summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/macro-assembler-ia32.h
blob: 12a8923113824a033f9eaabb1347224ee44e4a26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
#define V8_IA32_MACRO_ASSEMBLER_IA32_H_

#include "assembler.h"
#include "type-info.h"

namespace v8 {
namespace internal {

// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
  // No special flags.
  NO_ALLOCATION_FLAGS = 0,
  // Return the pointer to the allocated already tagged as a heap object.
  TAG_OBJECT = 1 << 0,
  // The content of the result register already contains the allocation top in
  // new space.
  RESULT_CONTAINS_TOP = 1 << 1
};

// Convenience for platform-independent signatures.  We do not normally
// distinguish memory operands from other operands on ia32.
typedef Operand MemOperand;

// Forward declaration.
class JumpTarget;
class PostCallGenerator;

// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
 public:
  MacroAssembler(void* buffer, int size);

  // ---------------------------------------------------------------------------
  // GC Support

  // For page containing |object| mark region covering |addr| dirty.
  // RecordWriteHelper only works if the object is not in new
  // space.
  void RecordWriteHelper(Register object,
                         Register addr,
                         Register scratch);

  // Check if object is in new space.
  // scratch can be object itself, but it will be clobbered.
  template <typename LabelType>
  void InNewSpace(Register object,
                  Register scratch,
                  Condition cc,  // equal for new space, not_equal otherwise.
                  LabelType* branch);

  // For page containing |object| mark region covering [object+offset]
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. If offset is zero, then the scratch register
  // contains the array index into the elements array represented as a
  // Smi. All registers are clobbered by the operation. RecordWrite
  // filters out smis so it does not update the write barrier if the
  // value is a smi.
  void RecordWrite(Register object,
                   int offset,
                   Register value,
                   Register scratch);

  // For page containing |object| mark region covering |address|
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. All registers are clobbered by the
  // operation. RecordWrite filters out smis so it does not update the
  // write barrier if the value is a smi.
  void RecordWrite(Register object,
                   Register address,
                   Register value);

#ifdef ENABLE_DEBUGGER_SUPPORT
  // ---------------------------------------------------------------------------
  // Debugger Support

  void DebugBreak();
#endif

  // ---------------------------------------------------------------------------
  // Activation frames

  void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
  void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }

  void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
  void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }

  // Enter specific kind of exit frame. Expects the number of
  // arguments in register eax and sets up the number of arguments in
  // register edi and the pointer to the first argument in register
  // esi.
  void EnterExitFrame(bool save_doubles);

  void EnterApiExitFrame(int argc);

  // Leave the current exit frame. Expects the return value in
  // register eax:edx (untouched) and the pointer to the first
  // argument in register esi.
  void LeaveExitFrame(bool save_doubles);

  // Leave the current exit frame. Expects the return value in
  // register eax (untouched).
  void LeaveApiExitFrame();

  // Find the function context up the context chain.
  void LoadContext(Register dst, int context_chain_length);

  // Load the global function with the given index.
  void LoadGlobalFunction(int index, Register function);

  // Load the initial map from the global function. The registers
  // function and map can be the same.
  void LoadGlobalFunctionInitialMap(Register function, Register map);

  // Push and pop the registers that can hold pointers.
  void PushSafepointRegisters() { pushad(); }
  void PopSafepointRegisters() { popad(); }
  static int SafepointRegisterStackIndex(int reg_code);

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeCode(const Operand& code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  InvokeFlag flag,
                  PostCallGenerator* post_call_generator = NULL);

  void InvokeCode(Handle<Code> code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  RelocInfo::Mode rmode,
                  InvokeFlag flag,
                  PostCallGenerator* post_call_generator = NULL);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      PostCallGenerator* post_call_generator = NULL);

  void InvokeFunction(JSFunction* function,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      PostCallGenerator* post_call_generator = NULL);

  // Invoke specified builtin JavaScript function. Adds an entry to
  // the unresolved list if the name does not resolve.
  void InvokeBuiltin(Builtins::JavaScript id,
                     InvokeFlag flag,
                     PostCallGenerator* post_call_generator = NULL);

  // Store the function for the given builtin in the target register.
  void GetBuiltinFunction(Register target, Builtins::JavaScript id);

  // Store the code object for the given builtin in the target register.
  void GetBuiltinEntry(Register target, Builtins::JavaScript id);

  // Expression support
  void Set(Register dst, const Immediate& x);
  void Set(const Operand& dst, const Immediate& x);

  // Compare object type for heap object.
  // Incoming register is heap_object and outgoing register is map.
  void CmpObjectType(Register heap_object, InstanceType type, Register map);

  // Compare instance type for map.
  void CmpInstanceType(Register map, InstanceType type);

  // Check if the map of an object is equal to a specified map and
  // branch to label if not. Skip the smi check if not required
  // (object is known to be a heap object)
  void CheckMap(Register obj,
                Handle<Map> map,
                Label* fail,
                bool is_heap_object);

  // Check if the object in register heap_object is a string. Afterwards the
  // register map contains the object map and the register instance_type
  // contains the instance_type. The registers map and instance_type can be the
  // same in which case it contains the instance type afterwards. Either of the
  // registers map and instance_type can be the same as heap_object.
  Condition IsObjectStringType(Register heap_object,
                               Register map,
                               Register instance_type);

  // Check if a heap object's type is in the JSObject range, not including
  // JSFunction.  The object's map will be loaded in the map register.
  // Any or all of the three registers may be the same.
  // The contents of the scratch register will always be overwritten.
  void IsObjectJSObjectType(Register heap_object,
                            Register map,
                            Register scratch,
                            Label* fail);

  // The contents of the scratch register will be overwritten.
  void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);

  // FCmp is similar to integer cmp, but requires unsigned
  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
  void FCmp();

  // Smi tagging support.
  void SmiTag(Register reg) {
    ASSERT(kSmiTag == 0);
    ASSERT(kSmiTagSize == 1);
    add(reg, Operand(reg));
  }
  void SmiUntag(Register reg) {
    sar(reg, kSmiTagSize);
  }

  // Modifies the register even if it does not contain a Smi!
  void SmiUntag(Register reg, TypeInfo info, Label* non_smi) {
    ASSERT(kSmiTagSize == 1);
    sar(reg, kSmiTagSize);
    if (info.IsSmi()) {
      ASSERT(kSmiTag == 0);
      j(carry, non_smi);
    }
  }

  // Modifies the register even if it does not contain a Smi!
  void SmiUntag(Register reg, Label* is_smi) {
    ASSERT(kSmiTagSize == 1);
    sar(reg, kSmiTagSize);
    ASSERT(kSmiTag == 0);
    j(not_carry, is_smi);
  }

  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value, Label* smi_label) {
    test(value, Immediate(kSmiTagMask));
    j(zero, smi_label, not_taken);
  }
  // Jump if register contain a non-smi.
  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
    test(value, Immediate(kSmiTagMask));
    j(not_zero, not_smi_label, not_taken);
  }

  // Assumes input is a heap object.
  void JumpIfNotNumber(Register reg, TypeInfo info, Label* on_not_number);

  // Assumes input is a heap number.  Jumps on things out of range.  Also jumps
  // on the min negative int32.  Ignores frational parts.
  void ConvertToInt32(Register dst,
                      Register src,      // Can be the same as dst.
                      Register scratch,  // Can be no_reg or dst, but not src.
                      TypeInfo info,
                      Label* on_not_int32);

  void LoadPowerOf2(XMMRegister dst, Register scratch, int power);

  // Abort execution if argument is not a number. Used in debug code.
  void AbortIfNotNumber(Register object);

  // Abort execution if argument is not a smi. Used in debug code.
  void AbortIfNotSmi(Register object);

  // Abort execution if argument is a smi. Used in debug code.
  void AbortIfSmi(Register object);

  // Abort execution if argument is a string. Used in debug code.
  void AbortIfNotString(Register object);

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new try handler and link into try handler chain.  The return
  // address must be pushed before calling this helper.
  void PushTryHandler(CodeLocation try_location, HandlerType type);

  // Unlink the stack handler on top of the stack from the try handler chain.
  void PopTryHandler();

  // ---------------------------------------------------------------------------
  // Inline caching support

  // Generate code for checking access rights - used for security checks
  // on access to global objects across environments. The holder register
  // is left untouched, but the scratch register is clobbered.
  void CheckAccessGlobalProxy(Register holder_reg,
                              Register scratch,
                              Label* miss);


  // ---------------------------------------------------------------------------
  // Allocation support

  // Allocate an object in new space. If the new space is exhausted control
  // continues at the gc_required label. The allocated object is returned in
  // result and end of the new object is returned in result_end. The register
  // scratch can be passed as no_reg in which case an additional object
  // reference will be added to the reloc info. The returned pointers in result
  // and result_end have not yet been tagged as heap objects. If
  // result_contains_top_on_entry is true the content of result is known to be
  // the allocation top on entry (could be result_end from a previous call to
  // AllocateInNewSpace). If result_contains_top_on_entry is true scratch
  // should be no_reg as it is never used.
  void AllocateInNewSpace(int object_size,
                          Register result,
                          Register result_end,
                          Register scratch,
                          Label* gc_required,
                          AllocationFlags flags);

  void AllocateInNewSpace(int header_size,
                          ScaleFactor element_size,
                          Register element_count,
                          Register result,
                          Register result_end,
                          Register scratch,
                          Label* gc_required,
                          AllocationFlags flags);

  void AllocateInNewSpace(Register object_size,
                          Register result,
                          Register result_end,
                          Register scratch,
                          Label* gc_required,
                          AllocationFlags flags);

  // Undo allocation in new space. The object passed and objects allocated after
  // it will no longer be allocated. Make sure that no pointers are left to the
  // object(s) no longer allocated as they would be invalid when allocation is
  // un-done.
  void UndoAllocationInNewSpace(Register object);

  // Allocate a heap number in new space with undefined value. The
  // register scratch2 can be passed as no_reg; the others must be
  // valid registers. Returns tagged pointer in result register, or
  // jumps to gc_required if new space is full.
  void AllocateHeapNumber(Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required);

  // Allocate a sequential string. All the header fields of the string object
  // are initialized.
  void AllocateTwoByteString(Register result,
                             Register length,
                             Register scratch1,
                             Register scratch2,
                             Register scratch3,
                             Label* gc_required);
  void AllocateAsciiString(Register result,
                           Register length,
                           Register scratch1,
                           Register scratch2,
                           Register scratch3,
                           Label* gc_required);
  void AllocateAsciiString(Register result,
                           int length,
                           Register scratch1,
                           Register scratch2,
                           Label* gc_required);

  // Allocate a raw cons string object. Only the map field of the result is
  // initialized.
  void AllocateConsString(Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required);
  void AllocateAsciiConsString(Register result,
                               Register scratch1,
                               Register scratch2,
                               Label* gc_required);

  // Copy memory, byte-by-byte, from source to destination.  Not optimized for
  // long or aligned copies.
  // The contents of index and scratch are destroyed.
  void CopyBytes(Register source,
                 Register destination,
                 Register length,
                 Register scratch);

  // ---------------------------------------------------------------------------
  // Support functions.

  // Check if result is zero and op is negative.
  void NegativeZeroTest(Register result, Register op, Label* then_label);

  // Check if result is zero and op is negative in code using jump targets.
  void NegativeZeroTest(CodeGenerator* cgen,
                        Register result,
                        Register op,
                        JumpTarget* then_target);

  // Check if result is zero and any of op1 and op2 are negative.
  // Register scratch is destroyed, and it must be different from op2.
  void NegativeZeroTest(Register result, Register op1, Register op2,
                        Register scratch, Label* then_label);

  // Try to get function prototype of a function and puts the value in
  // the result register. Checks that the function really is a
  // function and jumps to the miss label if the fast checks fail. The
  // function register will be untouched; the other registers may be
  // clobbered.
  void TryGetFunctionPrototype(Register function,
                               Register result,
                               Register scratch,
                               Label* miss);

  // Generates code for reporting that an illegal operation has
  // occurred.
  void IllegalOperation(int num_arguments);

  // Picks out an array index from the hash field.
  // Register use:
  //   hash - holds the index's hash. Clobbered.
  //   index - holds the overwritten index on exit.
  void IndexFromHash(Register hash, Register index);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a code stub.  Generate the code if necessary.
  void CallStub(CodeStub* stub);

  // Call a code stub and return the code object called.  Try to generate
  // the code if necessary.  Do not perform a GC but instead return a retry
  // after GC failure.
  MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub);

  // Tail call a code stub (jump).  Generate the code if necessary.
  void TailCallStub(CodeStub* stub);

  // Tail call a code stub (jump) and return the code object called.  Try to
  // generate the code if necessary.  Do not perform a GC but instead return
  // a retry after GC failure.
  MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub);

  // Return from a code stub after popping its arguments.
  void StubReturn(int argc);

  // Call a runtime routine.
  void CallRuntime(Runtime::Function* f, int num_arguments);
  void CallRuntimeSaveDoubles(Runtime::FunctionId id);

  // Call a runtime function, returning the CodeStub object called.
  // Try to generate the stub code if necessary.  Do not perform a GC
  // but instead return a retry after GC failure.
  MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::Function* f,
                                              int num_arguments);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId id, int num_arguments);

  // Convenience function: Same as above, but takes the fid instead.
  MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id,
                                              int num_arguments);

  // Convenience function: call an external reference.
  void CallExternalReference(ExternalReference ref, int num_arguments);

  // Tail call of a runtime routine (jump).
  // Like JumpToExternalReference, but also takes care of passing the number
  // of parameters.
  void TailCallExternalReference(const ExternalReference& ext,
                                 int num_arguments,
                                 int result_size);

  // Tail call of a runtime routine (jump). Try to generate the code if
  // necessary. Do not perform a GC but instead return a retry after GC failure.
  MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
      const ExternalReference& ext, int num_arguments, int result_size);

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid,
                       int num_arguments,
                       int result_size);

  // Convenience function: tail call a runtime routine (jump). Try to generate
  // the code if necessary. Do not perform a GC but instead return a retry after
  // GC failure.
  MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid,
                                                  int num_arguments,
                                                  int result_size);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, arguments must be stored in esp[0], esp[4],
  // etc., not pushed. The argument count assumes all arguments are word sized.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_arguments, Register scratch);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);

  // Prepares stack to put arguments (aligns and so on). Reserves
  // space for return value if needed (assumes the return value is a handle).
  // Uses callee-saved esi to restore stack state after call. Arguments must be
  // stored in ApiParameterOperand(0), ApiParameterOperand(1) etc. Saves
  // context (esi).
  void PrepareCallApiFunction(int argc, Register scratch);

  // Calls an API function. Allocates HandleScope, extracts
  // returned value from handle and propagates exceptions.
  // Clobbers ebx, edi and caller-save registers. Restores context.
  // On return removes stack_space * kPointerSize (GCed).
  MaybeObject* TryCallApiFunctionAndReturn(ApiFunction* function,
                                           int stack_space);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& ext);

  MaybeObject* TryJumpToExternalReference(const ExternalReference& ext);


  // ---------------------------------------------------------------------------
  // Utilities

  void Ret();

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the esp register.
  void Drop(int element_count);

  void Call(Label* target) { call(target); }

  // Emit call to the code we are currently generating.
  void CallSelf() {
    Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
    call(self, RelocInfo::CODE_TARGET);
  }

  // Move if the registers are not identical.
  void Move(Register target, Register source);

  void Move(Register target, Handle<Object> value);

  Handle<Object> CodeObject() { return code_object_; }


  // ---------------------------------------------------------------------------
  // StatsCounter support

  void SetCounter(StatsCounter* counter, int value);
  void IncrementCounter(StatsCounter* counter, int value);
  void DecrementCounter(StatsCounter* counter, int value);
  void IncrementCounter(Condition cc, StatsCounter* counter, int value);
  void DecrementCounter(Condition cc, StatsCounter* counter, int value);


  // ---------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, const char* msg);

  void AssertFastElements(Register elements);

  // Like Assert(), but always enabled.
  void Check(Condition cc, const char* msg);

  // Print a message to stdout and abort execution.
  void Abort(const char* msg);

  // Check that the stack is aligned.
  void CheckStackAlignment();

  // Verify restrictions about code generated in stubs.
  void set_generating_stub(bool value) { generating_stub_ = value; }
  bool generating_stub() { return generating_stub_; }
  void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
  bool allow_stub_calls() { return allow_stub_calls_; }

  // ---------------------------------------------------------------------------
  // String utilities.

  // Check whether the instance type represents a flat ascii string. Jump to the
  // label if not. If the instance type can be scratched specify same register
  // for both instance type and scratch.
  void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
                                              Register scratch,
                                              Label* on_not_flat_ascii_string);

  // Checks if both objects are sequential ASCII strings, and jumps to label
  // if either is not.
  void JumpIfNotBothSequentialAsciiStrings(Register object1,
                                           Register object2,
                                           Register scratch1,
                                           Register scratch2,
                                           Label* on_not_flat_ascii_strings);

 private:
  bool generating_stub_;
  bool allow_stub_calls_;
  // This handle will be patched with the code object on installation.
  Handle<Object> code_object_;

  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual,
                      Handle<Code> code_constant,
                      const Operand& code_operand,
                      Label* done,
                      InvokeFlag flag,
                      PostCallGenerator* post_call_generator = NULL);

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void LeaveFrame(StackFrame::Type type);

  void EnterExitFramePrologue();
  void EnterExitFrameEpilogue(int argc, bool save_doubles);

  void LeaveExitFrameEpilogue();

  // Allocation support helpers.
  void LoadAllocationTopHelper(Register result,
                               Register scratch,
                               AllocationFlags flags);
  void UpdateAllocationTopHelper(Register result_end, Register scratch);

  // Helper for PopHandleScope.  Allowed to perform a GC and returns
  // NULL if gc_allowed.  Does not perform a GC if !gc_allowed, and
  // possibly returns a failure object indicating an allocation failure.
  MUST_USE_RESULT MaybeObject* PopHandleScopeHelper(Register saved,
                                                    Register scratch,
                                                    bool gc_allowed);
};


template <typename LabelType>
void MacroAssembler::InNewSpace(Register object,
                                Register scratch,
                                Condition cc,
                                LabelType* branch) {
  ASSERT(cc == equal || cc == not_equal);
  if (Serializer::enabled()) {
    // Can't do arithmetic on external references if it might get serialized.
    mov(scratch, Operand(object));
    // The mask isn't really an address.  We load it as an external reference in
    // case the size of the new space is different between the snapshot maker
    // and the running system.
    and_(Operand(scratch), Immediate(ExternalReference::new_space_mask()));
    cmp(Operand(scratch), Immediate(ExternalReference::new_space_start()));
    j(cc, branch);
  } else {
    int32_t new_space_start = reinterpret_cast<int32_t>(
        ExternalReference::new_space_start().address());
    lea(scratch, Operand(object, -new_space_start));
    and_(scratch, Heap::NewSpaceMask());
    j(cc, branch);
  }
}


// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
 public:
  CodePatcher(byte* address, int size);
  virtual ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

 private:
  byte* address_;  // The address of the code being patched.
  int size_;  // Number of bytes of the expected patch size.
  MacroAssembler masm_;  // Macro assembler used to generate the code.
};


// Helper class for generating code or data associated with the code
// right after a call instruction. As an example this can be used to
// generate safepoint data after calls for crankshaft.
class PostCallGenerator {
 public:
  PostCallGenerator() { }
  virtual ~PostCallGenerator() { }
  virtual void Generate() = 0;
};


// -----------------------------------------------------------------------------
// Static helper functions.

// Generate an Operand for loading a field from an object.
static inline Operand FieldOperand(Register object, int offset) {
  return Operand(object, offset - kHeapObjectTag);
}


// Generate an Operand for loading an indexed field from an object.
static inline Operand FieldOperand(Register object,
                                   Register index,
                                   ScaleFactor scale,
                                   int offset) {
  return Operand(object, index, scale, offset - kHeapObjectTag);
}


static inline Operand ContextOperand(Register context, int index) {
  return Operand(context, Context::SlotOffset(index));
}


static inline Operand GlobalObjectOperand() {
  return ContextOperand(esi, Context::GLOBAL_INDEX);
}


// Generates an Operand for saving parameters after PrepareCallApiFunction.
Operand ApiParameterOperand(int index);


#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) {                                               \
    byte* ia32_coverage_function =                                        \
        reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
    masm->pushfd();                                                       \
    masm->pushad();                                                       \
    masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
    masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
    masm->pop(eax);                                                       \
    masm->popad();                                                        \
    masm->popfd();                                                        \
  }                                                                       \
  masm->
#else
#define ACCESS_MASM(masm) masm->
#endif


} }  // namespace v8::internal

#endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_