summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips64/simulator-mips64.h
blob: a9e0d3d11871f9b554d61f7f733e097fd9c14036 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


// Declares a Simulator for MIPS instructions if we are not generating a native
// MIPS binary. This Simulator allows us to run and debug MIPS code generation
// on regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a MIPS HW platform.

#ifndef V8_MIPS_SIMULATOR_MIPS_H_
#define V8_MIPS_SIMULATOR_MIPS_H_

#include "src/allocation.h"
#include "src/mips64/constants-mips64.h"

#if !defined(USE_SIMULATOR)
// Running without a simulator on a native mips platform.

namespace v8 {
namespace internal {

// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
  entry(p0, p1, p2, p3, p4)


// Call the generated regexp code directly. The code at the entry address
// should act as a function matching the type arm_regexp_matcher.
typedef int (*mips_regexp_matcher)(String* input,
                                   int64_t start_offset,
                                   const byte* input_start,
                                   const byte* input_end,
                                   int* output,
                                   int64_t output_size,
                                   Address stack_base,
                                   int64_t direct_call,
                                   Isolate* isolate);

#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
                                   p7, p8)                                     \
  (FUNCTION_CAST<mips_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7,   \
                                             p8))

// The stack limit beyond which we will throw stack overflow errors in
// generated code. Because generated code on mips uses the C stack, we
// just use the C stack limit.
class SimulatorStack : public v8::internal::AllStatic {
 public:
  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
                                            uintptr_t c_limit) {
    return c_limit;
  }

  static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
                                            uintptr_t try_catch_address) {
    USE(isolate);
    return try_catch_address;
  }

  static inline void UnregisterCTryCatch(Isolate* isolate) { USE(isolate); }
};

}  // namespace internal
}  // namespace v8

// Calculated the stack limit beyond which we will throw stack overflow errors.
// This macro must be called from a C++ method. It relies on being able to take
// the address of "this" to get a value on the current execution stack and then
// calculates the stack limit based on that value.
// NOTE: The check for overflow is not safe as there is no guarantee that the
// running thread has its stack in all memory up to address 0x00000000.
#define GENERATED_CODE_STACK_LIMIT(limit) \
  (reinterpret_cast<uintptr_t>(this) >= limit ? \
      reinterpret_cast<uintptr_t>(this) - limit : 0)

#else  // !defined(USE_SIMULATOR)
// Running with a simulator.

#include "src/assembler.h"
#include "src/base/hashmap.h"

namespace v8 {
namespace internal {

// -----------------------------------------------------------------------------
// Utility functions

class CachePage {
 public:
  static const int LINE_VALID = 0;
  static const int LINE_INVALID = 1;

  static const int kPageShift = 12;
  static const int kPageSize = 1 << kPageShift;
  static const int kPageMask = kPageSize - 1;
  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
  static const int kLineLength = 1 << kLineShift;
  static const int kLineMask = kLineLength - 1;

  CachePage() {
    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
  }

  char* ValidityByte(int offset) {
    return &validity_map_[offset >> kLineShift];
  }

  char* CachedData(int offset) {
    return &data_[offset];
  }

 private:
  char data_[kPageSize];   // The cached data.
  static const int kValidityMapSize = kPageSize >> kLineShift;
  char validity_map_[kValidityMapSize];  // One byte per line.
};

class SimInstructionBase : public InstructionBase {
 public:
  Type InstructionType() const { return type_; }
  inline Instruction* instr() const { return instr_; }
  inline int32_t operand() const { return operand_; }

 protected:
  SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {}
  explicit SimInstructionBase(Instruction* instr) {}

  int32_t operand_;
  Instruction* instr_;
  Type type_;

 private:
  DISALLOW_ASSIGN(SimInstructionBase);
};

class SimInstruction : public InstructionGetters<SimInstructionBase> {
 public:
  SimInstruction() {}

  explicit SimInstruction(Instruction* instr) { *this = instr; }

  SimInstruction& operator=(Instruction* instr) {
    operand_ = *reinterpret_cast<const int32_t*>(instr);
    instr_ = instr;
    type_ = InstructionBase::InstructionType();
    DCHECK(reinterpret_cast<void*>(&operand_) == this);
    return *this;
  }
};

class Simulator {
 public:
  friend class MipsDebugger;

  // Registers are declared in order. See SMRL chapter 2.
  enum Register {
    no_reg = -1,
    zero_reg = 0,
    at,
    v0, v1,
    a0, a1, a2, a3, a4, a5, a6, a7,
    t0, t1, t2, t3,
    s0, s1, s2, s3, s4, s5, s6, s7,
    t8, t9,
    k0, k1,
    gp,
    sp,
    s8,
    ra,
    // LO, HI, and pc.
    LO,
    HI,
    pc,   // pc must be the last register.
    kNumSimuRegisters,
    // aliases
    fp = s8
  };

  // Coprocessor registers.
  // Generated code will always use doubles. So we will only use even registers.
  enum FPURegister {
    f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
    f12, f13, f14, f15,   // f12 and f14 are arguments FPURegisters.
    f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
    f26, f27, f28, f29, f30, f31,
    kNumFPURegisters
  };

  explicit Simulator(Isolate* isolate);
  ~Simulator();

  // The currently executing Simulator instance. Potentially there can be one
  // for each native thread.
  static Simulator* current(v8::internal::Isolate* isolate);

  // Accessors for register state. Reading the pc value adheres to the MIPS
  // architecture specification and is off by a 8 from the currently executing
  // instruction.
  void set_register(int reg, int64_t value);
  void set_register_word(int reg, int32_t value);
  void set_dw_register(int dreg, const int* dbl);
  int64_t get_register(int reg) const;
  double get_double_from_register_pair(int reg);
  // Same for FPURegisters.
  void set_fpu_register(int fpureg, int64_t value);
  void set_fpu_register_word(int fpureg, int32_t value);
  void set_fpu_register_hi_word(int fpureg, int32_t value);
  void set_fpu_register_float(int fpureg, float value);
  void set_fpu_register_double(int fpureg, double value);
  void set_fpu_register_invalid_result64(float original, float rounded);
  void set_fpu_register_invalid_result(float original, float rounded);
  void set_fpu_register_word_invalid_result(float original, float rounded);
  void set_fpu_register_invalid_result64(double original, double rounded);
  void set_fpu_register_invalid_result(double original, double rounded);
  void set_fpu_register_word_invalid_result(double original, double rounded);
  int64_t get_fpu_register(int fpureg) const;
  int32_t get_fpu_register_word(int fpureg) const;
  int32_t get_fpu_register_signed_word(int fpureg) const;
  int32_t get_fpu_register_hi_word(int fpureg) const;
  float get_fpu_register_float(int fpureg) const;
  double get_fpu_register_double(int fpureg) const;
  void set_fcsr_bit(uint32_t cc, bool value);
  bool test_fcsr_bit(uint32_t cc);
  bool set_fcsr_round_error(double original, double rounded);
  bool set_fcsr_round64_error(double original, double rounded);
  bool set_fcsr_round_error(float original, float rounded);
  bool set_fcsr_round64_error(float original, float rounded);
  void round_according_to_fcsr(double toRound, double& rounded,
                               int32_t& rounded_int, double fs);
  void round64_according_to_fcsr(double toRound, double& rounded,
                                 int64_t& rounded_int, double fs);
  void round_according_to_fcsr(float toRound, float& rounded,
                               int32_t& rounded_int, float fs);
  void round64_according_to_fcsr(float toRound, float& rounded,
                                 int64_t& rounded_int, float fs);
  void set_fcsr_rounding_mode(FPURoundingMode mode);
  unsigned int get_fcsr_rounding_mode();
  // Special case of set_register and get_register to access the raw PC value.
  void set_pc(int64_t value);
  int64_t get_pc() const;

  Address get_sp() const {
    return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
  }

  // Accessor to the internal simulator stack area.
  uintptr_t StackLimit(uintptr_t c_limit) const;

  // Executes MIPS instructions until the PC reaches end_sim_pc.
  void Execute();

  // Call on program start.
  static void Initialize(Isolate* isolate);

  static void TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first);

  // V8 generally calls into generated JS code with 5 parameters and into
  // generated RegExp code with 7 parameters. This is a convenience function,
  // which sets up the simulator state and grabs the result on return.
  int64_t Call(byte* entry, int argument_count, ...);
  // Alternative: call a 2-argument double function.
  double CallFP(byte* entry, double d0, double d1);

  // Push an address onto the JS stack.
  uintptr_t PushAddress(uintptr_t address);

  // Pop an address from the JS stack.
  uintptr_t PopAddress();

  // Debugger input.
  void set_last_debugger_input(char* input);
  char* last_debugger_input() { return last_debugger_input_; }

  // ICache checking.
  static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
                          size_t size);

  // Returns true if pc register contains one of the 'special_values' defined
  // below (bad_ra, end_sim_pc).
  bool has_bad_pc() const;

 private:
  enum special_values {
    // Known bad pc value to ensure that the simulator does not execute
    // without being properly setup.
    bad_ra = -1,
    // A pc value used to signal the simulator to stop execution.  Generally
    // the ra is set to this value on transition from native C code to
    // simulated execution, so that the simulator can "return" to the native
    // C code.
    end_sim_pc = -2,
    // Unpredictable value.
    Unpredictable = 0xbadbeaf
  };

  // Unsupported instructions use Format to print an error and stop execution.
  void Format(Instruction* instr, const char* format);

  // Helpers for data value tracing.
  enum TraceType {
    BYTE,
    HALF,
    WORD,
    DWORD,
    FLOAT,
    DOUBLE,
    FLOAT_DOUBLE,
    WORD_DWORD
  };

  // Read and write memory.
  inline uint32_t ReadBU(int64_t addr);
  inline int32_t ReadB(int64_t addr);
  inline void WriteB(int64_t addr, uint8_t value);
  inline void WriteB(int64_t addr, int8_t value);

  inline uint16_t ReadHU(int64_t addr, Instruction* instr);
  inline int16_t ReadH(int64_t addr, Instruction* instr);
  // Note: Overloaded on the sign of the value.
  inline void WriteH(int64_t addr, uint16_t value, Instruction* instr);
  inline void WriteH(int64_t addr, int16_t value, Instruction* instr);

  inline uint32_t ReadWU(int64_t addr, Instruction* instr);
  inline int32_t ReadW(int64_t addr, Instruction* instr, TraceType t = WORD);
  inline void WriteW(int64_t addr, int32_t value, Instruction* instr);
  inline int64_t Read2W(int64_t addr, Instruction* instr);
  inline void Write2W(int64_t addr, int64_t value, Instruction* instr);

  inline double ReadD(int64_t addr, Instruction* instr);
  inline void WriteD(int64_t addr, double value, Instruction* instr);

  // Helper for debugging memory access.
  inline void DieOrDebug();

  void TraceRegWr(int64_t value, TraceType t = DWORD);
  void TraceMemWr(int64_t addr, int64_t value, TraceType t);
  void TraceMemRd(int64_t addr, int64_t value, TraceType t = DWORD);

  // Operations depending on endianness.
  // Get Double Higher / Lower word.
  inline int32_t GetDoubleHIW(double* addr);
  inline int32_t GetDoubleLOW(double* addr);
  // Set Double Higher / Lower word.
  inline int32_t SetDoubleHIW(double* addr);
  inline int32_t SetDoubleLOW(double* addr);

  SimInstruction instr_;

  // functions called from DecodeTypeRegister.
  void DecodeTypeRegisterCOP1();

  void DecodeTypeRegisterCOP1X();

  void DecodeTypeRegisterSPECIAL();


  void DecodeTypeRegisterSPECIAL2();

  void DecodeTypeRegisterSPECIAL3();

  void DecodeTypeRegisterSRsType();

  void DecodeTypeRegisterDRsType();

  void DecodeTypeRegisterWRsType();

  void DecodeTypeRegisterLRsType();

  // Executing is handled based on the instruction type.
  void DecodeTypeRegister();

  inline int32_t rs_reg() const { return instr_.RsValue(); }
  inline int64_t rs() const { return get_register(rs_reg()); }
  inline uint64_t rs_u() const {
    return static_cast<uint64_t>(get_register(rs_reg()));
  }
  inline int32_t rt_reg() const { return instr_.RtValue(); }
  inline int64_t rt() const { return get_register(rt_reg()); }
  inline uint64_t rt_u() const {
    return static_cast<uint64_t>(get_register(rt_reg()));
  }
  inline int32_t rd_reg() const { return instr_.RdValue(); }
  inline int32_t fr_reg() const { return instr_.FrValue(); }
  inline int32_t fs_reg() const { return instr_.FsValue(); }
  inline int32_t ft_reg() const { return instr_.FtValue(); }
  inline int32_t fd_reg() const { return instr_.FdValue(); }
  inline int32_t sa() const { return instr_.SaValue(); }
  inline int32_t lsa_sa() const { return instr_.LsaSaValue(); }

  inline void SetResult(const int32_t rd_reg, const int64_t alu_out) {
    set_register(rd_reg, alu_out);
    TraceRegWr(alu_out);
  }

  inline void SetFPUWordResult(int32_t fd_reg, int32_t alu_out) {
    set_fpu_register_word(fd_reg, alu_out);
    TraceRegWr(get_fpu_register(fd_reg), WORD);
  }

  inline void SetFPUWordResult2(int32_t fd_reg, int32_t alu_out) {
    set_fpu_register_word(fd_reg, alu_out);
    TraceRegWr(get_fpu_register(fd_reg));
  }

  inline void SetFPUResult(int32_t fd_reg, int64_t alu_out) {
    set_fpu_register(fd_reg, alu_out);
    TraceRegWr(get_fpu_register(fd_reg));
  }

  inline void SetFPUResult2(int32_t fd_reg, int64_t alu_out) {
    set_fpu_register(fd_reg, alu_out);
    TraceRegWr(get_fpu_register(fd_reg), DOUBLE);
  }

  inline void SetFPUFloatResult(int32_t fd_reg, float alu_out) {
    set_fpu_register_float(fd_reg, alu_out);
    TraceRegWr(get_fpu_register(fd_reg), FLOAT);
  }

  inline void SetFPUDoubleResult(int32_t fd_reg, double alu_out) {
    set_fpu_register_double(fd_reg, alu_out);
    TraceRegWr(get_fpu_register(fd_reg), DOUBLE);
  }

  void DecodeTypeImmediate();
  void DecodeTypeJump();

  // Used for breakpoints and traps.
  void SoftwareInterrupt();

  // Compact branch guard.
  void CheckForbiddenSlot(int64_t current_pc) {
    Instruction* instr_after_compact_branch =
        reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
    if (instr_after_compact_branch->IsForbiddenAfterBranch()) {
      V8_Fatal(__FILE__, __LINE__,
               "Error: Unexpected instruction 0x%08x immediately after a "
               "compact branch instruction.",
               *reinterpret_cast<uint32_t*>(instr_after_compact_branch));
    }
  }

  // Stop helper functions.
  bool IsWatchpoint(uint64_t code);
  void PrintWatchpoint(uint64_t code);
  void HandleStop(uint64_t code, Instruction* instr);
  bool IsStopInstruction(Instruction* instr);
  bool IsEnabledStop(uint64_t code);
  void EnableStop(uint64_t code);
  void DisableStop(uint64_t code);
  void IncreaseStopCounter(uint64_t code);
  void PrintStopInfo(uint64_t code);


  // Executes one instruction.
  void InstructionDecode(Instruction* instr);
  // Execute one instruction placed in a branch delay slot.
  void BranchDelayInstructionDecode(Instruction* instr) {
    if (instr->InstructionBits() == nopInstr) {
      // Short-cut generic nop instructions. They are always valid and they
      // never change the simulator state.
      return;
    }

    if (instr->IsForbiddenAfterBranch()) {
      V8_Fatal(__FILE__, __LINE__,
               "Eror:Unexpected %i opcode in a branch delay slot.",
               instr->OpcodeValue());
    }
    InstructionDecode(instr);
    SNPrintF(trace_buf_, " ");
  }

  // ICache.
  static void CheckICache(base::CustomMatcherHashMap* i_cache,
                          Instruction* instr);
  static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
                           size_t size);
  static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
                                 void* page);

  enum Exception {
    none,
    kIntegerOverflow,
    kIntegerUnderflow,
    kDivideByZero,
    kNumExceptions
  };

  // Exceptions.
  void SignalException(Exception e);

  // Runtime call support. Uses the isolate in a thread-safe way.
  static void* RedirectExternalReference(Isolate* isolate,
                                         void* external_function,
                                         ExternalReference::Type type);

  // Handle arguments and return value for runtime FP functions.
  void GetFpArgs(double* x, double* y, int32_t* z);
  void SetFpResult(const double& result);

  void CallInternal(byte* entry);

  // Architecture state.
  // Registers.
  int64_t registers_[kNumSimuRegisters];
  // Coprocessor Registers.
  int64_t FPUregisters_[kNumFPURegisters];
  // FPU control register.
  uint32_t FCSR_;

  // Simulator support.
  // Allocate 1MB for stack.
  size_t stack_size_;
  char* stack_;
  bool pc_modified_;
  int64_t icount_;
  int break_count_;
  EmbeddedVector<char, 128> trace_buf_;

  // Debugger input.
  char* last_debugger_input_;

  // Icache simulation.
  base::CustomMatcherHashMap* i_cache_;

  v8::internal::Isolate* isolate_;

  // Registered breakpoints.
  Instruction* break_pc_;
  Instr break_instr_;

  // Stop is disabled if bit 31 is set.
  static const uint32_t kStopDisabledBit = 1 << 31;

  // A stop is enabled, meaning the simulator will stop when meeting the
  // instruction, if bit 31 of watched_stops_[code].count is unset.
  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
  // the breakpoint was hit or gone through.
  struct StopCountAndDesc {
    uint32_t count;
    char* desc;
  };
  StopCountAndDesc watched_stops_[kMaxStopCode + 1];
};


// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4)       \
  reinterpret_cast<Object*>(Simulator::current(isolate)->Call(        \
      FUNCTION_ADDR(entry), 5, reinterpret_cast<int64_t*>(p0),        \
      reinterpret_cast<int64_t*>(p1), reinterpret_cast<int64_t*>(p2), \
      reinterpret_cast<int64_t*>(p3), reinterpret_cast<int64_t*>(p4)))

#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
                                   p7, p8)                                     \
  static_cast<int>(Simulator::current(isolate)->Call(                          \
      entry, 9, p0, p1, p2, p3, p4, reinterpret_cast<int64_t*>(p5), p6, p7,    \
      p8))

// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code.  The JS-based limit normally points near the end of
// the simulator stack.  When the C-based limit is exhausted we reflect that by
// lowering the JS-based limit as well, to make stack checks trigger.
class SimulatorStack : public v8::internal::AllStatic {
 public:
  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
                                            uintptr_t c_limit) {
    return Simulator::current(isolate)->StackLimit(c_limit);
  }

  static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
                                            uintptr_t try_catch_address) {
    Simulator* sim = Simulator::current(isolate);
    return sim->PushAddress(try_catch_address);
  }

  static inline void UnregisterCTryCatch(Isolate* isolate) {
    Simulator::current(isolate)->PopAddress();
  }
};

}  // namespace internal
}  // namespace v8

#endif  // !defined(USE_SIMULATOR)
#endif  // V8_MIPS_SIMULATOR_MIPS_H_