summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/spaces-inl.h
blob: 0fd69dacfebd7b93b269bd9b093b53e39bca4866 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_SPACES_INL_H_
#define V8_HEAP_SPACES_INL_H_

#include "src/heap/incremental-marking.h"
#include "src/heap/spaces.h"
#include "src/isolate.h"
#include "src/msan.h"
#include "src/profiler/heap-profiler.h"
#include "src/v8memory.h"

namespace v8 {
namespace internal {

template <class PAGE_TYPE>
PageIteratorImpl<PAGE_TYPE>& PageIteratorImpl<PAGE_TYPE>::operator++() {
  p_ = p_->next_page();
  return *this;
}

template <class PAGE_TYPE>
PageIteratorImpl<PAGE_TYPE> PageIteratorImpl<PAGE_TYPE>::operator++(int) {
  PageIteratorImpl<PAGE_TYPE> tmp(*this);
  operator++();
  return tmp;
}

NewSpacePageRange::NewSpacePageRange(Address start, Address limit)
    : range_(Page::FromAddress(start),
             Page::FromAllocationAreaAddress(limit)->next_page()) {
  SemiSpace::AssertValidRange(start, limit);
}

// -----------------------------------------------------------------------------
// SemiSpaceIterator

HeapObject* SemiSpaceIterator::Next() {
  while (current_ != limit_) {
    if (Page::IsAlignedToPageSize(current_)) {
      Page* page = Page::FromAllocationAreaAddress(current_);
      page = page->next_page();
      DCHECK(!page->is_anchor());
      current_ = page->area_start();
      if (current_ == limit_) return nullptr;
    }
    HeapObject* object = HeapObject::FromAddress(current_);
    current_ += object->Size();
    if (!object->IsFiller()) {
      return object;
    }
  }
  return nullptr;
}

// -----------------------------------------------------------------------------
// HeapObjectIterator

HeapObject* HeapObjectIterator::Next() {
  do {
    HeapObject* next_obj = FromCurrentPage();
    if (next_obj != nullptr) return next_obj;
  } while (AdvanceToNextPage());
  return nullptr;
}

HeapObject* HeapObjectIterator::FromCurrentPage() {
  while (cur_addr_ != cur_end_) {
    if (cur_addr_ == space_->top() && cur_addr_ != space_->limit()) {
      cur_addr_ = space_->limit();
      continue;
    }
    HeapObject* obj = HeapObject::FromAddress(cur_addr_);
    const int obj_size = obj->Size();
    cur_addr_ += obj_size;
    DCHECK_LE(cur_addr_, cur_end_);
    if (!obj->IsFiller()) {
      if (obj->IsCode()) {
        DCHECK_EQ(space_, space_->heap()->code_space());
        DCHECK_CODEOBJECT_SIZE(obj_size, space_);
      } else {
        DCHECK_OBJECT_SIZE(obj_size);
      }
      return obj;
    }
  }
  return nullptr;
}

// -----------------------------------------------------------------------------
// MemoryAllocator

#ifdef ENABLE_HEAP_PROTECTION

void MemoryAllocator::Protect(Address start, size_t size) {
  base::OS::Protect(start, size);
}


void MemoryAllocator::Unprotect(Address start, size_t size,
                                Executability executable) {
  base::OS::Unprotect(start, size, executable);
}


void MemoryAllocator::ProtectChunkFromPage(Page* page) {
  int id = GetChunkId(page);
  base::OS::Protect(chunks_[id].address(), chunks_[id].size());
}


void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
  int id = GetChunkId(page);
  base::OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
                      chunks_[id].owner()->executable() == EXECUTABLE);
}

#endif

// -----------------------------------------------------------------------------
// SemiSpace

bool SemiSpace::Contains(HeapObject* o) {
  return id_ == kToSpace
             ? MemoryChunk::FromAddress(o->address())->InToSpace()
             : MemoryChunk::FromAddress(o->address())->InFromSpace();
}

bool SemiSpace::Contains(Object* o) {
  return o->IsHeapObject() && Contains(HeapObject::cast(o));
}

bool SemiSpace::ContainsSlow(Address a) {
  for (Page* p : *this) {
    if (p == MemoryChunk::FromAddress(a)) return true;
  }
  return false;
}

// --------------------------------------------------------------------------
// NewSpace

bool NewSpace::Contains(HeapObject* o) {
  return MemoryChunk::FromAddress(o->address())->InNewSpace();
}

bool NewSpace::Contains(Object* o) {
  return o->IsHeapObject() && Contains(HeapObject::cast(o));
}

bool NewSpace::ContainsSlow(Address a) {
  return from_space_.ContainsSlow(a) || to_space_.ContainsSlow(a);
}

bool NewSpace::ToSpaceContainsSlow(Address a) {
  return to_space_.ContainsSlow(a);
}

bool NewSpace::FromSpaceContainsSlow(Address a) {
  return from_space_.ContainsSlow(a);
}

bool NewSpace::ToSpaceContains(Object* o) { return to_space_.Contains(o); }
bool NewSpace::FromSpaceContains(Object* o) { return from_space_.Contains(o); }

// --------------------------------------------------------------------------
// AllocationResult

AllocationSpace AllocationResult::RetrySpace() {
  DCHECK(IsRetry());
  return static_cast<AllocationSpace>(Smi::cast(object_)->value());
}

Page* Page::Initialize(Heap* heap, MemoryChunk* chunk, Executability executable,
                       SemiSpace* owner) {
  DCHECK_EQ(executable, Executability::NOT_EXECUTABLE);
  bool in_to_space = (owner->id() != kFromSpace);
  chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE
                             : MemoryChunk::IN_FROM_SPACE);
  DCHECK(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE
                                       : MemoryChunk::IN_TO_SPACE));
  Page* page = static_cast<Page*>(chunk);
  heap->incremental_marking()->SetNewSpacePageFlags(page);
  page->AllocateLocalTracker();
  return page;
}

// --------------------------------------------------------------------------
// PagedSpace

template <Page::InitializationMode mode>
Page* Page::Initialize(Heap* heap, MemoryChunk* chunk, Executability executable,
                       PagedSpace* owner) {
  Page* page = reinterpret_cast<Page*>(chunk);
  DCHECK(page->area_size() <= kAllocatableMemory);
  DCHECK(chunk->owner() == owner);

  owner->IncreaseCapacity(page->area_size());
  heap->incremental_marking()->SetOldSpacePageFlags(chunk);

  // Make sure that categories are initialized before freeing the area.
  page->InitializeFreeListCategories();
  // In the case we do not free the memory, we effectively account for the whole
  // page as allocated memory that cannot be used for further allocations.
  if (mode == kFreeMemory) {
    owner->Free(page->area_start(), page->area_size());
  }

  return page;
}

Page* Page::ConvertNewToOld(Page* old_page, PagedSpace* new_owner) {
  DCHECK(old_page->InNewSpace());
  old_page->set_owner(new_owner);
  old_page->SetFlags(0, ~0);
  new_owner->AccountCommitted(old_page->size());
  Page* new_page = Page::Initialize<kDoNotFreeMemory>(
      old_page->heap(), old_page, NOT_EXECUTABLE, new_owner);
  new_page->InsertAfter(new_owner->anchor()->prev_page());
  return new_page;
}

void Page::InitializeFreeListCategories() {
  for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
    categories_[i].Initialize(static_cast<FreeListCategoryType>(i));
  }
}

void MemoryChunk::IncrementLiveBytesFromGC(HeapObject* object, int by) {
  MemoryChunk::FromAddress(object->address())->IncrementLiveBytes(by);
}

void MemoryChunk::ResetLiveBytes() {
  if (FLAG_trace_live_bytes) {
    PrintIsolate(heap()->isolate(), "live-bytes: reset page=%p %d->0\n",
                 static_cast<void*>(this), live_byte_count_);
  }
  live_byte_count_ = 0;
}

void MemoryChunk::IncrementLiveBytes(int by) {
  if (FLAG_trace_live_bytes) {
    PrintIsolate(
        heap()->isolate(), "live-bytes: update page=%p delta=%d %d->%d\n",
        static_cast<void*>(this), by, live_byte_count_, live_byte_count_ + by);
  }
  live_byte_count_ += by;
  DCHECK_GE(live_byte_count_, 0);
  DCHECK_LE(static_cast<size_t>(live_byte_count_), size_);
}

void MemoryChunk::IncrementLiveBytesFromMutator(HeapObject* object, int by) {
  MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
  if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->SweepingDone()) {
    static_cast<PagedSpace*>(chunk->owner())->Allocate(by);
  }
  chunk->IncrementLiveBytes(by);
}

bool PagedSpace::Contains(Address addr) {
  Page* p = Page::FromAddress(addr);
  if (!Page::IsValid(p)) return false;
  return p->owner() == this;
}

bool PagedSpace::Contains(Object* o) {
  if (!o->IsHeapObject()) return false;
  Page* p = Page::FromAddress(HeapObject::cast(o)->address());
  if (!Page::IsValid(p)) return false;
  return p->owner() == this;
}

void PagedSpace::UnlinkFreeListCategories(Page* page) {
  DCHECK_EQ(this, page->owner());
  page->ForAllFreeListCategories([this](FreeListCategory* category) {
    DCHECK_EQ(free_list(), category->owner());
    free_list()->RemoveCategory(category);
  });
}

intptr_t PagedSpace::RelinkFreeListCategories(Page* page) {
  DCHECK_EQ(this, page->owner());
  intptr_t added = 0;
  page->ForAllFreeListCategories([&added](FreeListCategory* category) {
    added += category->available();
    category->Relink();
  });
  return added;
}

MemoryChunk* MemoryChunk::FromAnyPointerAddress(Heap* heap, Address addr) {
  MemoryChunk* chunk = MemoryChunk::FromAddress(addr);
  uintptr_t offset = addr - chunk->address();
  if (offset < MemoryChunk::kHeaderSize || !chunk->HasPageHeader()) {
    chunk = heap->lo_space()->FindPage(addr);
  }
  return chunk;
}

Page* Page::FromAnyPointerAddress(Heap* heap, Address addr) {
  return static_cast<Page*>(MemoryChunk::FromAnyPointerAddress(heap, addr));
}

void Page::MarkNeverAllocateForTesting() {
  DCHECK(this->owner()->identity() != NEW_SPACE);
  DCHECK(!IsFlagSet(NEVER_ALLOCATE_ON_PAGE));
  SetFlag(NEVER_ALLOCATE_ON_PAGE);
  reinterpret_cast<PagedSpace*>(owner())->free_list()->EvictFreeListItems(this);
}

void Page::MarkEvacuationCandidate() {
  DCHECK(!IsFlagSet(NEVER_EVACUATE));
  DCHECK_NULL(old_to_old_slots_);
  DCHECK_NULL(typed_old_to_old_slots_);
  SetFlag(EVACUATION_CANDIDATE);
  reinterpret_cast<PagedSpace*>(owner())->free_list()->EvictFreeListItems(this);
}

void Page::ClearEvacuationCandidate() {
  if (!IsFlagSet(COMPACTION_WAS_ABORTED)) {
    DCHECK_NULL(old_to_old_slots_);
    DCHECK_NULL(typed_old_to_old_slots_);
  }
  ClearFlag(EVACUATION_CANDIDATE);
  InitializeFreeListCategories();
}

MemoryChunkIterator::MemoryChunkIterator(Heap* heap)
    : heap_(heap),
      state_(kOldSpaceState),
      old_iterator_(heap->old_space()->begin()),
      code_iterator_(heap->code_space()->begin()),
      map_iterator_(heap->map_space()->begin()),
      lo_iterator_(heap->lo_space()->begin()) {}

MemoryChunk* MemoryChunkIterator::next() {
  switch (state_) {
    case kOldSpaceState: {
      if (old_iterator_ != heap_->old_space()->end()) return *(old_iterator_++);
      state_ = kMapState;
      // Fall through.
    }
    case kMapState: {
      if (map_iterator_ != heap_->map_space()->end()) return *(map_iterator_++);
      state_ = kCodeState;
      // Fall through.
    }
    case kCodeState: {
      if (code_iterator_ != heap_->code_space()->end())
        return *(code_iterator_++);
      state_ = kLargeObjectState;
      // Fall through.
    }
    case kLargeObjectState: {
      if (lo_iterator_ != heap_->lo_space()->end()) return *(lo_iterator_++);
      state_ = kFinishedState;
      // Fall through;
    }
    case kFinishedState:
      return nullptr;
    default:
      break;
  }
  UNREACHABLE();
  return nullptr;
}

Page* FreeListCategory::page() {
  return Page::FromAddress(reinterpret_cast<Address>(this));
}

FreeList* FreeListCategory::owner() {
  return reinterpret_cast<PagedSpace*>(
             Page::FromAddress(reinterpret_cast<Address>(this))->owner())
      ->free_list();
}

bool FreeListCategory::is_linked() {
  return prev_ != nullptr || next_ != nullptr || owner()->top(type_) == this;
}

// Try linear allocation in the page of alloc_info's allocation top.  Does
// not contain slow case logic (e.g. move to the next page or try free list
// allocation) so it can be used by all the allocation functions and for all
// the paged spaces.
HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
  Address current_top = allocation_info_.top();
  Address new_top = current_top + size_in_bytes;
  if (new_top > allocation_info_.limit()) return NULL;

  allocation_info_.set_top(new_top);
  return HeapObject::FromAddress(current_top);
}


AllocationResult LocalAllocationBuffer::AllocateRawAligned(
    int size_in_bytes, AllocationAlignment alignment) {
  Address current_top = allocation_info_.top();
  int filler_size = Heap::GetFillToAlign(current_top, alignment);

  Address new_top = current_top + filler_size + size_in_bytes;
  if (new_top > allocation_info_.limit()) return AllocationResult::Retry();

  allocation_info_.set_top(new_top);
  if (filler_size > 0) {
    return heap_->PrecedeWithFiller(HeapObject::FromAddress(current_top),
                                    filler_size);
  }

  return AllocationResult(HeapObject::FromAddress(current_top));
}


HeapObject* PagedSpace::AllocateLinearlyAligned(int* size_in_bytes,
                                                AllocationAlignment alignment) {
  Address current_top = allocation_info_.top();
  int filler_size = Heap::GetFillToAlign(current_top, alignment);

  Address new_top = current_top + filler_size + *size_in_bytes;
  if (new_top > allocation_info_.limit()) return NULL;

  allocation_info_.set_top(new_top);
  if (filler_size > 0) {
    *size_in_bytes += filler_size;
    return heap()->PrecedeWithFiller(HeapObject::FromAddress(current_top),
                                     filler_size);
  }

  return HeapObject::FromAddress(current_top);
}


// Raw allocation.
AllocationResult PagedSpace::AllocateRawUnaligned(
    int size_in_bytes, UpdateSkipList update_skip_list) {
  HeapObject* object = AllocateLinearly(size_in_bytes);

  if (object == NULL) {
    object = free_list_.Allocate(size_in_bytes);
    if (object == NULL) {
      object = SlowAllocateRaw(size_in_bytes);
    }
    if (object != NULL) {
      if (heap()->incremental_marking()->black_allocation()) {
        Marking::MarkBlack(ObjectMarking::MarkBitFrom(object));
        MemoryChunk::IncrementLiveBytesFromGC(object, size_in_bytes);
      }
    }
  }

  if (object != NULL) {
    if (update_skip_list == UPDATE_SKIP_LIST && identity() == CODE_SPACE) {
      SkipList::Update(object->address(), size_in_bytes);
    }
    MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);
    return object;
  }

  return AllocationResult::Retry(identity());
}


AllocationResult PagedSpace::AllocateRawUnalignedSynchronized(
    int size_in_bytes) {
  base::LockGuard<base::Mutex> lock_guard(&space_mutex_);
  return AllocateRawUnaligned(size_in_bytes);
}


// Raw allocation.
AllocationResult PagedSpace::AllocateRawAligned(int size_in_bytes,
                                                AllocationAlignment alignment) {
  DCHECK(identity() == OLD_SPACE);
  int allocation_size = size_in_bytes;
  HeapObject* object = AllocateLinearlyAligned(&allocation_size, alignment);

  if (object == NULL) {
    // We don't know exactly how much filler we need to align until space is
    // allocated, so assume the worst case.
    int filler_size = Heap::GetMaximumFillToAlign(alignment);
    allocation_size += filler_size;
    object = free_list_.Allocate(allocation_size);
    if (object == NULL) {
      object = SlowAllocateRaw(allocation_size);
    }
    if (object != NULL && filler_size != 0) {
      object = heap()->AlignWithFiller(object, size_in_bytes, allocation_size,
                                       alignment);
      // Filler objects are initialized, so mark only the aligned object memory
      // as uninitialized.
      allocation_size = size_in_bytes;
    }
  }

  if (object != NULL) {
    MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), allocation_size);
    return object;
  }

  return AllocationResult::Retry(identity());
}


AllocationResult PagedSpace::AllocateRaw(int size_in_bytes,
                                         AllocationAlignment alignment) {
#ifdef V8_HOST_ARCH_32_BIT
  AllocationResult result =
      alignment == kDoubleAligned
          ? AllocateRawAligned(size_in_bytes, kDoubleAligned)
          : AllocateRawUnaligned(size_in_bytes);
#else
  AllocationResult result = AllocateRawUnaligned(size_in_bytes);
#endif
  HeapObject* heap_obj = nullptr;
  if (!result.IsRetry() && result.To(&heap_obj)) {
    AllocationStep(heap_obj->address(), size_in_bytes);
  }
  return result;
}


// -----------------------------------------------------------------------------
// NewSpace


AllocationResult NewSpace::AllocateRawAligned(int size_in_bytes,
                                              AllocationAlignment alignment) {
  Address top = allocation_info_.top();
  int filler_size = Heap::GetFillToAlign(top, alignment);
  int aligned_size_in_bytes = size_in_bytes + filler_size;

  if (allocation_info_.limit() - top < aligned_size_in_bytes) {
    // See if we can create room.
    if (!EnsureAllocation(size_in_bytes, alignment)) {
      return AllocationResult::Retry();
    }

    top = allocation_info_.top();
    filler_size = Heap::GetFillToAlign(top, alignment);
    aligned_size_in_bytes = size_in_bytes + filler_size;
  }

  HeapObject* obj = HeapObject::FromAddress(top);
  allocation_info_.set_top(top + aligned_size_in_bytes);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  if (filler_size > 0) {
    obj = heap()->PrecedeWithFiller(obj, filler_size);
  }

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj->address(), size_in_bytes);

  return obj;
}


AllocationResult NewSpace::AllocateRawUnaligned(int size_in_bytes) {
  Address top = allocation_info_.top();
  if (allocation_info_.limit() < top + size_in_bytes) {
    // See if we can create room.
    if (!EnsureAllocation(size_in_bytes, kWordAligned)) {
      return AllocationResult::Retry();
    }

    top = allocation_info_.top();
  }

  HeapObject* obj = HeapObject::FromAddress(top);
  allocation_info_.set_top(top + size_in_bytes);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj->address(), size_in_bytes);

  return obj;
}


AllocationResult NewSpace::AllocateRaw(int size_in_bytes,
                                       AllocationAlignment alignment) {
#ifdef V8_HOST_ARCH_32_BIT
  return alignment == kDoubleAligned
             ? AllocateRawAligned(size_in_bytes, kDoubleAligned)
             : AllocateRawUnaligned(size_in_bytes);
#else
  return AllocateRawUnaligned(size_in_bytes);
#endif
}


MUST_USE_RESULT inline AllocationResult NewSpace::AllocateRawSynchronized(
    int size_in_bytes, AllocationAlignment alignment) {
  base::LockGuard<base::Mutex> guard(&mutex_);
  return AllocateRaw(size_in_bytes, alignment);
}

LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk,
                                 Executability executable, Space* owner) {
  if (executable && chunk->size() > LargePage::kMaxCodePageSize) {
    STATIC_ASSERT(LargePage::kMaxCodePageSize <= TypedSlotSet::kMaxOffset);
    FATAL("Code page is too large.");
  }
  heap->incremental_marking()->SetOldSpacePageFlags(chunk);
  return static_cast<LargePage*>(chunk);
}


intptr_t LargeObjectSpace::Available() {
  return ObjectSizeFor(heap()->memory_allocator()->Available());
}


LocalAllocationBuffer LocalAllocationBuffer::InvalidBuffer() {
  return LocalAllocationBuffer(nullptr, AllocationInfo(nullptr, nullptr));
}


LocalAllocationBuffer LocalAllocationBuffer::FromResult(Heap* heap,
                                                        AllocationResult result,
                                                        intptr_t size) {
  if (result.IsRetry()) return InvalidBuffer();
  HeapObject* obj = nullptr;
  bool ok = result.To(&obj);
  USE(ok);
  DCHECK(ok);
  Address top = HeapObject::cast(obj)->address();
  return LocalAllocationBuffer(heap, AllocationInfo(top, top + size));
}


bool LocalAllocationBuffer::TryMerge(LocalAllocationBuffer* other) {
  if (allocation_info_.top() == other->allocation_info_.limit()) {
    allocation_info_.set_top(other->allocation_info_.top());
    other->allocation_info_.Reset(nullptr, nullptr);
    return true;
  }
  return false;
}

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_SPACES_INL_H_