summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/scavenger-inl.h
blob: 4b07f16d1192e3b5d68f24bc117ce962dc5faee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_SCAVENGER_INL_H_
#define V8_HEAP_SCAVENGER_INL_H_

#include "src/heap/scavenger.h"
#include "src/objects-inl.h"
#include "src/objects/map.h"

namespace v8 {
namespace internal {

// White list for objects that for sure only contain data.
bool Scavenger::ContainsOnlyData(VisitorId visitor_id) {
  switch (visitor_id) {
    case kVisitSeqOneByteString:
      return true;
    case kVisitSeqTwoByteString:
      return true;
    case kVisitByteArray:
      return true;
    case kVisitFixedDoubleArray:
      return true;
    case kVisitDataObject:
      return true;
    default:
      break;
  }
  return false;
}

void Scavenger::PageMemoryFence(MaybeObject* object) {
#ifdef THREAD_SANITIZER
  // Perform a dummy acquire load to tell TSAN that there is no data race
  // with  page initialization.
  HeapObject* heap_object;
  if (object->ToStrongOrWeakHeapObject(&heap_object)) {
    MemoryChunk* chunk = MemoryChunk::FromAddress(heap_object->address());
    CHECK_NOT_NULL(chunk->synchronized_heap());
  }
#endif
}

bool Scavenger::MigrateObject(Map* map, HeapObject* source, HeapObject* target,
                              int size) {
  // Copy the content of source to target.
  target->set_map_word(MapWord::FromMap(map));
  heap()->CopyBlock(target->address() + kPointerSize,
                    source->address() + kPointerSize, size - kPointerSize);

  HeapObject* old = base::AsAtomicPointer::Release_CompareAndSwap(
      reinterpret_cast<HeapObject**>(source->address()), map,
      MapWord::FromForwardingAddress(target).ToMap());
  if (old != map) {
    // Other task migrated the object.
    return false;
  }

  if (V8_UNLIKELY(is_logging_)) {
    heap()->OnMoveEvent(target, source, size);
  }

  if (is_incremental_marking_) {
    heap()->incremental_marking()->TransferColor(source, target);
  }
  heap()->UpdateAllocationSite(map, source, &local_pretenuring_feedback_);
  return true;
}

bool Scavenger::SemiSpaceCopyObject(Map* map, HeapObjectReference** slot,
                                    HeapObject* object, int object_size) {
  DCHECK(heap()->AllowedToBeMigrated(object, NEW_SPACE));
  AllocationAlignment alignment = HeapObject::RequiredAlignment(map);
  AllocationResult allocation =
      allocator_.Allocate(NEW_SPACE, object_size, alignment);

  HeapObject* target = nullptr;
  if (allocation.To(&target)) {
    DCHECK(heap()->incremental_marking()->non_atomic_marking_state()->IsWhite(
        target));
    const bool self_success = MigrateObject(map, object, target, object_size);
    if (!self_success) {
      allocator_.FreeLast(NEW_SPACE, target, object_size);
      MapWord map_word = object->map_word();
      HeapObjectReference::Update(slot, map_word.ToForwardingAddress());
      return true;
    }
    HeapObjectReference::Update(slot, target);

    copied_list_.Push(ObjectAndSize(target, object_size));
    copied_size_ += object_size;
    return true;
  }
  return false;
}

bool Scavenger::PromoteObject(Map* map, HeapObjectReference** slot,
                              HeapObject* object, int object_size) {
  AllocationAlignment alignment = HeapObject::RequiredAlignment(map);
  AllocationResult allocation =
      allocator_.Allocate(OLD_SPACE, object_size, alignment);

  HeapObject* target = nullptr;
  if (allocation.To(&target)) {
    DCHECK(heap()->incremental_marking()->non_atomic_marking_state()->IsWhite(
        target));
    const bool self_success = MigrateObject(map, object, target, object_size);
    if (!self_success) {
      allocator_.FreeLast(OLD_SPACE, target, object_size);
      MapWord map_word = object->map_word();
      HeapObjectReference::Update(slot, map_word.ToForwardingAddress());
      return true;
    }
    HeapObjectReference::Update(slot, target);
    if (!ContainsOnlyData(map->visitor_id())) {
      promotion_list_.Push(ObjectAndSize(target, object_size));
    }
    promoted_size_ += object_size;
    return true;
  }
  return false;
}

void Scavenger::EvacuateObjectDefault(Map* map, HeapObjectReference** slot,
                                      HeapObject* object, int object_size) {
  SLOW_DCHECK(object_size <= Page::kAllocatableMemory);
  SLOW_DCHECK(object->SizeFromMap(map) == object_size);

  if (!heap()->ShouldBePromoted(object->address())) {
    // A semi-space copy may fail due to fragmentation. In that case, we
    // try to promote the object.
    if (SemiSpaceCopyObject(map, slot, object, object_size)) return;
  }

  if (PromoteObject(map, slot, object, object_size)) return;

  // If promotion failed, we try to copy the object to the other semi-space
  if (SemiSpaceCopyObject(map, slot, object, object_size)) return;

  heap()->FatalProcessOutOfMemory("Scavenger: semi-space copy");
}

void Scavenger::EvacuateThinString(Map* map, HeapObject** slot,
                                   ThinString* object, int object_size) {
  if (!is_incremental_marking_) {
    // Loading actual is fine in a parallel setting is there is no write.
    HeapObject* actual = object->actual();
    *slot = actual;
    // ThinStrings always refer to internalized strings, which are
    // always in old space.
    DCHECK(!heap()->InNewSpace(actual));
    base::AsAtomicPointer::Relaxed_Store(
        reinterpret_cast<Map**>(object->address()),
        MapWord::FromForwardingAddress(actual).ToMap());
    return;
  }

  EvacuateObjectDefault(map, reinterpret_cast<HeapObjectReference**>(slot),
                        object, object_size);
}

void Scavenger::EvacuateShortcutCandidate(Map* map, HeapObject** slot,
                                          ConsString* object, int object_size) {
  DCHECK(IsShortcutCandidate(map->instance_type()));
  if (!is_incremental_marking_ &&
      object->unchecked_second() == heap()->empty_string()) {
    HeapObject* first = HeapObject::cast(object->unchecked_first());

    *slot = first;

    if (!heap()->InNewSpace(first)) {
      base::AsAtomicPointer::Relaxed_Store(
          reinterpret_cast<Map**>(object->address()),
          MapWord::FromForwardingAddress(first).ToMap());
      return;
    }

    MapWord first_word = first->map_word();
    if (first_word.IsForwardingAddress()) {
      HeapObject* target = first_word.ToForwardingAddress();

      *slot = target;
      base::AsAtomicPointer::Relaxed_Store(
          reinterpret_cast<Map**>(object->address()),
          MapWord::FromForwardingAddress(target).ToMap());
      return;
    }
    Map* map = first_word.ToMap();
    EvacuateObjectDefault(map, reinterpret_cast<HeapObjectReference**>(slot),
                          first, first->SizeFromMap(map));
    base::AsAtomicPointer::Relaxed_Store(
        reinterpret_cast<Map**>(object->address()),
        MapWord::FromForwardingAddress(*slot).ToMap());
    return;
  }

  EvacuateObjectDefault(map, reinterpret_cast<HeapObjectReference**>(slot),
                        object, object_size);
}

void Scavenger::EvacuateObject(HeapObjectReference** slot, Map* map,
                               HeapObject* source) {
  SLOW_DCHECK(heap_->InFromSpace(source));
  SLOW_DCHECK(!MapWord::FromMap(map).IsForwardingAddress());
  int size = source->SizeFromMap(map);
  // Cannot use ::cast() below because that would add checks in debug mode
  // that require re-reading the map.
  switch (map->visitor_id()) {
    case kVisitThinString:
      // At the moment we don't allow weak pointers to thin strings.
      DCHECK(!(*slot)->IsWeakHeapObject());
      EvacuateThinString(map, reinterpret_cast<HeapObject**>(slot),
                         reinterpret_cast<ThinString*>(source), size);
      break;
    case kVisitShortcutCandidate:
      DCHECK(!(*slot)->IsWeakHeapObject());
      // At the moment we don't allow weak pointers to cons strings.
      EvacuateShortcutCandidate(map, reinterpret_cast<HeapObject**>(slot),
                                reinterpret_cast<ConsString*>(source), size);
      break;
    default:
      EvacuateObjectDefault(map, slot, source, size);
      break;
  }
}

void Scavenger::ScavengeObject(HeapObjectReference** p, HeapObject* object) {
  DCHECK(heap()->InFromSpace(object));

  // Synchronized load that consumes the publishing CAS of MigrateObject.
  MapWord first_word = object->synchronized_map_word();

  // If the first word is a forwarding address, the object has already been
  // copied.
  if (first_word.IsForwardingAddress()) {
    HeapObject* dest = first_word.ToForwardingAddress();
    DCHECK(heap()->InFromSpace(*p));
    if ((*p)->IsWeakHeapObject()) {
      *p = HeapObjectReference::Weak(dest);
    } else {
      DCHECK((*p)->IsStrongHeapObject());
      *p = HeapObjectReference::Strong(dest);
    }
    return;
  }

  Map* map = first_word.ToMap();
  // AllocationMementos are unrooted and shouldn't survive a scavenge
  DCHECK_NE(heap()->allocation_memento_map(), map);
  // Call the slow part of scavenge object.
  EvacuateObject(p, map, object);
}

SlotCallbackResult Scavenger::CheckAndScavengeObject(Heap* heap,
                                                     Address slot_address) {
  MaybeObject** slot = reinterpret_cast<MaybeObject**>(slot_address);
  MaybeObject* object = *slot;
  if (heap->InFromSpace(object)) {
    HeapObject* heap_object;
    bool success = object->ToStrongOrWeakHeapObject(&heap_object);
    USE(success);
    DCHECK(success);
    DCHECK(heap_object->IsHeapObject());

    ScavengeObject(reinterpret_cast<HeapObjectReference**>(slot), heap_object);

    object = *slot;
    // If the object was in from space before and is after executing the
    // callback in to space, the object is still live.
    // Unfortunately, we do not know about the slot. It could be in a
    // just freed free space object.
    PageMemoryFence(object);
    if (heap->InToSpace(object)) {
      return KEEP_SLOT;
    }
  } else if (heap->InToSpace(object)) {
    // Already updated slot. This can happen when processing of the work list
    // is interleaved with processing roots.
    return KEEP_SLOT;
  }
  // Slots can point to "to" space if the slot has been recorded multiple
  // times in the remembered set. We remove the redundant slot now.
  return REMOVE_SLOT;
}

void ScavengeVisitor::VisitPointers(HeapObject* host, Object** start,
                                    Object** end) {
  for (Object** p = start; p < end; p++) {
    Object* object = *p;
    if (!heap_->InNewSpace(object)) continue;
    scavenger_->ScavengeObject(reinterpret_cast<HeapObjectReference**>(p),
                               reinterpret_cast<HeapObject*>(object));
  }
}

void ScavengeVisitor::VisitPointers(HeapObject* host, MaybeObject** start,
                                    MaybeObject** end) {
  for (MaybeObject** p = start; p < end; p++) {
    MaybeObject* object = *p;
    if (!heap_->InNewSpace(object)) continue;
    // Treat the weak reference as strong.
    HeapObject* heap_object;
    if (object->ToStrongOrWeakHeapObject(&heap_object)) {
      scavenger_->ScavengeObject(reinterpret_cast<HeapObjectReference**>(p),
                                 heap_object);
    } else {
      UNREACHABLE();
    }
  }
}

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_SCAVENGER_INL_H_