aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/spaces-inl.h
blob: cfa23255c41c10b09de336b5bce3198764bd1186 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_SPACES_INL_H_
#define V8_HEAP_SPACES_INL_H_

#include "src/heap/spaces.h"
#include "src/heap-profiler.h"
#include "src/isolate.h"
#include "src/msan.h"
#include "src/v8memory.h"

namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// Bitmap

void Bitmap::Clear(MemoryChunk* chunk) {
  Bitmap* bitmap = chunk->markbits();
  for (int i = 0; i < bitmap->CellsCount(); i++) bitmap->cells()[i] = 0;
  chunk->ResetLiveBytes();
}


// -----------------------------------------------------------------------------
// PageIterator


PageIterator::PageIterator(PagedSpace* space)
    : space_(space),
      prev_page_(&space->anchor_),
      next_page_(prev_page_->next_page()) {}


bool PageIterator::has_next() { return next_page_ != &space_->anchor_; }


Page* PageIterator::next() {
  DCHECK(has_next());
  prev_page_ = next_page_;
  next_page_ = next_page_->next_page();
  return prev_page_;
}


// -----------------------------------------------------------------------------
// NewSpacePageIterator


NewSpacePageIterator::NewSpacePageIterator(NewSpace* space)
    : prev_page_(NewSpacePage::FromAddress(space->ToSpaceStart())->prev_page()),
      next_page_(NewSpacePage::FromAddress(space->ToSpaceStart())),
      last_page_(NewSpacePage::FromLimit(space->ToSpaceEnd())) {}

NewSpacePageIterator::NewSpacePageIterator(SemiSpace* space)
    : prev_page_(space->anchor()),
      next_page_(prev_page_->next_page()),
      last_page_(prev_page_->prev_page()) {}

NewSpacePageIterator::NewSpacePageIterator(Address start, Address limit)
    : prev_page_(NewSpacePage::FromAddress(start)->prev_page()),
      next_page_(NewSpacePage::FromAddress(start)),
      last_page_(NewSpacePage::FromLimit(limit)) {
  SemiSpace::AssertValidRange(start, limit);
}


bool NewSpacePageIterator::has_next() { return prev_page_ != last_page_; }


NewSpacePage* NewSpacePageIterator::next() {
  DCHECK(has_next());
  prev_page_ = next_page_;
  next_page_ = next_page_->next_page();
  return prev_page_;
}


// -----------------------------------------------------------------------------
// HeapObjectIterator
HeapObject* HeapObjectIterator::FromCurrentPage() {
  while (cur_addr_ != cur_end_) {
    if (cur_addr_ == space_->top() && cur_addr_ != space_->limit()) {
      cur_addr_ = space_->limit();
      continue;
    }
    HeapObject* obj = HeapObject::FromAddress(cur_addr_);
    int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
    cur_addr_ += obj_size;
    DCHECK(cur_addr_ <= cur_end_);
    // TODO(hpayer): Remove the debugging code.
    if (cur_addr_ > cur_end_) {
      space_->heap()->isolate()->PushStackTraceAndDie(0xaaaaaaaa, obj, NULL,
                                                      obj_size);
    }

    if (!obj->IsFiller()) {
      DCHECK_OBJECT_SIZE(obj_size);
      return obj;
    }
  }
  return NULL;
}


// -----------------------------------------------------------------------------
// MemoryAllocator

#ifdef ENABLE_HEAP_PROTECTION

void MemoryAllocator::Protect(Address start, size_t size) {
  base::OS::Protect(start, size);
}


void MemoryAllocator::Unprotect(Address start, size_t size,
                                Executability executable) {
  base::OS::Unprotect(start, size, executable);
}


void MemoryAllocator::ProtectChunkFromPage(Page* page) {
  int id = GetChunkId(page);
  base::OS::Protect(chunks_[id].address(), chunks_[id].size());
}


void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
  int id = GetChunkId(page);
  base::OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
                      chunks_[id].owner()->executable() == EXECUTABLE);
}

#endif


// --------------------------------------------------------------------------
// PagedSpace
Page* Page::Initialize(Heap* heap, MemoryChunk* chunk, Executability executable,
                       PagedSpace* owner) {
  Page* page = reinterpret_cast<Page*>(chunk);
  DCHECK(page->area_size() <= kMaxRegularHeapObjectSize);
  DCHECK(chunk->owner() == owner);
  owner->IncreaseCapacity(page->area_size());
  owner->Free(page->area_start(), page->area_size());

  heap->incremental_marking()->SetOldSpacePageFlags(chunk);

  return page;
}


bool PagedSpace::Contains(Address addr) {
  Page* p = Page::FromAddress(addr);
  if (!p->is_valid()) return false;
  return p->owner() == this;
}


void MemoryChunk::set_scan_on_scavenge(bool scan) {
  if (scan) {
    if (!scan_on_scavenge()) heap_->increment_scan_on_scavenge_pages();
    SetFlag(SCAN_ON_SCAVENGE);
  } else {
    if (scan_on_scavenge()) heap_->decrement_scan_on_scavenge_pages();
    ClearFlag(SCAN_ON_SCAVENGE);
  }
  heap_->incremental_marking()->SetOldSpacePageFlags(this);
}


MemoryChunk* MemoryChunk::FromAnyPointerAddress(Heap* heap, Address addr) {
  MemoryChunk* maybe = reinterpret_cast<MemoryChunk*>(
      OffsetFrom(addr) & ~Page::kPageAlignmentMask);
  if (maybe->owner() != NULL) return maybe;
  LargeObjectIterator iterator(heap->lo_space());
  for (HeapObject* o = iterator.Next(); o != NULL; o = iterator.Next()) {
    // Fixed arrays are the only pointer-containing objects in large object
    // space.
    if (o->IsFixedArray()) {
      MemoryChunk* chunk = MemoryChunk::FromAddress(o->address());
      if (chunk->Contains(addr)) {
        return chunk;
      }
    }
  }
  UNREACHABLE();
  return NULL;
}


void MemoryChunk::UpdateHighWaterMark(Address mark) {
  if (mark == NULL) return;
  // Need to subtract one from the mark because when a chunk is full the
  // top points to the next address after the chunk, which effectively belongs
  // to another chunk. See the comment to Page::FromAllocationTop.
  MemoryChunk* chunk = MemoryChunk::FromAddress(mark - 1);
  int new_mark = static_cast<int>(mark - chunk->address());
  if (new_mark > chunk->high_water_mark_) {
    chunk->high_water_mark_ = new_mark;
  }
}


PointerChunkIterator::PointerChunkIterator(Heap* heap)
    : state_(kOldPointerState),
      old_pointer_iterator_(heap->old_pointer_space()),
      map_iterator_(heap->map_space()),
      lo_iterator_(heap->lo_space()) {}


Page* Page::next_page() {
  DCHECK(next_chunk()->owner() == owner());
  return static_cast<Page*>(next_chunk());
}


Page* Page::prev_page() {
  DCHECK(prev_chunk()->owner() == owner());
  return static_cast<Page*>(prev_chunk());
}


void Page::set_next_page(Page* page) {
  DCHECK(page->owner() == owner());
  set_next_chunk(page);
}


void Page::set_prev_page(Page* page) {
  DCHECK(page->owner() == owner());
  set_prev_chunk(page);
}


// Try linear allocation in the page of alloc_info's allocation top.  Does
// not contain slow case logic (e.g. move to the next page or try free list
// allocation) so it can be used by all the allocation functions and for all
// the paged spaces.
HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
  Address current_top = allocation_info_.top();
  Address new_top = current_top + size_in_bytes;
  if (new_top > allocation_info_.limit()) return NULL;

  allocation_info_.set_top(new_top);
  return HeapObject::FromAddress(current_top);
}


// Raw allocation.
AllocationResult PagedSpace::AllocateRaw(int size_in_bytes) {
  HeapObject* object = AllocateLinearly(size_in_bytes);

  if (object == NULL) {
    object = free_list_.Allocate(size_in_bytes);
    if (object == NULL) {
      object = SlowAllocateRaw(size_in_bytes);
    }
  }

  if (object != NULL) {
    if (identity() == CODE_SPACE) {
      SkipList::Update(object->address(), size_in_bytes);
    }
    MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);
    return object;
  }

  return AllocationResult::Retry(identity());
}


// -----------------------------------------------------------------------------
// NewSpace


AllocationResult NewSpace::AllocateRaw(int size_in_bytes) {
  Address old_top = allocation_info_.top();

  if (allocation_info_.limit() - old_top < size_in_bytes) {
    return SlowAllocateRaw(size_in_bytes);
  }

  HeapObject* obj = HeapObject::FromAddress(old_top);
  allocation_info_.set_top(allocation_info_.top() + size_in_bytes);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  // The slow path above ultimately goes through AllocateRaw, so this suffices.
  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj->address(), size_in_bytes);

  return obj;
}


LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk) {
  heap->incremental_marking()->SetOldSpacePageFlags(chunk);
  return static_cast<LargePage*>(chunk);
}


intptr_t LargeObjectSpace::Available() {
  return ObjectSizeFor(heap()->isolate()->memory_allocator()->Available());
}

}
}  // namespace v8::internal

#endif  // V8_HEAP_SPACES_INL_H_