// 1. current == end (other ops are not allowed), current != end.
// 2. *current - gets the current character in the sequence.
// 3. ++current (advances the position).
template <class Iterator, class EndMark>
double InternalStringToDouble(Iterator current, EndMark end, int flags,
                              double empty_string_val) {
  // To make sure that iterator dereferencing is valid the following
  // convention is used:
  // 1. Each '++current' statement is followed by check for equality to 'end'.
  // 2. If AdvanceToNonspace returned false then current == end.
  // 3. If 'current' becomes be equal to 'end' the function returns or goes to
  // 'parsing_done'.
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
  // 5. Code before 'parsing_done' may rely on 'current != end'.
  if (!AdvanceToNonspace(&current, end)) {
    return empty_string_val;
  }

  const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;

  // Maximum number of significant digits in decimal representation.
  // The longest possible double in decimal representation is
  // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
  // (768 digits). If we parse a number whose first digits are equal to a
  // mean of 2 adjacent doubles (that could have up to 769 digits) the result
  // must be rounded to the bigger one unless the tail consists of zeros, so
  // we don't need to preserve all the digits.
  const int kMaxSignificantDigits = 772;

  // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
  const int kBufferSize = kMaxSignificantDigits + 10;
  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
  int buffer_pos = 0;

  // Exponent will be adjusted if insignificant digits of the integer part
  // or insignificant leading zeros of the fractional part are dropped.
  int exponent = 0;
  int significant_digits = 0;
  int insignificant_digits = 0;
  bool nonzero_digit_dropped = false;

  enum Sign { NONE, NEGATIVE, POSITIVE };

  Sign sign = NONE;

  if (*current == '+') {
    // Ignore leading sign.
    ++current;
    if (current == end) return JunkStringValue();
    sign = POSITIVE;
  } else if (*current == '-') {
    ++current;
    if (current == end) return JunkStringValue();
    sign = NEGATIVE;
  }

  static const char kInfinityString[] = "Infinity";
  if (*current == kInfinityString[0]) {
    if (!SubStringEquals(&current, end, kInfinityString)) {
      return JunkStringValue();
    }

    if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
      return JunkStringValue();
    }

    DCHECK_EQ(buffer_pos, 0);
    return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
  }

  bool leading_zero = false;
  if (*current == '0') {
    ++current;
    if (current == end) return SignedZero(sign == NEGATIVE);

    leading_zero = true;

    // It could be hexadecimal value.
    if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
      ++current;
      if (current == end || !isDigit(*current, 16) || sign != NONE) {
        return JunkStringValue();  // "0x".
      }

      return InternalStringToIntDouble<4>(current, end, false,
                                          allow_trailing_junk);

      // It could be an explicit octal value.
    } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
      ++current;
      if (current == end || !isDigit(*current, 8) || sign != NONE) {
        return JunkStringValue();  // "0o".
      }

      return InternalStringToIntDouble<3>(current, end, false,
                                          allow_trailing_junk);

      // It could be a binary value.
    } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
      ++current;
      if (current == end || !isBinaryDigit(*current) || sign != NONE) {
        return JunkStringValue();  // "0b".
      }

      return InternalStringToIntDouble<1>(current, end, false,
                                          allow_trailing_junk);
    }

    // Ignore leading zeros in the integer part.
    while (*current == '0') {
      ++current;
      if (current == end) return SignedZero(sign == NEGATIVE);
    }
  }

  bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;

  // Copy significant digits of the integer part (if any) to the buffer.
  while (*current >= '0' && *current <= '9') {
    if (significant_digits < kMaxSignificantDigits) {
      DCHECK_LT(buffer_pos, kBufferSize);
      buffer[buffer_pos++] = static_cast<char>(*current);
      significant_digits++;
      // Will later check if it's an octal in the buffer.
    } else {
      insignificant_digits++;  // Move the digit into the exponential part.
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
    }
    octal = octal && *current < '8';
    ++current;
    if (current == end) goto parsing_done;
  }

  if (significant_digits == 0) {
    octal = false;
  }

  if (*current == '.') {
    if (octal && !allow_trailing_junk) return JunkStringValue();
    if (octal) goto parsing_done;

    ++current;
    if (current == end) {
      if (significant_digits == 0 && !leading_zero) {
        return JunkStringValue();
      } else {
        goto parsing_done;
      }
    }

    if (significant_digits == 0) {
      // octal = false;
      // Integer part consists of 0 or is absent. Significant digits start after
      // leading zeros (if any).
      while (*current == '0') {
        ++current;
        if (current == end) return SignedZero(sign == NEGATIVE);
        exponent--;  // Move this 0 into the exponent.
      }
    }

    // There is a fractional part.  We don't emit a '.', but adjust the exponent
    // instead.
    while (*current >= '0' && *current <= '9') {
      if (significant_digits < kMaxSignificantDigits) {
        DCHECK_LT(buffer_pos, kBufferSize);
        buffer[buffer_pos++] = static_cast<char>(*current);
        significant_digits++;
        exponent--;
      } else {
        // Ignore insignificant digits in the fractional part.
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
      }
      ++current;
      if (current == end) goto parsing_done;
    }
  }

  if (!leading_zero && exponent == 0 && significant_digits == 0) {
    // If leading_zeros is true then the string contains zeros.
    // If exponent < 0 then string was [+-]\.0*...
    // If significant_digits != 0 the string is not equal to 0.
    // Otherwise there are no digits in the string.
    return JunkStringValue();
  }

  // Parse exponential part.
  if (*current == 'e' || *current == 'E') {
    if (octal) return JunkStringValue();
    ++current;
    if (current == end) {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
        return JunkStringValue();
      }
    }
    char sign = '+';
    if (*current == '+' || *current == '-') {
      sign = static_cast<char>(*current);
      ++current;
      if (current == end) {
        if (allow_trailing_junk) {
          goto parsing_done;
        } else {
          return JunkStringValue();
        }
      }
    }

    if (current == end || *current < '0' || *current > '9') {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
        return JunkStringValue();
      }
    }

    const int max_exponent = INT_MAX / 2;
    DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
    int num = 0;
    do {
      // Check overflow.
      int digit = *current - '0';
      if (num >= max_exponent / 10 &&
          !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
        num = max_exponent;
      } else {
        num = num * 10 + digit;
      }
      ++current;
    } while (current != end && *current >= '0' && *current <= '9');

    exponent += (sign == '-' ? -num : num);
  }

  if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
    return JunkStringValue();
  }

parsing_done:
  exponent += insignificant_digits;

  if (octal) {
    return InternalStringToIntDouble<3>(buffer, buffer + buffer_pos,
                                        sign == NEGATIVE, allow_trailing_junk);
  }

  if (nonzero_digit_dropped) {
    buffer[buffer_pos++] = '1';
    exponent--;
  }

  SLOW_DCHECK(buffer_pos < kBufferSize);
  buffer[buffer_pos] = '\0';

  double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
  return (sign == NEGATIVE) ? -converted : converted;
}

double StringToDouble(const char* str, int flags, double empty_string_val) {
  // We use {OneByteVector} instead of {CStrVector} to avoid instantiating the
  // InternalStringToDouble() template for {const char*} as well.
  return StringToDouble(OneByteVector(str), flags, empty_string_val);
}

double StringToDouble(Vector<const uint8_t> str, int flags,
                      double empty_string_val) {
  return InternalStringToDouble(str.begin(), str.end(), flags,
                                empty_string_val);
}

double StringToDouble(Vector<const uc16> str, int flags,
                      double empty_string_val) {
  const uc16* end = str.begin() + str.length();
  return InternalStringToDouble(str.begin(), end, flags, empty_string_val);
}

double StringToInt(Isolate* isolate, Handle<String> string, int radix) {
  NumberParseIntHelper helper(isolate, string, radix);
  return helper.GetResult();
}

class StringToBigIntHelper : public StringToIntHelper {
 public:
  enum class Behavior { kStringToBigInt, kLiteral };

  // Used for StringToBigInt operation (BigInt constructor and == operator).
  StringToBigIntHelper(Isolate* isolate, Handle<String> string)
      : StringToIntHelper(isolate, string),
        behavior_(Behavior::kStringToBigInt) {
    set_allow_binary_and_octal_prefixes();
    set_disallow_trailing_junk();
  }

  // Used for parsing BigInt literals, where the input is a buffer of
  // one-byte ASCII digits, along with an optional radix prefix.
  StringToBigIntHelper(Isolate* isolate, const uint8_t* string, int length)
      : StringToIntHelper(isolate, string, length),
        behavior_(Behavior::kLiteral) {
    set_allow_binary_and_octal_prefixes();
  }

  MaybeHandle<BigInt> GetResult() {
    ParseInt();
    if (behavior_ == Behavior::kStringToBigInt && sign() != Sign::kNone &&
        radix() != 10) {
      return MaybeHandle<BigInt>();
    }
    if (state() == kEmpty) {
      if (behavior_ == Behavior::kStringToBigInt) {
        set_state(kZero);
      } else {
        UNREACHABLE();
      }
    }
    switch (state()) {
      case kJunk:
        if (should_throw() == kThrowOnError) {
          THROW_NEW_ERROR(isolate(),
                          NewSyntaxError(MessageTemplate::kBigIntInvalidString),
                          BigInt);
        } else {
          DCHECK_EQ(should_throw(), kDontThrow);
          return MaybeHandle<BigInt>();
        }
      case kZero:
        return BigInt::Zero(isolate());
      case kError:
        DCHECK_EQ(should_throw() == kThrowOnError,
                  isolate()->has_pending_exception());
        return MaybeHandle<BigInt>();
      case kDone:
        return BigInt::Finalize(result_, negative());
      case kEmpty:
      case kRunning:
        break;
    }
    UNREACHABLE();
  }

 protected:
  void AllocateResult() override {
    // We have to allocate a BigInt that's big enough to fit the result.
    // Conseratively assume that all remaining digits are significant.
    // Optimization opportunity: Would it makes sense to scan for trailing
    // junk before allocating the result?
    int charcount = length() - cursor();
    // For literals, we pretenure the allocated BigInt, since it's about
    // to be stored in the interpreter's constants array.
    AllocationType allocation = behavior_ == Behavior::kLiteral
                                    ? AllocationType::kOld
                                    : AllocationType::kYoung;
    MaybeHandle<FreshlyAllocatedBigInt> maybe = BigInt::AllocateFor(
        isolate(), radix(), charcount, should_throw(), allocation);
    if (!maybe.ToHandle(&result_)) {
      set_state(kError);
    }
  }

  void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) override {
    BigInt::InplaceMultiplyAdd(result_, static_cast<uintptr_t>(multiplier),
                               static_cast<uintptr_t>(part));
  }

 private:
  ShouldThrow should_throw() const { return kDontThrow; }

  Handle<FreshlyAllocatedBigInt> result_;
  Behavior behavior_;
};

MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, Handle<String> string) {
  string = String::Flatten(isolate, string);
  StringToBigIntHelper helper(isolate, string);
  return helper.GetResult();
}

MaybeHandle<BigInt> BigIntLiteral(Isolate* isolate, const char* string) {
  StringToBigIntHelper helper(isolate, reinterpret_cast<const uint8_t*>(string),
                              static_cast<int>(strlen(string)));
  return helper.GetResult();
}

const char* DoubleToCString(double v, Vector<char> buffer) {
  switch (FPCLASSIFY_NAMESPACE::fpclassify(v)) {
    case FP_NAN:
      return "NaN";
    case FP_INFINITE:
      return (v < 0.0 ? "-Infinity" : "Infinity");
    case FP_ZERO:
      return "0";
    default: {
      if (IsInt32Double(v)) {
        // This will trigger if v is -0 and -0.0 is stringified to "0".
        // (see ES section 7.1.12.1 #sec-tostring-applied-to-the-number-type)
        return IntToCString(FastD2I(v), buffer);
      }
      SimpleStringBuilder builder(buffer.begin(), buffer.length());
      int decimal_point;
      int sign;
      const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
      char decimal_rep[kV8DtoaBufferCapacity];
      int length;

      DoubleToAscii(v, DTOA_SHORTEST, 0,
                    Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
                    &length, &decimal_point);

      if (sign) builder.AddCharacter('-');

      if (length <= decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 6.
        builder.AddString(decimal_rep);
        builder.AddPadding('0', decimal_point - length);

      } else if (0 < decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 7.
        builder.AddSubstring(decimal_rep, decimal_point);
        builder.AddCharacter('.');
        builder.AddString(decimal_rep + decimal_point);

      } else if (decimal_point <= 0 && decimal_point > -6) {
        // ECMA-262 section 9.8.1 step 8.
        builder.AddString("0.");
        builder.AddPadding('0', -decimal_point);
        builder.AddString(decimal_rep);

      } else {
        // ECMA-262 section 9.8.1 step 9 and 10 combined.
        builder.AddCharacter(decimal_rep[0]);
        if (length != 1) {
          builder.AddCharacter('.');
          builder.AddString(decimal_rep + 1);
        }
        builder.AddCharacter('e');
        builder.AddCharacter((decimal_point >= 0) ? '+' : '-');
        int exponent = decimal_point - 1;
        if (exponent < 0) exponent = -exponent;
        builder.AddDecimalInteger(exponent);
      }
      return builder.Finalize();
    }
  }
}

const char* IntToCString(int n, Vector<char> buffer) {
  bool negative = true;
  if (n >= 0) {
    n = -n;
    negative = false;
  }
  // Build the string backwards from the least significant digit.
  int i = buffer.length();
  buffer[--i] = '\0';
  do {
    // We ensured n <= 0, so the subtraction does the right addition.
    buffer[--i] = '0' - (n % 10);
    n /= 10;
  } while (n);
  if (negative) buffer[--i] = '-';
  return buffer.begin() + i;
}

char* DoubleToFixedCString(double value, int f) {
  const int kMaxDigitsBeforePoint = 21;
  const double kFirstNonFixed = 1e21;
  DCHECK_GE(f, 0);
  DCHECK_LE(f, kMaxFractionDigits);

  bool negative = false;
  double abs_value = value;
  if (value < 0) {
    abs_value = -value;
    negative = true;
  }

  // If abs_value has more than kMaxDigitsBeforePoint digits before the point
  // use the non-fixed conversion routine.
  if (abs_value >= kFirstNonFixed) {
    char arr[kMaxFractionDigits];
    Vector<char> buffer(arr, arraysize(arr));
    return StrDup(DoubleToCString(value, buffer));
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
  // Add space for the '\0' byte.
  const int kDecimalRepCapacity =
      kMaxDigitsBeforePoint + kMaxFractionDigits + 1;
  char decimal_rep[kDecimalRepCapacity];
  int decimal_rep_length;
  DoubleToAscii(value, DTOA_FIXED, f,
                Vector<char>(decimal_rep, kDecimalRepCapacity), &sign,
                &decimal_rep_length, &decimal_point);

  // Create a representation that is padded with zeros if needed.
  int zero_prefix_length = 0;
  int zero_postfix_length = 0;

  if (decimal_point <= 0) {
    zero_prefix_length = -decimal_point + 1;
    decimal_point = 1;
  }

  if (zero_prefix_length + decimal_rep_length < decimal_point + f) {
    zero_postfix_length =
        decimal_point + f - decimal_rep_length - zero_prefix_length;
  }

  unsigned rep_length =
      zero_prefix_length + decimal_rep_length + zero_postfix_length;
  SimpleStringBuilder rep_builder(rep_length + 1);
  rep_builder.AddPadding('0', zero_prefix_length);
  rep_builder.AddString(decimal_rep);
  rep_builder.AddPadding('0', zero_postfix_length);
  char* rep = rep_builder.Finalize();

  // Create the result string by appending a minus and putting in a
  // decimal point if needed.
  unsigned result_size = decimal_point + f + 2;
  SimpleStringBuilder builder(result_size + 1);
  if (negative) builder.AddCharacter('-');
  builder.AddSubstring(rep, decimal_point);
  if (f > 0) {
    builder.AddCharacter('.');
    builder.AddSubstring(rep + decimal_point, f);
  }
  DeleteArray(rep);
  return builder.Finalize();
}

static char* CreateExponentialRepresentation(char* decimal_rep, int exponent,
                                             bool negative,
                                             int significant_digits) {
  bool negative_exponent = false;
  if (exponent < 0) {
    negative_exponent = true;
    exponent = -exponent;
  }

  // Leave room in the result for appending a minus, for a period, the
  // letter 'e', a minus or a plus depending on the exponent, and a
  // three digit exponent.
  unsigned result_size = significant_digits + 7;
  SimpleStringBuilder builder(result_size + 1);

  if (negative) builder.AddCharacter('-');
  builder.AddCharacter(decimal_rep[0]);
  if (significant_digits != 1) {
    builder.AddCharacter('.');
    builder.AddString(decimal_rep + 1);
    size_t rep_length = strlen(decimal_rep);
    DCHECK_GE(significant_digits, rep_length);
    builder.AddPadding('0', significant_digits - static_cast<int>(rep_length));
  }

  builder.AddCharacter('e');
  builder.AddCharacter(negative_exponent ? '-' : '+');
  builder.AddDecimalInteger(exponent);
  return builder.Finalize();
}

char* DoubleToExponentialCString(double value, int f) {
  // f might be -1 to signal that f was undefined in JavaScript.
  DCHECK(f >= -1 && f <= kMaxFractionDigits);

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
  // f corresponds to the digits after the point. There is always one digit
  // before the point. The number of requested_digits equals hence f + 1.
  // And we have to add one character for the null-terminator.
  const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1 + 1;
  // Make sure that the buffer is big enough, even if we fall back to the
  // shortest representation (which happens when f equals -1).
  DCHECK_LE(kBase10MaximalLength, kMaxFractionDigits + 1);
  char decimal_rep[kV8DtoaBufferCapacity];
  int decimal_rep_length;

  if (f == -1) {
    DoubleToAscii(value, DTOA_SHORTEST, 0,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
                  &decimal_rep_length, &decimal_point);
    f = decimal_rep_length - 1;
  } else {
    DoubleToAscii(value, DTOA_PRECISION, f + 1,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
                  &decimal_rep_length, &decimal_point);
  }
  DCHECK_GT(decimal_rep_length, 0);
  DCHECK(decimal_rep_length <= f + 1);

  int exponent = decimal_point - 1;
  char* result =
      CreateExponentialRepresentation(decimal_rep, exponent, negative, f + 1);

  return result;
}

char* DoubleToPrecisionCString(double value, int p) {
  const int kMinimalDigits = 1;
  DCHECK(p >= kMinimalDigits && p <= kMaxFractionDigits);
  USE(kMinimalDigits);

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
  // Add one for the terminating null character.
  const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1;
  char decimal_rep[kV8DtoaBufferCapacity];
  int decimal_rep_length;

  DoubleToAscii(value, DTOA_PRECISION, p,
                Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
                &decimal_rep_length, &decimal_point);
  DCHECK(decimal_rep_length <= p);

  int exponent = decimal_point - 1;

  char* result = nullptr;

  if (exponent < -6 || exponent >= p) {
    result =
        CreateExponentialRepresentation(decimal_rep, exponent, negative, p);
  } else {
    // Use fixed notation.
    //
    // Leave room in the result for appending a minus, a period and in
    // the case where decimal_point is not positive for a zero in
    // front of the period.
    unsigned result_size =
        (decimal_point <= 0) ? -decimal_point + p + 3 : p + 2;
    SimpleStringBuilder builder(result_size + 1);
    if (negative) builder.AddCharacter('-');
    if (decimal_point <= 0) {
      builder.AddString("0.");
      builder.AddPadding('0', -decimal_point);
      builder.AddString(decimal_rep);
      builder.AddPadding('0', p - decimal_rep_length);
    } else {
      const int m = Min(decimal_rep_length, decimal_point);
      builder.AddSubstring(decimal_rep, m);
      builder.AddPadding('0', decimal_point - decimal_rep_length);
      if (decimal_point < p) {
        builder.AddCharacter('.');
        const int extra = negative ? 2 : 1;
        if (decimal_rep_length > decimal_point) {
          const size_t len = strlen(decimal_rep + decimal_point);
          DCHECK_GE(kMaxInt, len);
          const int n =
              Min(static_cast<int>(len), p - (builder.position() - extra));
          builder.AddSubstring(decimal_rep + decimal_point, n);
        }
        builder.AddPadding('0', extra + (p - builder.position()));
      }
    }
    result = builder.Finalize();
  }

  return result;
}

char* DoubleToRadixCString(double value, int radix) {
  DCHECK(radix >= 2 && radix <= 36);
  DCHECK(std::isfinite(value));
  DCHECK_NE(0.0, value);
  // Character array used for conversion.
  static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";

  // Temporary buffer for the result. We start with the decimal point in the
  // middle and write to the left for the integer part and to the right for the
  // fractional part. 1024 characters for the exponent and 52 for the mantissa
  // either way, with additional space for sign, decimal point and string
  // termination should be sufficient.
  static const int kBufferSize = 2200;
  char buffer[kBufferSize];
  int integer_cursor = kBufferSize / 2;
  int fraction_cursor = integer_cursor;

  bool negative = value < 0;
  if (negative) value = -value;

  // Split the value into an integer part and a fractional part.
  double integer = std::floor(value);
  double fraction = value - integer;
  // We only compute fractional digits up to the input double's precision.
  double delta = 0.5 * (Double(value).NextDouble() - value);
  delta = std::max(Double(0.0).NextDouble(), delta);
  DCHECK_GT(delta, 0.0);
  if (fraction >= delta) {
    // Insert decimal point.
    buffer[fraction_cursor++] = '.';
    do {
      // Shift up by one digit.
      fraction *= radix;
      delta *= radix;
      // Write digit.
      int digit = static_cast<int>(fraction);
      buffer[fraction_cursor++] = chars[digit];
      // Calculate remainder.
      fraction -= digit;
      // Round to even.
      if (fraction > 0.5 || (fraction == 0.5 && (digit & 1))) {
        if (fraction + delta > 1) {
          // We need to back trace already written digits in case of carry-over.
          while (true) {
            fraction_cursor--;
            if (fraction_cursor == kBufferSize / 2) {
              CHECK_EQ('.', buffer[fraction_cursor]);
              // Carry over to the integer part.
              integer += 1;
              break;
            }
            char c = buffer[fraction_cursor];
            // Reconstruct digit.
            int digit = c > '9' ? (c - 'a' + 10) : (c - '0');
            if (digit + 1 < radix) {
              buffer[fraction_cursor++] = chars[digit + 1];
              break;
            }
          }
          break;
        }
      }
    } while (fraction >= delta);
  }

  // Compute integer digits. Fill unrepresented digits with zero.
  while (Double(integer / radix).Exponent() > 0) {
    integer /= radix;
    buffer[--integer_cursor] = '0';
  }
  do {
    double remainder = Modulo(integer, radix);
    buffer[--integer_cursor] = chars[static_cast<int>(remainder)];
    integer = (integer - remainder) / radix;
  } while (integer > 0);

  // Add sign and terminate string.
  if (negative) buffer[--integer_cursor] = '-';
  buffer[fraction_cursor++] = '\0';
  DCHECK_LT(fraction_cursor, kBufferSize);
  DCHECK_LE(0, integer_cursor);
  // Allocate new string as return value.
  char* result = NewArray<char>(fraction_cursor - integer_cursor);
  memcpy(result, buffer + integer_cursor, fraction_cursor - integer_cursor);
  return result;
}

// ES6 18.2.4 parseFloat(string)
double StringToDouble(Isolate* isolate, Handle<String> string, int flags,
                      double empty_string_val) {
  Handle<String> flattened = String::Flatten(isolate, string);
  {
    DisallowHeapAllocation no_gc;
    String::FlatContent flat = flattened->GetFlatContent(no_gc);
    DCHECK(flat.IsFlat());
    if (flat.IsOneByte()) {
      return StringToDouble(flat.ToOneByteVector(), flags, empty_string_val);
    } else {
      return StringToDouble(flat.ToUC16Vector(), flags, empty_string_val);
    }
  }
}

bool IsSpecialIndex(String string) {
  // Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX
  const int kBufferSize = 24;
  const int length = string.length();
  if (length == 0 || length > kBufferSize) return false;
  uint16_t buffer[kBufferSize];
  String::WriteToFlat(string, buffer, 0, length);
  // If the first char is not a digit or a '-' or we can't match 'NaN' or
  // '(-)Infinity', bailout immediately.
  int offset = 0;
  if (!IsDecimalDigit(buffer[0])) {
    if (buffer[0] == '-') {
      if (length == 1) return false;  // Just '-' is bad.
      if (!IsDecimalDigit(buffer[1])) {
        if (buffer[1] == 'I' && length == 9) {
          // Allow matching of '-Infinity' below.
        } else {
          return false;
        }
      }
      offset++;
    } else if (buffer[0] == 'I' && length == 8) {
      // Allow matching of 'Infinity' below.
    } else if (buffer[0] == 'N' && length == 3) {
      // Match NaN.
      return buffer[1] == 'a' && buffer[2] == 'N';
    } else {
      return false;
    }
  }
  // Expected fast path: key is an integer.
  static const int kRepresentableIntegerLength = 15;  // (-)XXXXXXXXXXXXXXX
  if (length - offset <= kRepresentableIntegerLength) {
    const int initial_offset = offset;
    bool matches = true;
    for (; offset < length; offset++) {
      matches &= IsDecimalDigit(buffer[offset]);
    }
    if (matches) {
      // Match 0 and -0.
      if (buffer[initial_offset] == '0') return initial_offset == length - 1;
      return true;
    }
  }
  // Slow path: test DoubleToString(StringToDouble(string)) == string.
  Vector<const uint16_t> vector(buffer, length);
  double d = StringToDouble(vector, NO_FLAGS);
  if (std::isnan(d)) return false;
  // Compute reverse string.
  char reverse_buffer[kBufferSize + 1];  // Result will be /0 terminated.
  Vector<char> reverse_vector(reverse_buffer, arraysize(reverse_buffer));
  const char* reverse_string = DoubleToCString(d, reverse_vector);
  for (int i = 0; i < length; ++i) {
    if (static_cast<uint16_t>(reverse_string[i]) != buffer[i]) return false;
  }
  return true;
}
}  // namespace internal
}  // namespace v8

#undef FPCLASSIFY_NAMESPACE