summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/store-buffer.cc
blob: efdd0b47081c41ba58bcc5981d10d425cf71c60c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>

#include "src/v8.h"

#include "src/counters.h"
#include "src/heap/store-buffer-inl.h"

namespace v8 {
namespace internal {

StoreBuffer::StoreBuffer(Heap* heap)
    : heap_(heap),
      start_(NULL),
      limit_(NULL),
      old_start_(NULL),
      old_limit_(NULL),
      old_top_(NULL),
      old_reserved_limit_(NULL),
      old_buffer_is_sorted_(false),
      old_buffer_is_filtered_(false),
      during_gc_(false),
      store_buffer_rebuilding_enabled_(false),
      callback_(NULL),
      may_move_store_buffer_entries_(true),
      virtual_memory_(NULL),
      hash_set_1_(NULL),
      hash_set_2_(NULL),
      hash_sets_are_empty_(true) {}


void StoreBuffer::SetUp() {
  // Allocate 3x the buffer size, so that we can start the new store buffer
  // aligned to 2x the size.  This lets us use a bit test to detect the end of
  // the area.
  virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3);
  uintptr_t start_as_int =
      reinterpret_cast<uintptr_t>(virtual_memory_->address());
  start_ =
      reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
  limit_ = start_ + (kStoreBufferSize / kPointerSize);

  // Reserve space for the larger old buffer.
  old_virtual_memory_ =
      new base::VirtualMemory(kOldStoreBufferLength * kPointerSize);
  old_top_ = old_start_ =
      reinterpret_cast<Address*>(old_virtual_memory_->address());
  // Don't know the alignment requirements of the OS, but it is certainly not
  // less than 0xfff.
  CHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
  CHECK(kStoreBufferSize >= base::OS::CommitPageSize());
  // Initial size of the old buffer is as big as the buffer for new pointers.
  // This means even if we later fail to enlarge the old buffer due to OOM from
  // the OS, we will still be able to empty the new pointer buffer into the old
  // buffer.
  int initial_length = static_cast<int>(kStoreBufferSize / kPointerSize);
  CHECK(initial_length > 0);
  CHECK(initial_length <= kOldStoreBufferLength);
  old_limit_ = old_start_ + initial_length;
  old_reserved_limit_ = old_start_ + kOldStoreBufferLength;

  if (!old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_),
                                   (old_limit_ - old_start_) * kPointerSize,
                                   false)) {
    V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
  }

  DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
  DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
  Address* vm_limit = reinterpret_cast<Address*>(
      reinterpret_cast<char*>(virtual_memory_->address()) +
      virtual_memory_->size());
  DCHECK(start_ <= vm_limit);
  DCHECK(limit_ <= vm_limit);
  USE(vm_limit);
  DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
  DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
         0);

  if (!virtual_memory_->Commit(reinterpret_cast<Address>(start_),
                               kStoreBufferSize,
                               false)) {  // Not executable.
    V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
  }
  heap_->public_set_store_buffer_top(start_);

  hash_set_1_ = new uintptr_t[kHashSetLength];
  hash_set_2_ = new uintptr_t[kHashSetLength];
  hash_sets_are_empty_ = false;

  ClearFilteringHashSets();

  heap_->isolate()->set_store_buffer_hash_set_1_address(hash_set_1_);
  heap_->isolate()->set_store_buffer_hash_set_2_address(hash_set_2_);
}


void StoreBuffer::TearDown() {
  delete virtual_memory_;
  delete old_virtual_memory_;
  delete[] hash_set_1_;
  delete[] hash_set_2_;
  old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
  start_ = limit_ = NULL;
  heap_->public_set_store_buffer_top(start_);
}


void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
  isolate->heap()->store_buffer()->Compact();
  isolate->counters()->store_buffer_overflows()->Increment();
}


bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
  return old_limit_ - old_top_ >= space_needed;
}


void StoreBuffer::EnsureSpace(intptr_t space_needed) {
  while (old_limit_ - old_top_ < space_needed &&
         old_limit_ < old_reserved_limit_) {
    size_t grow = old_limit_ - old_start_;  // Double size.
    if (old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
                                    grow * kPointerSize, false)) {
      old_limit_ += grow;
    } else {
      break;
    }
  }

  if (SpaceAvailable(space_needed)) return;

  if (old_buffer_is_filtered_) return;
  DCHECK(may_move_store_buffer_entries_);
  Compact();

  old_buffer_is_filtered_ = true;
  bool page_has_scan_on_scavenge_flag = false;

  PointerChunkIterator it(heap_);
  MemoryChunk* chunk;
  while ((chunk = it.next()) != NULL) {
    if (chunk->scan_on_scavenge()) {
      page_has_scan_on_scavenge_flag = true;
      break;
    }
  }

  if (page_has_scan_on_scavenge_flag) {
    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
  }

  if (SpaceAvailable(space_needed)) return;

  // Sample 1 entry in 97 and filter out the pages where we estimate that more
  // than 1 in 8 pointers are to new space.
  static const int kSampleFinenesses = 5;
  static const struct Samples {
    int prime_sample_step;
    int threshold;
  } samples[kSampleFinenesses] = {
        {97, ((Page::kPageSize / kPointerSize) / 97) / 8},
        {23, ((Page::kPageSize / kPointerSize) / 23) / 16},
        {7, ((Page::kPageSize / kPointerSize) / 7) / 32},
        {3, ((Page::kPageSize / kPointerSize) / 3) / 256},
        {1, 0}};
  for (int i = 0; i < kSampleFinenesses; i++) {
    ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
    // As a last resort we mark all pages as being exempt from the store buffer.
    DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
    if (SpaceAvailable(space_needed)) return;
  }
  UNREACHABLE();
}


// Sample the store buffer to see if some pages are taking up a lot of space
// in the store buffer.
void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
  PointerChunkIterator it(heap_);
  MemoryChunk* chunk;
  while ((chunk = it.next()) != NULL) {
    chunk->set_store_buffer_counter(0);
  }
  bool created_new_scan_on_scavenge_pages = false;
  MemoryChunk* previous_chunk = NULL;
  for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
    Address addr = *p;
    MemoryChunk* containing_chunk = NULL;
    if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
      containing_chunk = previous_chunk;
    } else {
      containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
    }
    int old_counter = containing_chunk->store_buffer_counter();
    if (old_counter >= threshold) {
      containing_chunk->set_scan_on_scavenge(true);
      created_new_scan_on_scavenge_pages = true;
    }
    containing_chunk->set_store_buffer_counter(old_counter + 1);
    previous_chunk = containing_chunk;
  }
  if (created_new_scan_on_scavenge_pages) {
    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
    heap_->isolate()->CountUsage(
        v8::Isolate::UseCounterFeature::kStoreBufferOverflow);
  }
  old_buffer_is_filtered_ = true;
}


void StoreBuffer::Filter(int flag) {
  Address* new_top = old_start_;
  MemoryChunk* previous_chunk = NULL;
  for (Address* p = old_start_; p < old_top_; p++) {
    Address addr = *p;
    MemoryChunk* containing_chunk = NULL;
    if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
      containing_chunk = previous_chunk;
    } else {
      containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
      previous_chunk = containing_chunk;
    }
    if (!containing_chunk->IsFlagSet(flag)) {
      *new_top++ = addr;
    }
  }
  old_top_ = new_top;

  // Filtering hash sets are inconsistent with the store buffer after this
  // operation.
  ClearFilteringHashSets();
}


bool StoreBuffer::PrepareForIteration() {
  Compact();
  PointerChunkIterator it(heap_);
  MemoryChunk* chunk;
  bool page_has_scan_on_scavenge_flag = false;
  while ((chunk = it.next()) != NULL) {
    if (chunk->scan_on_scavenge()) {
      page_has_scan_on_scavenge_flag = true;
      break;
    }
  }

  if (page_has_scan_on_scavenge_flag) {
    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
  }

  // Filtering hash sets are inconsistent with the store buffer after
  // iteration.
  ClearFilteringHashSets();

  return page_has_scan_on_scavenge_flag;
}


void StoreBuffer::ClearFilteringHashSets() {
  if (!hash_sets_are_empty_) {
    memset(reinterpret_cast<void*>(hash_set_1_), 0,
           sizeof(uintptr_t) * kHashSetLength);
    memset(reinterpret_cast<void*>(hash_set_2_), 0,
           sizeof(uintptr_t) * kHashSetLength);
    hash_sets_are_empty_ = true;
  }
}


void StoreBuffer::GCPrologue() {
  ClearFilteringHashSets();
  during_gc_ = true;
}


#ifdef VERIFY_HEAP
void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
  LargeObjectIterator it(space);
  for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
    if (object->IsFixedArray()) {
      Address slot_address = object->address();
      Address end = object->address() + object->Size();

      while (slot_address < end) {
        HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
        // When we are not in GC the Heap::InNewSpace() predicate
        // checks that pointers which satisfy predicate point into
        // the active semispace.
        Object* object = *slot;
        heap_->InNewSpace(object);
        slot_address += kPointerSize;
      }
    }
  }
}
#endif


void StoreBuffer::Verify() {
#ifdef VERIFY_HEAP
  VerifyPointers(heap_->lo_space());
#endif
}


void StoreBuffer::GCEpilogue() {
  during_gc_ = false;
#ifdef VERIFY_HEAP
  if (FLAG_verify_heap) {
    Verify();
  }
#endif
}


void StoreBuffer::ProcessOldToNewSlot(Address slot_address,
                                      ObjectSlotCallback slot_callback) {
  Object** slot = reinterpret_cast<Object**>(slot_address);
  Object* object = *slot;

  // If the object is not in from space, it must be a duplicate store buffer
  // entry and the slot was already updated.
  if (heap_->InFromSpace(object)) {
    HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
    DCHECK(heap_object->IsHeapObject());
    slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
    object = *slot;
    // If the object was in from space before and is after executing the
    // callback in to space, the object is still live.
    // Unfortunately, we do not know about the slot. It could be in a
    // just freed free space object.
    if (heap_->InToSpace(object)) {
      EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
    }
  }
}


void StoreBuffer::FindPointersToNewSpaceInRegion(
    Address start, Address end, ObjectSlotCallback slot_callback) {
  for (Address slot_address = start; slot_address < end;
       slot_address += kPointerSize) {
    ProcessOldToNewSlot(slot_address, slot_callback);
  }
}


void StoreBuffer::IteratePointersInStoreBuffer(
    ObjectSlotCallback slot_callback) {
  Address* limit = old_top_;
  old_top_ = old_start_;
  {
    DontMoveStoreBufferEntriesScope scope(this);
    for (Address* current = old_start_; current < limit; current++) {
#ifdef DEBUG
      Address* saved_top = old_top_;
#endif
      ProcessOldToNewSlot(*current, slot_callback);
      DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top);
    }
  }
}


void StoreBuffer::ClearInvalidStoreBufferEntries() {
  Compact();
  Address* new_top = old_start_;
  for (Address* current = old_start_; current < old_top_; current++) {
    Address addr = *current;
    Object** slot = reinterpret_cast<Object**>(addr);
    Object* object = *slot;
    if (heap_->InNewSpace(object) && object->IsHeapObject()) {
      // If the target object is not black, the source slot must be part
      // of a non-black (dead) object.
      HeapObject* heap_object = HeapObject::cast(object);
      if (Marking::IsBlack(Marking::MarkBitFrom(heap_object)) &&
          heap_->mark_compact_collector()->IsSlotInLiveObject(addr)) {
        *new_top++ = addr;
      }
    }
  }
  old_top_ = new_top;
  ClearFilteringHashSets();

  // Don't scan on scavenge dead large objects.
  LargeObjectIterator it(heap_->lo_space());
  for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
    MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
    if (chunk->scan_on_scavenge() &&
        Marking::IsWhite(Marking::MarkBitFrom(object))) {
      chunk->set_scan_on_scavenge(false);
    }
  }
}


void StoreBuffer::VerifyValidStoreBufferEntries() {
  for (Address* current = old_start_; current < old_top_; current++) {
    Object** slot = reinterpret_cast<Object**>(*current);
    Object* object = *slot;
    CHECK(object->IsHeapObject());
    CHECK(heap_->InNewSpace(object));
    heap_->mark_compact_collector()->VerifyIsSlotInLiveObject(
        reinterpret_cast<Address>(slot), HeapObject::cast(object));
  }
}


void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
  // We do not sort or remove duplicated entries from the store buffer because
  // we expect that callback will rebuild the store buffer thus removing
  // all duplicates and pointers to old space.
  bool some_pages_to_scan = PrepareForIteration();

  // TODO(gc): we want to skip slots on evacuation candidates
  // but we can't simply figure that out from slot address
  // because slot can belong to a large object.
  IteratePointersInStoreBuffer(slot_callback);

  // We are done scanning all the pointers that were in the store buffer, but
  // there may be some pages marked scan_on_scavenge that have pointers to new
  // space that are not in the store buffer.  We must scan them now.  As we
  // scan, the surviving pointers to new space will be added to the store
  // buffer.  If there are still a lot of pointers to new space then we will
  // keep the scan_on_scavenge flag on the page and discard the pointers that
  // were added to the store buffer.  If there are not many pointers to new
  // space left on the page we will keep the pointers in the store buffer and
  // remove the flag from the page.
  if (some_pages_to_scan) {
    if (callback_ != NULL) {
      (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
    }
    PointerChunkIterator it(heap_);
    MemoryChunk* chunk;
    while ((chunk = it.next()) != NULL) {
      if (chunk->scan_on_scavenge()) {
        chunk->set_scan_on_scavenge(false);
        if (callback_ != NULL) {
          (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
        }
        if (chunk->owner() == heap_->lo_space()) {
          LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
          HeapObject* array = large_page->GetObject();
          DCHECK(array->IsFixedArray());
          Address start = array->address();
          Address end = start + array->Size();
          FindPointersToNewSpaceInRegion(start, end, slot_callback);
        } else {
          Page* page = reinterpret_cast<Page*>(chunk);
          PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
          if (owner == heap_->map_space()) {
            DCHECK(page->WasSwept());
            HeapObjectIterator iterator(page, NULL);
            for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
                 heap_object = iterator.Next()) {
              // We skip free space objects.
              if (!heap_object->IsFiller()) {
                DCHECK(heap_object->IsMap());
                FindPointersToNewSpaceInRegion(
                    heap_object->address() + Map::kPointerFieldsBeginOffset,
                    heap_object->address() + Map::kPointerFieldsEndOffset,
                    slot_callback);
              }
            }
          } else {
            if (!page->SweepingCompleted()) {
              heap_->mark_compact_collector()->SweepInParallel(page, owner);
              if (!page->SweepingCompleted()) {
                // We were not able to sweep that page, i.e., a concurrent
                // sweeper thread currently owns this page.
                // TODO(hpayer): This may introduce a huge pause here. We
                // just care about finish sweeping of the scan on scavenge page.
                heap_->mark_compact_collector()->EnsureSweepingCompleted();
              }
            }
            CHECK(page->owner() == heap_->old_space());
            HeapObjectIterator iterator(page, NULL);
            for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
                 heap_object = iterator.Next()) {
              // We iterate over objects that contain new space pointers only.
              Address obj_address = heap_object->address();
              const int start_offset = HeapObject::kHeaderSize;
              const int end_offset = heap_object->Size();

              switch (heap_object->ContentType()) {
                case HeapObjectContents::kTaggedValues: {
                  Address start_address = obj_address + start_offset;
                  Address end_address = obj_address + end_offset;
                  // Object has only tagged fields.
                  FindPointersToNewSpaceInRegion(start_address, end_address,
                                                 slot_callback);
                  break;
                }

                case HeapObjectContents::kMixedValues: {
                  if (heap_object->IsFixedTypedArrayBase()) {
                    FindPointersToNewSpaceInRegion(
                        obj_address + FixedTypedArrayBase::kBasePointerOffset,
                        obj_address + FixedTypedArrayBase::kHeaderSize,
                        slot_callback);
                  } else if (heap_object->IsJSArrayBuffer()) {
                    FindPointersToNewSpaceInRegion(
                        obj_address +
                            JSArrayBuffer::BodyDescriptor::kStartOffset,
                        obj_address + JSArrayBuffer::kByteLengthOffset +
                            kPointerSize,
                        slot_callback);
                    FindPointersToNewSpaceInRegion(
                        obj_address + JSArrayBuffer::kSize,
                        obj_address + JSArrayBuffer::kSizeWithInternalFields,
                        slot_callback);
                  } else if (FLAG_unbox_double_fields) {
                    LayoutDescriptorHelper helper(heap_object->map());
                    DCHECK(!helper.all_fields_tagged());
                    for (int offset = start_offset; offset < end_offset;) {
                      int end_of_region_offset;
                      if (helper.IsTagged(offset, end_offset,
                                          &end_of_region_offset)) {
                        FindPointersToNewSpaceInRegion(
                            obj_address + offset,
                            obj_address + end_of_region_offset, slot_callback);
                      }
                      offset = end_of_region_offset;
                    }
                  } else {
                    UNREACHABLE();
                  }
                  break;
                }

                case HeapObjectContents::kRawValues:
                  break;
              }
            }
          }
        }
      }
    }
    if (callback_ != NULL) {
      (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
    }
  }
}


void StoreBuffer::Compact() {
  CHECK(hash_set_1_ == heap_->isolate()->store_buffer_hash_set_1_address());
  CHECK(hash_set_2_ == heap_->isolate()->store_buffer_hash_set_2_address());

  Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());

  if (top == start_) return;

  // There's no check of the limit in the loop below so we check here for
  // the worst case (compaction doesn't eliminate any pointers).
  DCHECK(top <= limit_);
  heap_->public_set_store_buffer_top(start_);
  EnsureSpace(top - start_);
  DCHECK(may_move_store_buffer_entries_);
  // Goes through the addresses in the store buffer attempting to remove
  // duplicates.  In the interest of speed this is a lossy operation.  Some
  // duplicates will remain.  We have two hash sets with different hash
  // functions to reduce the number of unnecessary clashes.
  hash_sets_are_empty_ = false;  // Hash sets are in use.
  for (Address* current = start_; current < top; current++) {
    DCHECK(!heap_->code_space()->Contains(*current));
    uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
    // Shift out the last bits including any tags.
    int_addr >>= kPointerSizeLog2;
    // The upper part of an address is basically random because of ASLR and OS
    // non-determinism, so we use only the bits within a page for hashing to
    // make v8's behavior (more) deterministic.
    uintptr_t hash_addr =
        int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
    int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
                 (kHashSetLength - 1));
    if (hash_set_1_[hash1] == int_addr) continue;
    uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
    hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
    hash2 &= (kHashSetLength - 1);
    if (hash_set_2_[hash2] == int_addr) continue;
    if (hash_set_1_[hash1] == 0) {
      hash_set_1_[hash1] = int_addr;
    } else if (hash_set_2_[hash2] == 0) {
      hash_set_2_[hash2] = int_addr;
    } else {
      // Rather than slowing down we just throw away some entries.  This will
      // cause some duplicates to remain undetected.
      hash_set_1_[hash1] = int_addr;
      hash_set_2_[hash2] = 0;
    }
    old_buffer_is_sorted_ = false;
    old_buffer_is_filtered_ = false;
    *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
    DCHECK(old_top_ <= old_limit_);
  }
  heap_->isolate()->counters()->store_buffer_compactions()->Increment();
}
}  // namespace internal
}  // namespace v8