summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/remembered-set.h
blob: ea7fe0149bac8707917f83c3bdef8c8d63e93524 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_REMEMBERED_SET_H_
#define V8_HEAP_REMEMBERED_SET_H_

#include "src/base/memory.h"
#include "src/codegen/reloc-info.h"
#include "src/heap/heap.h"
#include "src/heap/slot-set.h"
#include "src/heap/spaces.h"

namespace v8 {
namespace internal {

enum RememberedSetIterationMode { SYNCHRONIZED, NON_SYNCHRONIZED };

// TODO(ulan): Investigate performance of de-templatizing this class.
template <RememberedSetType type>
class RememberedSet : public AllStatic {
 public:
  // Given a page and a slot in that page, this function adds the slot to the
  // remembered set.
  template <AccessMode access_mode = AccessMode::ATOMIC>
  static void Insert(MemoryChunk* chunk, Address slot_addr) {
    DCHECK(chunk->Contains(slot_addr));
    SlotSet* slot_set = chunk->slot_set<type, access_mode>();
    if (slot_set == nullptr) {
      slot_set = chunk->AllocateSlotSet<type>();
    }
    uintptr_t offset = slot_addr - chunk->address();
    slot_set[offset / Page::kPageSize].Insert<access_mode>(offset %
                                                           Page::kPageSize);
  }

  // Given a page and a slot in that page, this function returns true if
  // the remembered set contains the slot.
  static bool Contains(MemoryChunk* chunk, Address slot_addr) {
    DCHECK(chunk->Contains(slot_addr));
    SlotSet* slot_set = chunk->slot_set<type>();
    if (slot_set == nullptr) {
      return false;
    }
    uintptr_t offset = slot_addr - chunk->address();
    return slot_set[offset / Page::kPageSize].Contains(offset %
                                                       Page::kPageSize);
  }

  // Given a page and a slot in that page, this function removes the slot from
  // the remembered set.
  // If the slot was never added, then the function does nothing.
  static void Remove(MemoryChunk* chunk, Address slot_addr) {
    DCHECK(chunk->Contains(slot_addr));
    SlotSet* slot_set = chunk->slot_set<type>();
    if (slot_set != nullptr) {
      uintptr_t offset = slot_addr - chunk->address();
      slot_set[offset / Page::kPageSize].Remove(offset % Page::kPageSize);
    }
  }

  // Given a page and a range of slots in that page, this function removes the
  // slots from the remembered set.
  static void RemoveRange(MemoryChunk* chunk, Address start, Address end,
                          SlotSet::EmptyBucketMode mode) {
    SlotSet* slot_set = chunk->slot_set<type>();
    if (slot_set != nullptr) {
      uintptr_t start_offset = start - chunk->address();
      uintptr_t end_offset = end - chunk->address();
      DCHECK_LT(start_offset, end_offset);
      if (end_offset < static_cast<uintptr_t>(Page::kPageSize)) {
        slot_set->RemoveRange(static_cast<int>(start_offset),
                              static_cast<int>(end_offset), mode);
      } else {
        // The large page has multiple slot sets.
        // Compute slot set indicies for the range [start_offset, end_offset).
        int start_chunk = static_cast<int>(start_offset / Page::kPageSize);
        int end_chunk = static_cast<int>((end_offset - 1) / Page::kPageSize);
        int offset_in_start_chunk =
            static_cast<int>(start_offset % Page::kPageSize);
        // Note that using end_offset % Page::kPageSize would be incorrect
        // because end_offset is one beyond the last slot to clear.
        int offset_in_end_chunk = static_cast<int>(
            end_offset - static_cast<uintptr_t>(end_chunk) * Page::kPageSize);
        if (start_chunk == end_chunk) {
          slot_set[start_chunk].RemoveRange(offset_in_start_chunk,
                                            offset_in_end_chunk, mode);
        } else {
          // Clear all slots from start_offset to the end of first chunk.
          slot_set[start_chunk].RemoveRange(offset_in_start_chunk,
                                            Page::kPageSize, mode);
          // Clear all slots in intermediate chunks.
          for (int i = start_chunk + 1; i < end_chunk; i++) {
            slot_set[i].RemoveRange(0, Page::kPageSize, mode);
          }
          // Clear slots from the beginning of the last page to end_offset.
          slot_set[end_chunk].RemoveRange(0, offset_in_end_chunk, mode);
        }
      }
    }
  }

  // Iterates and filters the remembered set with the given callback.
  // The callback should take (Address slot) and return SlotCallbackResult.
  template <typename Callback>
  static void Iterate(Heap* heap, RememberedSetIterationMode mode,
                      Callback callback) {
    IterateMemoryChunks(heap, [mode, callback](MemoryChunk* chunk) {
      if (mode == SYNCHRONIZED) chunk->mutex()->Lock();
      Iterate(chunk, callback);
      if (mode == SYNCHRONIZED) chunk->mutex()->Unlock();
    });
  }

  // Iterates over all memory chunks that contains non-empty slot sets.
  // The callback should take (MemoryChunk* chunk) and return void.
  template <typename Callback>
  static void IterateMemoryChunks(Heap* heap, Callback callback) {
    OldGenerationMemoryChunkIterator it(heap);
    MemoryChunk* chunk;
    while ((chunk = it.next()) != nullptr) {
      SlotSet* slots = chunk->slot_set<type>();
      TypedSlotSet* typed_slots = chunk->typed_slot_set<type>();
      if (slots != nullptr || typed_slots != nullptr ||
          chunk->invalidated_slots() != nullptr) {
        callback(chunk);
      }
    }
  }

  // Iterates and filters the remembered set in the given memory chunk with
  // the given callback. The callback should take (Address slot) and return
  // SlotCallbackResult.
  //
  // Notice that |mode| can only be of FREE* or PREFREE* if there are no other
  // threads concurrently inserting slots.
  template <typename Callback>
  static void Iterate(MemoryChunk* chunk, Callback callback,
                      SlotSet::EmptyBucketMode mode) {
    SlotSet* slots = chunk->slot_set<type>();
    if (slots != nullptr) {
      size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize;
      int new_count = 0;
      for (size_t page = 0; page < pages; page++) {
        new_count += slots[page].Iterate(callback, mode);
      }
      // Only old-to-old slot sets are released eagerly. Old-new-slot sets are
      // released by the sweeper threads.
      if (type == OLD_TO_OLD && new_count == 0) {
        chunk->ReleaseSlotSet<OLD_TO_OLD>();
      }
    }
  }

  static int NumberOfPreFreedEmptyBuckets(MemoryChunk* chunk) {
    DCHECK(type == OLD_TO_NEW);
    int result = 0;
    SlotSet* slots = chunk->slot_set<type>();
    if (slots != nullptr) {
      size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize;
      for (size_t page = 0; page < pages; page++) {
        result += slots[page].NumberOfPreFreedEmptyBuckets();
      }
    }
    return result;
  }

  static void PreFreeEmptyBuckets(MemoryChunk* chunk) {
    DCHECK(type == OLD_TO_NEW);
    SlotSet* slots = chunk->slot_set<type>();
    if (slots != nullptr) {
      size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize;
      for (size_t page = 0; page < pages; page++) {
        slots[page].PreFreeEmptyBuckets();
      }
    }
  }

  static void FreeEmptyBuckets(MemoryChunk* chunk) {
    DCHECK(type == OLD_TO_NEW);
    SlotSet* slots = chunk->slot_set<type>();
    if (slots != nullptr) {
      size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize;
      for (size_t page = 0; page < pages; page++) {
        slots[page].FreeEmptyBuckets();
        slots[page].FreeToBeFreedBuckets();
      }
    }
  }

  // Given a page and a typed slot in that page, this function adds the slot
  // to the remembered set.
  static void InsertTyped(MemoryChunk* memory_chunk, SlotType slot_type,
                          uint32_t offset) {
    TypedSlotSet* slot_set = memory_chunk->typed_slot_set<type>();
    if (slot_set == nullptr) {
      slot_set = memory_chunk->AllocateTypedSlotSet<type>();
    }
    slot_set->Insert(slot_type, offset);
  }

  static void MergeTyped(MemoryChunk* page, std::unique_ptr<TypedSlots> slots) {
    TypedSlotSet* slot_set = page->typed_slot_set<type>();
    if (slot_set == nullptr) {
      slot_set = page->AllocateTypedSlotSet<type>();
    }
    slot_set->Merge(slots.get());
  }

  // Given a page and a range of typed slots in that page, this function removes
  // the slots from the remembered set.
  static void RemoveRangeTyped(MemoryChunk* page, Address start, Address end) {
    TypedSlotSet* slots = page->typed_slot_set<type>();
    if (slots != nullptr) {
      slots->Iterate(
          [=](SlotType slot_type, Address slot_addr) {
            return start <= slot_addr && slot_addr < end ? REMOVE_SLOT
                                                         : KEEP_SLOT;
          },
          TypedSlotSet::PREFREE_EMPTY_CHUNKS);
    }
  }

  // Iterates and filters the remembered set with the given callback.
  // The callback should take (SlotType slot_type, Address addr) and return
  // SlotCallbackResult.
  template <typename Callback>
  static void IterateTyped(Heap* heap, RememberedSetIterationMode mode,
                           Callback callback) {
    IterateMemoryChunks(heap, [mode, callback](MemoryChunk* chunk) {
      if (mode == SYNCHRONIZED) chunk->mutex()->Lock();
      IterateTyped(chunk, callback);
      if (mode == SYNCHRONIZED) chunk->mutex()->Unlock();
    });
  }

  // Iterates and filters typed old to old pointers in the given memory chunk
  // with the given callback. The callback should take (SlotType slot_type,
  // Address addr) and return SlotCallbackResult.
  template <typename Callback>
  static void IterateTyped(MemoryChunk* chunk, Callback callback) {
    TypedSlotSet* slots = chunk->typed_slot_set<type>();
    if (slots != nullptr) {
      int new_count = slots->Iterate(callback, TypedSlotSet::KEEP_EMPTY_CHUNKS);
      if (new_count == 0) {
        chunk->ReleaseTypedSlotSet<type>();
      }
    }
  }

  // Clear all old to old slots from the remembered set.
  static void ClearAll(Heap* heap) {
    STATIC_ASSERT(type == OLD_TO_OLD);
    OldGenerationMemoryChunkIterator it(heap);
    MemoryChunk* chunk;
    while ((chunk = it.next()) != nullptr) {
      chunk->ReleaseSlotSet<OLD_TO_OLD>();
      chunk->ReleaseTypedSlotSet<OLD_TO_OLD>();
      chunk->ReleaseInvalidatedSlots();
    }
  }

 private:
  static bool IsValidSlot(Heap* heap, MemoryChunk* chunk, ObjectSlot slot);
};

class UpdateTypedSlotHelper {
 public:
  // Updates a typed slot using an untyped slot callback where |addr| depending
  // on slot type represents either address for respective RelocInfo or address
  // of the uncompressed constant pool entry.
  // The callback accepts FullMaybeObjectSlot and returns SlotCallbackResult.
  template <typename Callback>
  static SlotCallbackResult UpdateTypedSlot(Heap* heap, SlotType slot_type,
                                            Address addr, Callback callback) {
    switch (slot_type) {
      case CODE_TARGET_SLOT: {
        RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, Code());
        return UpdateCodeTarget(&rinfo, callback);
      }
      case CODE_ENTRY_SLOT: {
        return UpdateCodeEntry(addr, callback);
      }
      case COMPRESSED_EMBEDDED_OBJECT_SLOT: {
        RelocInfo rinfo(addr, RelocInfo::COMPRESSED_EMBEDDED_OBJECT, 0, Code());
        return UpdateEmbeddedPointer(heap, &rinfo, callback);
      }
      case FULL_EMBEDDED_OBJECT_SLOT: {
        RelocInfo rinfo(addr, RelocInfo::FULL_EMBEDDED_OBJECT, 0, Code());
        return UpdateEmbeddedPointer(heap, &rinfo, callback);
      }
      case OBJECT_SLOT: {
        return callback(FullMaybeObjectSlot(addr));
      }
      case CLEARED_SLOT:
        break;
    }
    UNREACHABLE();
  }

 private:
  // Updates a code entry slot using an untyped slot callback.
  // The callback accepts FullMaybeObjectSlot and returns SlotCallbackResult.
  template <typename Callback>
  static SlotCallbackResult UpdateCodeEntry(Address entry_address,
                                            Callback callback) {
    Code code = Code::GetObjectFromEntryAddress(entry_address);
    Code old_code = code;
    SlotCallbackResult result = callback(FullMaybeObjectSlot(&code));
    DCHECK(!HasWeakHeapObjectTag(code));
    if (code != old_code) {
      base::Memory<Address>(entry_address) = code.entry();
    }
    return result;
  }

  // Updates a code target slot using an untyped slot callback.
  // The callback accepts FullMaybeObjectSlot and returns SlotCallbackResult.
  template <typename Callback>
  static SlotCallbackResult UpdateCodeTarget(RelocInfo* rinfo,
                                             Callback callback) {
    DCHECK(RelocInfo::IsCodeTargetMode(rinfo->rmode()));
    Code old_target = Code::GetCodeFromTargetAddress(rinfo->target_address());
    Code new_target = old_target;
    SlotCallbackResult result = callback(FullMaybeObjectSlot(&new_target));
    DCHECK(!HasWeakHeapObjectTag(new_target));
    if (new_target != old_target) {
      rinfo->set_target_address(Code::cast(new_target).raw_instruction_start());
    }
    return result;
  }

  // Updates an embedded pointer slot using an untyped slot callback.
  // The callback accepts FullMaybeObjectSlot and returns SlotCallbackResult.
  template <typename Callback>
  static SlotCallbackResult UpdateEmbeddedPointer(Heap* heap, RelocInfo* rinfo,
                                                  Callback callback) {
    DCHECK(RelocInfo::IsEmbeddedObjectMode(rinfo->rmode()));
    HeapObject old_target = rinfo->target_object_no_host(heap->isolate());
    HeapObject new_target = old_target;
    SlotCallbackResult result = callback(FullMaybeObjectSlot(&new_target));
    DCHECK(!HasWeakHeapObjectTag(new_target));
    if (new_target != old_target) {
      rinfo->set_target_object(heap, HeapObject::cast(new_target));
    }
    return result;
  }
};

inline SlotType SlotTypeForRelocInfoMode(RelocInfo::Mode rmode) {
  if (RelocInfo::IsCodeTargetMode(rmode)) {
    return CODE_TARGET_SLOT;
  } else if (RelocInfo::IsFullEmbeddedObject(rmode)) {
    return FULL_EMBEDDED_OBJECT_SLOT;
  } else if (RelocInfo::IsCompressedEmbeddedObject(rmode)) {
    return COMPRESSED_EMBEDDED_OBJECT_SLOT;
  }
  UNREACHABLE();
}

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_REMEMBERED_SET_H_