summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/spaces-inl.h
blob: 9e86905d00aa1f4843c077f41ca2b817b56283c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_SPACES_INL_H_
#define V8_HEAP_SPACES_INL_H_

#include "src/base/v8-fallthrough.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/spaces.h"
#include "src/msan.h"
#include "src/objects/code-inl.h"

namespace v8 {
namespace internal {

template <class PAGE_TYPE>
PageIteratorImpl<PAGE_TYPE>& PageIteratorImpl<PAGE_TYPE>::operator++() {
  p_ = p_->next_page();
  return *this;
}

template <class PAGE_TYPE>
PageIteratorImpl<PAGE_TYPE> PageIteratorImpl<PAGE_TYPE>::operator++(int) {
  PageIteratorImpl<PAGE_TYPE> tmp(*this);
  operator++();
  return tmp;
}

PageRange::PageRange(Address start, Address limit)
    : begin_(Page::FromAddress(start)),
      end_(Page::FromAllocationAreaAddress(limit)->next_page()) {
#ifdef DEBUG
  if (begin_->InNewSpace()) {
    SemiSpace::AssertValidRange(start, limit);
  }
#endif  // DEBUG
}

// -----------------------------------------------------------------------------
// SemiSpaceIterator

HeapObject* SemiSpaceIterator::Next() {
  while (current_ != limit_) {
    if (Page::IsAlignedToPageSize(current_)) {
      Page* page = Page::FromAllocationAreaAddress(current_);
      page = page->next_page();
      DCHECK(page);
      current_ = page->area_start();
      if (current_ == limit_) return nullptr;
    }
    HeapObject* object = HeapObject::FromAddress(current_);
    current_ += object->Size();
    if (!object->IsFiller()) {
      return object;
    }
  }
  return nullptr;
}

// -----------------------------------------------------------------------------
// HeapObjectIterator

HeapObject* HeapObjectIterator::Next() {
  do {
    HeapObject* next_obj = FromCurrentPage();
    if (next_obj != nullptr) return next_obj;
  } while (AdvanceToNextPage());
  return nullptr;
}

HeapObject* HeapObjectIterator::FromCurrentPage() {
  while (cur_addr_ != cur_end_) {
    if (cur_addr_ == space_->top() && cur_addr_ != space_->limit()) {
      cur_addr_ = space_->limit();
      continue;
    }
    HeapObject* obj = HeapObject::FromAddress(cur_addr_);
    const int obj_size = obj->Size();
    cur_addr_ += obj_size;
    DCHECK_LE(cur_addr_, cur_end_);
    if (!obj->IsFiller()) {
      if (obj->IsCode()) {
        DCHECK_EQ(space_, space_->heap()->code_space());
        DCHECK_CODEOBJECT_SIZE(obj_size, space_);
      } else {
        DCHECK_OBJECT_SIZE(obj_size);
      }
      return obj;
    }
  }
  return nullptr;
}

// -----------------------------------------------------------------------------
// SemiSpace

bool SemiSpace::Contains(HeapObject* o) {
  return id_ == kToSpace
             ? MemoryChunk::FromAddress(o->address())->InToSpace()
             : MemoryChunk::FromAddress(o->address())->InFromSpace();
}

bool SemiSpace::Contains(Object* o) {
  return o->IsHeapObject() && Contains(HeapObject::cast(o));
}

bool SemiSpace::ContainsSlow(Address a) {
  for (Page* p : *this) {
    if (p == MemoryChunk::FromAddress(a)) return true;
  }
  return false;
}

// --------------------------------------------------------------------------
// NewSpace

bool NewSpace::Contains(HeapObject* o) {
  return MemoryChunk::FromAddress(o->address())->InNewSpace();
}

bool NewSpace::Contains(Object* o) {
  return o->IsHeapObject() && Contains(HeapObject::cast(o));
}

bool NewSpace::ContainsSlow(Address a) {
  return from_space_.ContainsSlow(a) || to_space_.ContainsSlow(a);
}

bool NewSpace::ToSpaceContainsSlow(Address a) {
  return to_space_.ContainsSlow(a);
}

bool NewSpace::FromSpaceContainsSlow(Address a) {
  return from_space_.ContainsSlow(a);
}

bool NewSpace::ToSpaceContains(Object* o) { return to_space_.Contains(o); }
bool NewSpace::FromSpaceContains(Object* o) { return from_space_.Contains(o); }

bool PagedSpace::Contains(Address addr) {
  if (heap()->lo_space()->FindPage(addr)) return false;
  return MemoryChunk::FromAnyPointerAddress(heap(), addr)->owner() == this;
}

bool PagedSpace::Contains(Object* o) {
  if (!o->IsHeapObject()) return false;
  return Page::FromAddress(HeapObject::cast(o)->address())->owner() == this;
}

void PagedSpace::UnlinkFreeListCategories(Page* page) {
  DCHECK_EQ(this, page->owner());
  page->ForAllFreeListCategories([this](FreeListCategory* category) {
    DCHECK_EQ(free_list(), category->owner());
    category->set_free_list(nullptr);
    free_list()->RemoveCategory(category);
  });
}

size_t PagedSpace::RelinkFreeListCategories(Page* page) {
  DCHECK_EQ(this, page->owner());
  size_t added = 0;
  page->ForAllFreeListCategories([this, &added](FreeListCategory* category) {
    category->set_free_list(&free_list_);
    added += category->available();
    category->Relink();
  });
  DCHECK_EQ(page->AvailableInFreeList(),
            page->AvailableInFreeListFromAllocatedBytes());
  return added;
}

bool PagedSpace::TryFreeLast(HeapObject* object, int object_size) {
  if (allocation_info_.top() != kNullAddress) {
    const Address object_address = object->address();
    if ((allocation_info_.top() - object_size) == object_address) {
      allocation_info_.set_top(object_address);
      return true;
    }
  }
  return false;
}

MemoryChunk* MemoryChunk::FromAnyPointerAddress(Heap* heap, Address addr) {
  MemoryChunk* chunk = heap->lo_space()->FindPage(addr);
  if (chunk == nullptr) {
    chunk = MemoryChunk::FromAddress(addr);
  }
  return chunk;
}

void Page::MarkNeverAllocateForTesting() {
  DCHECK(this->owner()->identity() != NEW_SPACE);
  DCHECK(!IsFlagSet(NEVER_ALLOCATE_ON_PAGE));
  SetFlag(NEVER_ALLOCATE_ON_PAGE);
  SetFlag(NEVER_EVACUATE);
  reinterpret_cast<PagedSpace*>(owner())->free_list()->EvictFreeListItems(this);
}

void Page::MarkEvacuationCandidate() {
  DCHECK(!IsFlagSet(NEVER_EVACUATE));
  DCHECK_NULL(slot_set<OLD_TO_OLD>());
  DCHECK_NULL(typed_slot_set<OLD_TO_OLD>());
  SetFlag(EVACUATION_CANDIDATE);
  reinterpret_cast<PagedSpace*>(owner())->free_list()->EvictFreeListItems(this);
}

void Page::ClearEvacuationCandidate() {
  if (!IsFlagSet(COMPACTION_WAS_ABORTED)) {
    DCHECK_NULL(slot_set<OLD_TO_OLD>());
    DCHECK_NULL(typed_slot_set<OLD_TO_OLD>());
  }
  ClearFlag(EVACUATION_CANDIDATE);
  InitializeFreeListCategories();
}

MemoryChunkIterator::MemoryChunkIterator(Heap* heap)
    : heap_(heap),
      state_(kOldSpaceState),
      old_iterator_(heap->old_space()->begin()),
      code_iterator_(heap->code_space()->begin()),
      map_iterator_(heap->map_space()->begin()),
      lo_iterator_(heap->lo_space()->begin()) {}

MemoryChunk* MemoryChunkIterator::next() {
  switch (state_) {
    case kOldSpaceState: {
      if (old_iterator_ != heap_->old_space()->end()) return *(old_iterator_++);
      state_ = kMapState;
      V8_FALLTHROUGH;
    }
    case kMapState: {
      if (map_iterator_ != heap_->map_space()->end()) return *(map_iterator_++);
      state_ = kCodeState;
      V8_FALLTHROUGH;
    }
    case kCodeState: {
      if (code_iterator_ != heap_->code_space()->end())
        return *(code_iterator_++);
      state_ = kLargeObjectState;
      V8_FALLTHROUGH;
    }
    case kLargeObjectState: {
      if (lo_iterator_ != heap_->lo_space()->end()) return *(lo_iterator_++);
      state_ = kFinishedState;
      V8_FALLTHROUGH;
    }
    case kFinishedState:
      return nullptr;
    default:
      break;
  }
  UNREACHABLE();
}

Page* FreeList::GetPageForCategoryType(FreeListCategoryType type) {
  return top(type) ? top(type)->page() : nullptr;
}

FreeList* FreeListCategory::owner() { return free_list_; }

bool FreeListCategory::is_linked() {
  return prev_ != nullptr || next_ != nullptr;
}

AllocationResult LocalAllocationBuffer::AllocateRawAligned(
    int size_in_bytes, AllocationAlignment alignment) {
  Address current_top = allocation_info_.top();
  int filler_size = Heap::GetFillToAlign(current_top, alignment);

  Address new_top = current_top + filler_size + size_in_bytes;
  if (new_top > allocation_info_.limit()) return AllocationResult::Retry();

  allocation_info_.set_top(new_top);
  if (filler_size > 0) {
    return heap_->PrecedeWithFiller(HeapObject::FromAddress(current_top),
                                    filler_size);
  }

  return AllocationResult(HeapObject::FromAddress(current_top));
}

bool PagedSpace::EnsureLinearAllocationArea(int size_in_bytes) {
  if (allocation_info_.top() + size_in_bytes <= allocation_info_.limit()) {
    return true;
  }
  return SlowRefillLinearAllocationArea(size_in_bytes);
}

HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
  Address current_top = allocation_info_.top();
  Address new_top = current_top + size_in_bytes;
  DCHECK_LE(new_top, allocation_info_.limit());
  allocation_info_.set_top(new_top);
  return HeapObject::FromAddress(current_top);
}

HeapObject* PagedSpace::TryAllocateLinearlyAligned(
    int* size_in_bytes, AllocationAlignment alignment) {
  Address current_top = allocation_info_.top();
  int filler_size = Heap::GetFillToAlign(current_top, alignment);

  Address new_top = current_top + filler_size + *size_in_bytes;
  if (new_top > allocation_info_.limit()) return nullptr;

  allocation_info_.set_top(new_top);
  if (filler_size > 0) {
    *size_in_bytes += filler_size;
    return heap()->PrecedeWithFiller(HeapObject::FromAddress(current_top),
                                     filler_size);
  }

  return HeapObject::FromAddress(current_top);
}

AllocationResult PagedSpace::AllocateRawUnaligned(
    int size_in_bytes, UpdateSkipList update_skip_list) {
  DCHECK_IMPLIES(identity() == RO_SPACE, heap()->CanAllocateInReadOnlySpace());
  if (!EnsureLinearAllocationArea(size_in_bytes)) {
    return AllocationResult::Retry(identity());
  }
  HeapObject* object = AllocateLinearly(size_in_bytes);
  DCHECK_NOT_NULL(object);
  if (update_skip_list == UPDATE_SKIP_LIST && identity() == CODE_SPACE) {
    SkipList::Update(object->address(), size_in_bytes);
  }
  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);
  return object;
}


AllocationResult PagedSpace::AllocateRawAligned(int size_in_bytes,
                                                AllocationAlignment alignment) {
  DCHECK(identity() == OLD_SPACE || identity() == RO_SPACE);
  DCHECK_IMPLIES(identity() == RO_SPACE, heap()->CanAllocateInReadOnlySpace());
  int allocation_size = size_in_bytes;
  HeapObject* object = TryAllocateLinearlyAligned(&allocation_size, alignment);
  if (object == nullptr) {
    // We don't know exactly how much filler we need to align until space is
    // allocated, so assume the worst case.
    int filler_size = Heap::GetMaximumFillToAlign(alignment);
    allocation_size += filler_size;
    if (!EnsureLinearAllocationArea(allocation_size)) {
      return AllocationResult::Retry(identity());
    }
    allocation_size = size_in_bytes;
    object = TryAllocateLinearlyAligned(&allocation_size, alignment);
    DCHECK_NOT_NULL(object);
  }
  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);
  return object;
}


AllocationResult PagedSpace::AllocateRaw(int size_in_bytes,
                                         AllocationAlignment alignment) {
  if (top_on_previous_step_ && top() < top_on_previous_step_ &&
      SupportsInlineAllocation()) {
    // Generated code decreased the top() pointer to do folded allocations.
    // The top_on_previous_step_ can be one byte beyond the current page.
    DCHECK_NE(top(), kNullAddress);
    DCHECK_EQ(Page::FromAllocationAreaAddress(top()),
              Page::FromAllocationAreaAddress(top_on_previous_step_ - 1));
    top_on_previous_step_ = top();
  }
  size_t bytes_since_last =
      top_on_previous_step_ ? top() - top_on_previous_step_ : 0;

  DCHECK_IMPLIES(!SupportsInlineAllocation(), bytes_since_last == 0);
#ifdef V8_HOST_ARCH_32_BIT
  AllocationResult result =
      alignment == kDoubleAligned
          ? AllocateRawAligned(size_in_bytes, kDoubleAligned)
          : AllocateRawUnaligned(size_in_bytes);
#else
  AllocationResult result = AllocateRawUnaligned(size_in_bytes);
#endif
  HeapObject* heap_obj = nullptr;
  if (!result.IsRetry() && result.To(&heap_obj) && !is_local()) {
    DCHECK_IMPLIES(
        heap()->incremental_marking()->black_allocation(),
        heap()->incremental_marking()->marking_state()->IsBlack(heap_obj));
    AllocationStep(static_cast<int>(size_in_bytes + bytes_since_last),
                   heap_obj->address(), size_in_bytes);
    StartNextInlineAllocationStep();
  }
  return result;
}


// -----------------------------------------------------------------------------
// NewSpace


AllocationResult NewSpace::AllocateRawAligned(int size_in_bytes,
                                              AllocationAlignment alignment) {
  Address top = allocation_info_.top();
  int filler_size = Heap::GetFillToAlign(top, alignment);
  int aligned_size_in_bytes = size_in_bytes + filler_size;

  if (allocation_info_.limit() - top <
      static_cast<uintptr_t>(aligned_size_in_bytes)) {
    // See if we can create room.
    if (!EnsureAllocation(size_in_bytes, alignment)) {
      return AllocationResult::Retry();
    }

    top = allocation_info_.top();
    filler_size = Heap::GetFillToAlign(top, alignment);
    aligned_size_in_bytes = size_in_bytes + filler_size;
  }

  HeapObject* obj = HeapObject::FromAddress(top);
  allocation_info_.set_top(top + aligned_size_in_bytes);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  if (filler_size > 0) {
    obj = heap()->PrecedeWithFiller(obj, filler_size);
  }

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj->address(), size_in_bytes);

  return obj;
}


AllocationResult NewSpace::AllocateRawUnaligned(int size_in_bytes) {
  Address top = allocation_info_.top();
  if (allocation_info_.limit() < top + size_in_bytes) {
    // See if we can create room.
    if (!EnsureAllocation(size_in_bytes, kWordAligned)) {
      return AllocationResult::Retry();
    }

    top = allocation_info_.top();
  }

  HeapObject* obj = HeapObject::FromAddress(top);
  allocation_info_.set_top(top + size_in_bytes);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj->address(), size_in_bytes);

  return obj;
}


AllocationResult NewSpace::AllocateRaw(int size_in_bytes,
                                       AllocationAlignment alignment) {
  if (top() < top_on_previous_step_) {
    // Generated code decreased the top() pointer to do folded allocations
    DCHECK_EQ(Page::FromAllocationAreaAddress(top()),
              Page::FromAllocationAreaAddress(top_on_previous_step_));
    top_on_previous_step_ = top();
  }
#ifdef V8_HOST_ARCH_32_BIT
  return alignment == kDoubleAligned
             ? AllocateRawAligned(size_in_bytes, kDoubleAligned)
             : AllocateRawUnaligned(size_in_bytes);
#else
  return AllocateRawUnaligned(size_in_bytes);
#endif
}

V8_WARN_UNUSED_RESULT inline AllocationResult NewSpace::AllocateRawSynchronized(
    int size_in_bytes, AllocationAlignment alignment) {
  base::LockGuard<base::Mutex> guard(&mutex_);
  return AllocateRaw(size_in_bytes, alignment);
}

LocalAllocationBuffer LocalAllocationBuffer::FromResult(Heap* heap,
                                                        AllocationResult result,
                                                        intptr_t size) {
  if (result.IsRetry()) return InvalidBuffer();
  HeapObject* obj = nullptr;
  bool ok = result.To(&obj);
  USE(ok);
  DCHECK(ok);
  Address top = HeapObject::cast(obj)->address();
  return LocalAllocationBuffer(heap, LinearAllocationArea(top, top + size));
}


bool LocalAllocationBuffer::TryMerge(LocalAllocationBuffer* other) {
  if (allocation_info_.top() == other->allocation_info_.limit()) {
    allocation_info_.set_top(other->allocation_info_.top());
    other->allocation_info_.Reset(kNullAddress, kNullAddress);
    return true;
  }
  return false;
}

bool LocalAllocationBuffer::TryFreeLast(HeapObject* object, int object_size) {
  if (IsValid()) {
    const Address object_address = object->address();
    if ((allocation_info_.top() - object_size) == object_address) {
      allocation_info_.set_top(object_address);
      return true;
    }
  }
  return false;
}

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_SPACES_INL_H_