summaryrefslogtreecommitdiff
path: root/deps/v8/src/ic/ic-state.cc
blob: 9c883ad5e36b0c2f6e9de532c334bc162ac177ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#include "src/ic/ic.h"
#include "src/ic/ic-state.h"

namespace v8 {
namespace internal {

// static
void ICUtility::Clear(Isolate* isolate, Address address,
                      ConstantPoolArray* constant_pool) {
  IC::Clear(isolate, address, constant_pool);
}


CallICState::CallICState(ExtraICState extra_ic_state)
    : argc_(ArgcBits::decode(extra_ic_state)),
      call_type_(CallTypeBits::decode(extra_ic_state)) {}


ExtraICState CallICState::GetExtraICState() const {
  ExtraICState extra_ic_state =
      ArgcBits::encode(argc_) | CallTypeBits::encode(call_type_);
  return extra_ic_state;
}


std::ostream& operator<<(std::ostream& os, const CallICState& s) {
  return os << "(args(" << s.arg_count() << "), "
            << (s.call_type() == CallICState::METHOD ? "METHOD" : "FUNCTION")
            << ", ";
}


BinaryOpICState::BinaryOpICState(Isolate* isolate, ExtraICState extra_ic_state)
    : isolate_(isolate) {
  op_ =
      static_cast<Token::Value>(FIRST_TOKEN + OpField::decode(extra_ic_state));
  mode_ = OverwriteModeField::decode(extra_ic_state);
  fixed_right_arg_ =
      Maybe<int>(HasFixedRightArgField::decode(extra_ic_state),
                 1 << FixedRightArgValueField::decode(extra_ic_state));
  left_kind_ = LeftKindField::decode(extra_ic_state);
  if (fixed_right_arg_.has_value) {
    right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
  } else {
    right_kind_ = RightKindField::decode(extra_ic_state);
  }
  result_kind_ = ResultKindField::decode(extra_ic_state);
  DCHECK_LE(FIRST_TOKEN, op_);
  DCHECK_LE(op_, LAST_TOKEN);
}


ExtraICState BinaryOpICState::GetExtraICState() const {
  ExtraICState extra_ic_state =
      OpField::encode(op_ - FIRST_TOKEN) | OverwriteModeField::encode(mode_) |
      LeftKindField::encode(left_kind_) |
      ResultKindField::encode(result_kind_) |
      HasFixedRightArgField::encode(fixed_right_arg_.has_value);
  if (fixed_right_arg_.has_value) {
    extra_ic_state = FixedRightArgValueField::update(
        extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
  } else {
    extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
  }
  return extra_ic_state;
}


// static
void BinaryOpICState::GenerateAheadOfTime(
    Isolate* isolate, void (*Generate)(Isolate*, const BinaryOpICState&)) {
// TODO(olivf) We should investigate why adding stubs to the snapshot is so
// expensive at runtime. When solved we should be able to add most binops to
// the snapshot instead of hand-picking them.
// Generated list of commonly used stubs
#define GENERATE(op, left_kind, right_kind, result_kind, mode) \
  do {                                                         \
    BinaryOpICState state(isolate, op, mode);                  \
    state.left_kind_ = left_kind;                              \
    state.fixed_right_arg_.has_value = false;                  \
    state.right_kind_ = right_kind;                            \
    state.result_kind_ = result_kind;                          \
    Generate(isolate, state);                                  \
  } while (false)
  GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
  GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
  GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
  GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
  GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
  GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
  GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
  GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
  GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
  GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
  GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
  GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
  GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
  GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
#undef GENERATE
#define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
  do {                                                                    \
    BinaryOpICState state(isolate, op, mode);                             \
    state.left_kind_ = left_kind;                                         \
    state.fixed_right_arg_.has_value = true;                              \
    state.fixed_right_arg_.value = fixed_right_arg_value;                 \
    state.right_kind_ = SMI;                                              \
    state.result_kind_ = result_kind;                                     \
    Generate(isolate, state);                                             \
  } while (false)
  GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
  GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
  GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
  GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
  GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
  GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
  GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
#undef GENERATE
}


Type* BinaryOpICState::GetResultType(Zone* zone) const {
  Kind result_kind = result_kind_;
  if (HasSideEffects()) {
    result_kind = NONE;
  } else if (result_kind == GENERIC && op_ == Token::ADD) {
    return Type::Union(Type::Number(zone), Type::String(zone), zone);
  } else if (result_kind == NUMBER && op_ == Token::SHR) {
    return Type::Unsigned32(zone);
  }
  DCHECK_NE(GENERIC, result_kind);
  return KindToType(result_kind, zone);
}


std::ostream& operator<<(std::ostream& os, const BinaryOpICState& s) {
  os << "(" << Token::Name(s.op_);
  if (s.mode_ == OVERWRITE_LEFT)
    os << "_ReuseLeft";
  else if (s.mode_ == OVERWRITE_RIGHT)
    os << "_ReuseRight";
  if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos";
  os << ":" << BinaryOpICState::KindToString(s.left_kind_) << "*";
  if (s.fixed_right_arg_.has_value) {
    os << s.fixed_right_arg_.value;
  } else {
    os << BinaryOpICState::KindToString(s.right_kind_);
  }
  return os << "->" << BinaryOpICState::KindToString(s.result_kind_) << ")";
}


void BinaryOpICState::Update(Handle<Object> left, Handle<Object> right,
                             Handle<Object> result) {
  ExtraICState old_extra_ic_state = GetExtraICState();

  left_kind_ = UpdateKind(left, left_kind_);
  right_kind_ = UpdateKind(right, right_kind_);

  int32_t fixed_right_arg_value = 0;
  bool has_fixed_right_arg =
      op_ == Token::MOD && right->ToInt32(&fixed_right_arg_value) &&
      fixed_right_arg_value > 0 &&
      base::bits::IsPowerOfTwo32(fixed_right_arg_value) &&
      FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
      (left_kind_ == SMI || left_kind_ == INT32) &&
      (result_kind_ == NONE || !fixed_right_arg_.has_value);
  fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg, fixed_right_arg_value);

  result_kind_ = UpdateKind(result, result_kind_);

  if (!Token::IsTruncatingBinaryOp(op_)) {
    Kind input_kind = Max(left_kind_, right_kind_);
    if (result_kind_ < input_kind && input_kind <= NUMBER) {
      result_kind_ = input_kind;
    }
  }

  // We don't want to distinguish INT32 and NUMBER for string add (because
  // NumberToString can't make use of this anyway).
  if (left_kind_ == STRING && right_kind_ == INT32) {
    DCHECK_EQ(STRING, result_kind_);
    DCHECK_EQ(Token::ADD, op_);
    right_kind_ = NUMBER;
  } else if (right_kind_ == STRING && left_kind_ == INT32) {
    DCHECK_EQ(STRING, result_kind_);
    DCHECK_EQ(Token::ADD, op_);
    left_kind_ = NUMBER;
  }

  // Reset overwrite mode unless we can actually make use of it, or may be able
  // to make use of it at some point in the future.
  if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
      (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
      result_kind_ > NUMBER) {
    mode_ = NO_OVERWRITE;
  }

  if (old_extra_ic_state == GetExtraICState()) {
    // Tagged operations can lead to non-truncating HChanges
    if (left->IsUndefined() || left->IsBoolean()) {
      left_kind_ = GENERIC;
    } else {
      DCHECK(right->IsUndefined() || right->IsBoolean());
      right_kind_ = GENERIC;
    }
  }
}


BinaryOpICState::Kind BinaryOpICState::UpdateKind(Handle<Object> object,
                                                  Kind kind) const {
  Kind new_kind = GENERIC;
  bool is_truncating = Token::IsTruncatingBinaryOp(op());
  if (object->IsBoolean() && is_truncating) {
    // Booleans will be automatically truncated by HChange.
    new_kind = INT32;
  } else if (object->IsUndefined()) {
    // Undefined will be automatically truncated by HChange.
    new_kind = is_truncating ? INT32 : NUMBER;
  } else if (object->IsSmi()) {
    new_kind = SMI;
  } else if (object->IsHeapNumber()) {
    double value = Handle<HeapNumber>::cast(object)->value();
    new_kind = IsInt32Double(value) ? INT32 : NUMBER;
  } else if (object->IsString() && op() == Token::ADD) {
    new_kind = STRING;
  }
  if (new_kind == INT32 && SmiValuesAre32Bits()) {
    new_kind = NUMBER;
  }
  if (kind != NONE && ((new_kind <= NUMBER && kind > NUMBER) ||
                       (new_kind > NUMBER && kind <= NUMBER))) {
    new_kind = GENERIC;
  }
  return Max(kind, new_kind);
}


// static
const char* BinaryOpICState::KindToString(Kind kind) {
  switch (kind) {
    case NONE:
      return "None";
    case SMI:
      return "Smi";
    case INT32:
      return "Int32";
    case NUMBER:
      return "Number";
    case STRING:
      return "String";
    case GENERIC:
      return "Generic";
  }
  UNREACHABLE();
  return NULL;
}


// static
Type* BinaryOpICState::KindToType(Kind kind, Zone* zone) {
  switch (kind) {
    case NONE:
      return Type::None(zone);
    case SMI:
      return Type::SignedSmall(zone);
    case INT32:
      return Type::Signed32(zone);
    case NUMBER:
      return Type::Number(zone);
    case STRING:
      return Type::String(zone);
    case GENERIC:
      return Type::Any(zone);
  }
  UNREACHABLE();
  return NULL;
}


const char* CompareICState::GetStateName(State state) {
  switch (state) {
    case UNINITIALIZED:
      return "UNINITIALIZED";
    case SMI:
      return "SMI";
    case NUMBER:
      return "NUMBER";
    case INTERNALIZED_STRING:
      return "INTERNALIZED_STRING";
    case STRING:
      return "STRING";
    case UNIQUE_NAME:
      return "UNIQUE_NAME";
    case OBJECT:
      return "OBJECT";
    case KNOWN_OBJECT:
      return "KNOWN_OBJECT";
    case GENERIC:
      return "GENERIC";
  }
  UNREACHABLE();
  return NULL;
}


Type* CompareICState::StateToType(Zone* zone, State state, Handle<Map> map) {
  switch (state) {
    case UNINITIALIZED:
      return Type::None(zone);
    case SMI:
      return Type::SignedSmall(zone);
    case NUMBER:
      return Type::Number(zone);
    case STRING:
      return Type::String(zone);
    case INTERNALIZED_STRING:
      return Type::InternalizedString(zone);
    case UNIQUE_NAME:
      return Type::UniqueName(zone);
    case OBJECT:
      return Type::Receiver(zone);
    case KNOWN_OBJECT:
      return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
    case GENERIC:
      return Type::Any(zone);
  }
  UNREACHABLE();
  return NULL;
}


CompareICState::State CompareICState::NewInputState(State old_state,
                                                    Handle<Object> value) {
  switch (old_state) {
    case UNINITIALIZED:
      if (value->IsSmi()) return SMI;
      if (value->IsHeapNumber()) return NUMBER;
      if (value->IsInternalizedString()) return INTERNALIZED_STRING;
      if (value->IsString()) return STRING;
      if (value->IsSymbol()) return UNIQUE_NAME;
      if (value->IsJSObject()) return OBJECT;
      break;
    case SMI:
      if (value->IsSmi()) return SMI;
      if (value->IsHeapNumber()) return NUMBER;
      break;
    case NUMBER:
      if (value->IsNumber()) return NUMBER;
      break;
    case INTERNALIZED_STRING:
      if (value->IsInternalizedString()) return INTERNALIZED_STRING;
      if (value->IsString()) return STRING;
      if (value->IsSymbol()) return UNIQUE_NAME;
      break;
    case STRING:
      if (value->IsString()) return STRING;
      break;
    case UNIQUE_NAME:
      if (value->IsUniqueName()) return UNIQUE_NAME;
      break;
    case OBJECT:
      if (value->IsJSObject()) return OBJECT;
      break;
    case GENERIC:
      break;
    case KNOWN_OBJECT:
      UNREACHABLE();
      break;
  }
  return GENERIC;
}


// static
CompareICState::State CompareICState::TargetState(
    State old_state, State old_left, State old_right, Token::Value op,
    bool has_inlined_smi_code, Handle<Object> x, Handle<Object> y) {
  switch (old_state) {
    case UNINITIALIZED:
      if (x->IsSmi() && y->IsSmi()) return SMI;
      if (x->IsNumber() && y->IsNumber()) return NUMBER;
      if (Token::IsOrderedRelationalCompareOp(op)) {
        // Ordered comparisons treat undefined as NaN, so the
        // NUMBER stub will do the right thing.
        if ((x->IsNumber() && y->IsUndefined()) ||
            (y->IsNumber() && x->IsUndefined())) {
          return NUMBER;
        }
      }
      if (x->IsInternalizedString() && y->IsInternalizedString()) {
        // We compare internalized strings as plain ones if we need to determine
        // the order in a non-equality compare.
        return Token::IsEqualityOp(op) ? INTERNALIZED_STRING : STRING;
      }
      if (x->IsString() && y->IsString()) return STRING;
      if (!Token::IsEqualityOp(op)) return GENERIC;
      if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
      if (x->IsJSObject() && y->IsJSObject()) {
        if (Handle<JSObject>::cast(x)->map() ==
            Handle<JSObject>::cast(y)->map()) {
          return KNOWN_OBJECT;
        } else {
          return OBJECT;
        }
      }
      return GENERIC;
    case SMI:
      return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
    case INTERNALIZED_STRING:
      DCHECK(Token::IsEqualityOp(op));
      if (x->IsString() && y->IsString()) return STRING;
      if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
      return GENERIC;
    case NUMBER:
      // If the failure was due to one side changing from smi to heap number,
      // then keep the state (if other changed at the same time, we will get
      // a second miss and then go to generic).
      if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
      if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
      return GENERIC;
    case KNOWN_OBJECT:
      DCHECK(Token::IsEqualityOp(op));
      if (x->IsJSObject() && y->IsJSObject()) {
        return OBJECT;
      }
      return GENERIC;
    case STRING:
    case UNIQUE_NAME:
    case OBJECT:
    case GENERIC:
      return GENERIC;
  }
  UNREACHABLE();
  return GENERIC;  // Make the compiler happy.
}
}
}  // namespace v8::internal