summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/incremental-marking.cc
blob: a046dff4b07ed5f2e003d51c9c03e23f5a6dddb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/incremental-marking.h"

#include "src/code-stubs.h"
#include "src/compilation-cache.h"
#include "src/conversions.h"
#include "src/heap/concurrent-marking.h"
#include "src/heap/gc-idle-time-handler.h"
#include "src/heap/gc-tracer.h"
#include "src/heap/heap-inl.h"
#include "src/heap/mark-compact-inl.h"
#include "src/heap/object-stats.h"
#include "src/heap/objects-visiting-inl.h"
#include "src/heap/objects-visiting.h"
#include "src/heap/sweeper.h"
#include "src/tracing/trace-event.h"
#include "src/v8.h"
#include "src/visitors.h"
#include "src/vm-state-inl.h"

namespace v8 {
namespace internal {

using IncrementalMarkingMarkingVisitor =
    MarkingVisitor<FixedArrayVisitationMode::kIncremental,
                   TraceRetainingPathMode::kDisabled,
                   IncrementalMarking::MarkingState>;

void IncrementalMarking::Observer::Step(int bytes_allocated, Address addr,
                                        size_t size) {
  Heap* heap = incremental_marking_.heap();
  VMState<GC> state(heap->isolate());
  RuntimeCallTimerScope runtime_timer(
      heap->isolate(), &RuntimeCallStats::GC_Custom_IncrementalMarkingObserver);
  incremental_marking_.AdvanceIncrementalMarkingOnAllocation();
  if (incremental_marking_.black_allocation() && addr != nullptr) {
    // AdvanceIncrementalMarkingOnAllocation can start black allocation.
    // Ensure that the new object is marked black.
    HeapObject* object = HeapObject::FromAddress(addr);
    if (incremental_marking_.marking_state()->IsWhite(object) &&
        !heap->InNewSpace(object)) {
      if (heap->lo_space()->Contains(object)) {
        incremental_marking_.marking_state()->WhiteToBlack(object);
      } else {
        Page::FromAddress(addr)->CreateBlackArea(addr, addr + size);
      }
    }
  }
}

IncrementalMarking::IncrementalMarking(
    Heap* heap, MarkCompactCollector::MarkingWorklist* marking_worklist)
    : heap_(heap),
      marking_worklist_(marking_worklist),
      initial_old_generation_size_(0),
      bytes_marked_ahead_of_schedule_(0),
      bytes_marked_concurrently_(0),
      unscanned_bytes_of_large_object_(0),
      is_compacting_(false),
      should_hurry_(false),
      was_activated_(false),
      black_allocation_(false),
      finalize_marking_completed_(false),
      trace_wrappers_toggle_(false),
      request_type_(NONE),
      new_generation_observer_(*this, kYoungGenerationAllocatedThreshold),
      old_generation_observer_(*this, kOldGenerationAllocatedThreshold) {
  DCHECK_NOT_NULL(marking_worklist_);
  SetState(STOPPED);
}

bool IncrementalMarking::BaseRecordWrite(HeapObject* obj, Object* value) {
  HeapObject* value_heap_obj = HeapObject::cast(value);
  DCHECK(!marking_state()->IsImpossible(value_heap_obj));
  DCHECK(!marking_state()->IsImpossible(obj));
#ifdef V8_CONCURRENT_MARKING
  // The write barrier stub generated with V8_CONCURRENT_MARKING does not
  // check the color of the source object.
  const bool need_recording = true;
#else
  const bool need_recording = marking_state()->IsBlack(obj);
#endif

  if (need_recording && WhiteToGreyAndPush(value_heap_obj)) {
    RestartIfNotMarking();
  }
  return is_compacting_ && need_recording;
}


void IncrementalMarking::RecordWriteSlow(HeapObject* obj, Object** slot,
                                         Object* value) {
  if (BaseRecordWrite(obj, value) && slot != nullptr) {
    // Object is not going to be rescanned we need to record the slot.
    heap_->mark_compact_collector()->RecordSlot(obj, slot, value);
  }
}

int IncrementalMarking::RecordWriteFromCode(HeapObject* obj, Object** slot,
                                            Isolate* isolate) {
  DCHECK(obj->IsHeapObject());
  isolate->heap()->incremental_marking()->RecordWrite(obj, slot, *slot);
  // Called by RecordWriteCodeStubAssembler, which doesnt accept void type
  return 0;
}

void IncrementalMarking::RecordWriteIntoCodeSlow(Code* host, RelocInfo* rinfo,
                                                 Object* value) {
  if (BaseRecordWrite(host, value)) {
    // Object is not going to be rescanned.  We need to record the slot.
    heap_->mark_compact_collector()->RecordRelocSlot(host, rinfo, value);
  }
}

bool IncrementalMarking::WhiteToGreyAndPush(HeapObject* obj) {
  if (marking_state()->WhiteToGrey(obj)) {
    marking_worklist()->Push(obj);
    return true;
  }
  return false;
}

void IncrementalMarking::MarkBlackAndPush(HeapObject* obj) {
  // Color the object black and push it into the bailout deque.
  marking_state()->WhiteToGrey(obj);
  if (marking_state()->GreyToBlack(obj)) {
    if (FLAG_concurrent_marking) {
      marking_worklist()->PushBailout(obj);
    } else {
      marking_worklist()->Push(obj);
    }
  }
}

void IncrementalMarking::NotifyLeftTrimming(HeapObject* from, HeapObject* to) {
  DCHECK(IsMarking());
  DCHECK(MemoryChunk::FromAddress(from->address())->SweepingDone());
  DCHECK_EQ(MemoryChunk::FromAddress(from->address()),
            MemoryChunk::FromAddress(to->address()));
  DCHECK_NE(from, to);

  MarkBit old_mark_bit = marking_state()->MarkBitFrom(from);
  MarkBit new_mark_bit = marking_state()->MarkBitFrom(to);

  if (black_allocation() && Marking::IsBlack<kAtomicity>(new_mark_bit)) {
    // Nothing to do if the object is in black area.
    return;
  }

  bool marked_black_due_to_left_trimming = false;
  if (FLAG_concurrent_marking) {
    // We need to mark the array black before overwriting its map and length
    // so that the concurrent marker does not observe inconsistent state.
    Marking::WhiteToGrey<kAtomicity>(old_mark_bit);
    if (Marking::GreyToBlack<kAtomicity>(old_mark_bit)) {
      // The concurrent marker will not mark the array. We need to push the
      // new array start in marking deque to ensure that it will be marked.
      marked_black_due_to_left_trimming = true;
    }
    DCHECK(Marking::IsBlack<kAtomicity>(old_mark_bit));
  }

  if (Marking::IsBlack<kAtomicity>(old_mark_bit) &&
      !marked_black_due_to_left_trimming) {
    // The array was black before left trimming or was marked black by the
    // concurrent marker. Simply transfer the color.
    if (from->address() + kPointerSize == to->address()) {
      // The old and the new markbits overlap. The |to| object has the
      // grey color. To make it black, we need to set the second bit.
      DCHECK(new_mark_bit.Get<kAtomicity>());
      new_mark_bit.Next().Set<kAtomicity>();
    } else {
      bool success = Marking::WhiteToBlack<kAtomicity>(new_mark_bit);
      DCHECK(success);
      USE(success);
    }
  } else if (Marking::IsGrey<kAtomicity>(old_mark_bit) ||
             marked_black_due_to_left_trimming) {
    // The array was already grey or was marked black by this function.
    // Mark the new array grey and push it to marking deque.
    if (from->address() + kPointerSize == to->address()) {
      // The old and the new markbits overlap. The |to| object is either white
      // or grey.  Set the first bit to make sure that it is grey.
      new_mark_bit.Set<kAtomicity>();
      DCHECK(!new_mark_bit.Next().Get<kAtomicity>());
    } else {
      bool success = Marking::WhiteToGrey<kAtomicity>(new_mark_bit);
      DCHECK(success);
      USE(success);
    }
    marking_worklist()->Push(to);
    RestartIfNotMarking();
  }
}

class IncrementalMarkingRootMarkingVisitor : public RootVisitor {
 public:
  explicit IncrementalMarkingRootMarkingVisitor(
      IncrementalMarking* incremental_marking)
      : heap_(incremental_marking->heap()) {}

  void VisitRootPointer(Root root, Object** p) override {
    MarkObjectByPointer(p);
  }

  void VisitRootPointers(Root root, Object** start, Object** end) override {
    for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
  }

 private:
  void MarkObjectByPointer(Object** p) {
    Object* obj = *p;
    if (!obj->IsHeapObject()) return;

    heap_->incremental_marking()->WhiteToGreyAndPush(HeapObject::cast(obj));
  }

  Heap* heap_;
};

void IncrementalMarking::SetOldSpacePageFlags(MemoryChunk* chunk,
                                              bool is_marking,
                                              bool is_compacting) {
  if (is_marking) {
    chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
    chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
  } else {
    chunk->ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
    chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
  }
}


void IncrementalMarking::SetNewSpacePageFlags(MemoryChunk* chunk,
                                              bool is_marking) {
  chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
  if (is_marking) {
    chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
  } else {
    chunk->ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
  }
}


void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace(
    PagedSpace* space) {
  for (Page* p : *space) {
    SetOldSpacePageFlags(p, false, false);
  }
}


void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace(
    NewSpace* space) {
  for (Page* p : *space) {
    SetNewSpacePageFlags(p, false);
  }
}


void IncrementalMarking::DeactivateIncrementalWriteBarrier() {
  DeactivateIncrementalWriteBarrierForSpace(heap_->old_space());
  DeactivateIncrementalWriteBarrierForSpace(heap_->map_space());
  DeactivateIncrementalWriteBarrierForSpace(heap_->code_space());
  DeactivateIncrementalWriteBarrierForSpace(heap_->new_space());

  for (LargePage* lop : *heap_->lo_space()) {
    SetOldSpacePageFlags(lop, false, false);
  }
}


void IncrementalMarking::ActivateIncrementalWriteBarrier(PagedSpace* space) {
  for (Page* p : *space) {
    SetOldSpacePageFlags(p, true, is_compacting_);
  }
}


void IncrementalMarking::ActivateIncrementalWriteBarrier(NewSpace* space) {
  for (Page* p : *space) {
    SetNewSpacePageFlags(p, true);
  }
}


void IncrementalMarking::ActivateIncrementalWriteBarrier() {
  ActivateIncrementalWriteBarrier(heap_->old_space());
  ActivateIncrementalWriteBarrier(heap_->map_space());
  ActivateIncrementalWriteBarrier(heap_->code_space());
  ActivateIncrementalWriteBarrier(heap_->new_space());

  for (LargePage* lop : *heap_->lo_space()) {
    SetOldSpacePageFlags(lop, true, is_compacting_);
  }
}


bool IncrementalMarking::WasActivated() { return was_activated_; }


bool IncrementalMarking::CanBeActivated() {
  // Only start incremental marking in a safe state: 1) when incremental
  // marking is turned on, 2) when we are currently not in a GC, and
  // 3) when we are currently not serializing or deserializing the heap.
  return FLAG_incremental_marking && heap_->gc_state() == Heap::NOT_IN_GC &&
         heap_->deserialization_complete() &&
         !heap_->isolate()->serializer_enabled();
}


void IncrementalMarking::Deactivate() {
  DeactivateIncrementalWriteBarrier();
}

void IncrementalMarking::Start(GarbageCollectionReason gc_reason) {
  if (FLAG_trace_incremental_marking) {
    int old_generation_size_mb =
        static_cast<int>(heap()->PromotedSpaceSizeOfObjects() / MB);
    int old_generation_limit_mb =
        static_cast<int>(heap()->old_generation_allocation_limit() / MB);
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Start (%s): old generation %dMB, limit %dMB, "
        "slack %dMB\n",
        Heap::GarbageCollectionReasonToString(gc_reason),
        old_generation_size_mb, old_generation_limit_mb,
        Max(0, old_generation_limit_mb - old_generation_size_mb));
  }
  DCHECK(FLAG_incremental_marking);
  DCHECK(state_ == STOPPED);
  DCHECK(heap_->gc_state() == Heap::NOT_IN_GC);
  DCHECK(!heap_->isolate()->serializer_enabled());

  Counters* counters = heap_->isolate()->counters();

  counters->incremental_marking_reason()->AddSample(
      static_cast<int>(gc_reason));
  HistogramTimerScope incremental_marking_scope(
      counters->gc_incremental_marking_start());
  TRACE_EVENT0("v8", "V8.GCIncrementalMarkingStart");
  TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_START);
  heap_->tracer()->NotifyIncrementalMarkingStart();

  start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs();
  initial_old_generation_size_ = heap_->PromotedSpaceSizeOfObjects();
  old_generation_allocation_counter_ = heap_->OldGenerationAllocationCounter();
  bytes_allocated_ = 0;
  bytes_marked_ahead_of_schedule_ = 0;
  bytes_marked_concurrently_ = 0;
  should_hurry_ = false;
  was_activated_ = true;

  if (!heap_->mark_compact_collector()->sweeping_in_progress()) {
    StartMarking();
  } else {
    if (FLAG_trace_incremental_marking) {
      heap()->isolate()->PrintWithTimestamp(
          "[IncrementalMarking] Start sweeping.\n");
    }
    SetState(SWEEPING);
  }

  SpaceIterator it(heap_);
  while (it.has_next()) {
    Space* space = it.next();
    if (space == heap_->new_space()) {
      space->AddAllocationObserver(&new_generation_observer_);
    } else {
      space->AddAllocationObserver(&old_generation_observer_);
    }
  }

  incremental_marking_job()->Start(heap_);
}


void IncrementalMarking::StartMarking() {
  if (heap_->isolate()->serializer_enabled()) {
    // Black allocation currently starts when we start incremental marking,
    // but we cannot enable black allocation while deserializing. Hence, we
    // have to delay the start of incremental marking in that case.
    if (FLAG_trace_incremental_marking) {
      heap()->isolate()->PrintWithTimestamp(
          "[IncrementalMarking] Start delayed - serializer\n");
    }
    return;
  }
  if (FLAG_trace_incremental_marking) {
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Start marking\n");
  }

  is_compacting_ =
      !FLAG_never_compact && heap_->mark_compact_collector()->StartCompaction();

  SetState(MARKING);

  {
    TRACE_GC(heap()->tracer(),
             GCTracer::Scope::MC_INCREMENTAL_WRAPPER_PROLOGUE);
    heap_->local_embedder_heap_tracer()->TracePrologue();
  }

  ActivateIncrementalWriteBarrier();

// Marking bits are cleared by the sweeper.
#ifdef VERIFY_HEAP
  if (FLAG_verify_heap) {
    heap_->mark_compact_collector()->VerifyMarkbitsAreClean();
  }
#endif

  heap_->isolate()->compilation_cache()->MarkCompactPrologue();

#ifdef V8_CONCURRENT_MARKING
  // The write-barrier does not check the color of the source object.
  // Start black allocation earlier to ensure faster marking progress.
  if (!black_allocation_) {
    StartBlackAllocation();
  }
#endif

  // Mark strong roots grey.
  IncrementalMarkingRootMarkingVisitor visitor(this);
  heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);

  if (FLAG_concurrent_marking) {
    heap_->concurrent_marking()->ScheduleTasks();
  }

  // Ready to start incremental marking.
  if (FLAG_trace_incremental_marking) {
    heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Running\n");
  }
}

void IncrementalMarking::StartBlackAllocation() {
  DCHECK(FLAG_black_allocation);
  DCHECK(!black_allocation_);
  DCHECK(IsMarking());
  black_allocation_ = true;
  heap()->old_space()->MarkAllocationInfoBlack();
  heap()->map_space()->MarkAllocationInfoBlack();
  heap()->code_space()->MarkAllocationInfoBlack();
  if (FLAG_trace_incremental_marking) {
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Black allocation started\n");
  }
}

void IncrementalMarking::PauseBlackAllocation() {
  DCHECK(FLAG_black_allocation);
  DCHECK(IsMarking());
  heap()->old_space()->UnmarkAllocationInfo();
  heap()->map_space()->UnmarkAllocationInfo();
  heap()->code_space()->UnmarkAllocationInfo();
  if (FLAG_trace_incremental_marking) {
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Black allocation paused\n");
  }
  black_allocation_ = false;
}

void IncrementalMarking::FinishBlackAllocation() {
  if (black_allocation_) {
    black_allocation_ = false;
    if (FLAG_trace_incremental_marking) {
      heap()->isolate()->PrintWithTimestamp(
          "[IncrementalMarking] Black allocation finished\n");
    }
  }
}

void IncrementalMarking::AbortBlackAllocation() {
  if (FLAG_trace_incremental_marking) {
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Black allocation aborted\n");
  }
}

void IncrementalMarking::MarkRoots() {
  DCHECK(!finalize_marking_completed_);
  DCHECK(IsMarking());

  IncrementalMarkingRootMarkingVisitor visitor(this);
  heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
}

bool ShouldRetainMap(Map* map, int age) {
  if (age == 0) {
    // The map has aged. Do not retain this map.
    return false;
  }
  Object* constructor = map->GetConstructor();
  Heap* heap = map->GetHeap();
  if (!constructor->IsHeapObject() ||
      heap->incremental_marking()->marking_state()->IsWhite(
          HeapObject::cast(constructor))) {
    // The constructor is dead, no new objects with this map can
    // be created. Do not retain this map.
    return false;
  }
  return true;
}


void IncrementalMarking::RetainMaps() {
  // Do not retain dead maps if flag disables it or there is
  // - memory pressure (reduce_memory_footprint_),
  // - GC is requested by tests or dev-tools (abort_incremental_marking_).
  bool map_retaining_is_disabled = heap()->ShouldReduceMemory() ||
                                   heap()->ShouldAbortIncrementalMarking() ||
                                   FLAG_retain_maps_for_n_gc == 0;
  ArrayList* retained_maps = heap()->retained_maps();
  int length = retained_maps->Length();
  // The number_of_disposed_maps separates maps in the retained_maps
  // array that were created before and after context disposal.
  // We do not age and retain disposed maps to avoid memory leaks.
  int number_of_disposed_maps = heap()->number_of_disposed_maps_;
  for (int i = 0; i < length; i += 2) {
    DCHECK(retained_maps->Get(i)->IsWeakCell());
    WeakCell* cell = WeakCell::cast(retained_maps->Get(i));
    if (cell->cleared()) continue;
    int age = Smi::ToInt(retained_maps->Get(i + 1));
    int new_age;
    Map* map = Map::cast(cell->value());
    if (i >= number_of_disposed_maps && !map_retaining_is_disabled &&
        marking_state()->IsWhite(map)) {
      if (ShouldRetainMap(map, age)) {
        WhiteToGreyAndPush(map);
      }
      Object* prototype = map->prototype();
      if (age > 0 && prototype->IsHeapObject() &&
          marking_state()->IsWhite(HeapObject::cast(prototype))) {
        // The prototype is not marked, age the map.
        new_age = age - 1;
      } else {
        // The prototype and the constructor are marked, this map keeps only
        // transition tree alive, not JSObjects. Do not age the map.
        new_age = age;
      }
    } else {
      new_age = FLAG_retain_maps_for_n_gc;
    }
    // Compact the array and update the age.
    if (new_age != age) {
      retained_maps->Set(i + 1, Smi::FromInt(new_age));
    }
  }
}

void IncrementalMarking::FinalizeIncrementally() {
  TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE_BODY);
  DCHECK(!finalize_marking_completed_);
  DCHECK(IsMarking());

  double start = heap_->MonotonicallyIncreasingTimeInMs();

  // After finishing incremental marking, we try to discover all unmarked
  // objects to reduce the marking load in the final pause.
  // 1) We scan and mark the roots again to find all changes to the root set.
  // 2) Age and retain maps embedded in optimized code.
  // 3) Remove weak cell with live values from the list of weak cells, they
  // do not need processing during GC.
  MarkRoots();

  // Map retaining is needed for perfromance, not correctness,
  // so we can do it only once at the beginning of the finalization.
  RetainMaps();

  finalize_marking_completed_ = true;

  if (FLAG_black_allocation && !heap()->ShouldReduceMemory() &&
      !black_allocation_) {
    // TODO(hpayer): Move to an earlier point as soon as we make faster marking
    // progress.
    StartBlackAllocation();
  }

  if (FLAG_trace_incremental_marking) {
    double end = heap_->MonotonicallyIncreasingTimeInMs();
    double delta = end - start;
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Finalize incrementally spent %.1f ms.\n", delta);
  }
}

void IncrementalMarking::UpdateMarkingWorklistAfterScavenge() {
  if (!IsMarking()) return;

  Map* filler_map = heap_->one_pointer_filler_map();

  MinorMarkCompactCollector::MarkingState* minor_marking_state =
      heap()->minor_mark_compact_collector()->marking_state();

  marking_worklist()->Update([this, filler_map, minor_marking_state](
                                 HeapObject* obj, HeapObject** out) -> bool {
    DCHECK(obj->IsHeapObject());
    // Only pointers to from space have to be updated.
    if (heap_->InFromSpace(obj)) {
      MapWord map_word = obj->map_word();
      if (!map_word.IsForwardingAddress()) {
        // There may be objects on the marking deque that do not exist anymore,
        // e.g. left trimmed objects or objects from the root set (frames).
        // If these object are dead at scavenging time, their marking deque
        // entries will not point to forwarding addresses. Hence, we can discard
        // them.
        return false;
      }
      HeapObject* dest = map_word.ToForwardingAddress();
      DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj->IsFiller());
      *out = dest;
      return true;
    } else if (heap_->InToSpace(obj)) {
      // The object may be on a page that was moved in new space.
      DCHECK(
          Page::FromAddress(obj->address())->IsFlagSet(Page::SWEEP_TO_ITERATE));
      if (minor_marking_state->IsGrey(obj)) {
        *out = obj;
        return true;
      }
      return false;
    } else {
      // The object may be on a page that was moved from new to old space.
      if (Page::FromAddress(obj->address())
              ->IsFlagSet(Page::SWEEP_TO_ITERATE)) {
        if (minor_marking_state->IsGrey(obj)) {
          *out = obj;
          return true;
        }
        return false;
      }
      DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj->IsFiller());
      // Skip one word filler objects that appear on the
      // stack when we perform in place array shift.
      if (obj->map() != filler_map) {
        *out = obj;
        return true;
      }
      return false;
    }
  });
}

void IncrementalMarking::UpdateMarkedBytesAfterScavenge(
    size_t dead_bytes_in_new_space) {
  if (!IsMarking()) return;
  bytes_marked_ahead_of_schedule_ -=
      Min(bytes_marked_ahead_of_schedule_, dead_bytes_in_new_space);
}

bool IncrementalMarking::IsFixedArrayWithProgressBar(HeapObject* obj) {
  if (!obj->IsFixedArray()) return false;
  MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
  return chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR);
}

int IncrementalMarking::VisitObject(Map* map, HeapObject* obj) {
  DCHECK(marking_state()->IsGrey(obj) || marking_state()->IsBlack(obj));
  // The object can already be black in two cases:
  // 1. The object is a fixed array with the progress bar.
  // 2. The object is a JSObject that was colored black before
  //    unsafe layout change.
  // 3. The object is a string that was colored black before
  //    unsafe layout change.
  if (!marking_state()->GreyToBlack(obj)) {
    DCHECK(IsFixedArrayWithProgressBar(obj) || obj->IsJSObject() ||
           obj->IsString());
  }
  DCHECK(marking_state()->IsBlack(obj));
  WhiteToGreyAndPush(map);
  IncrementalMarkingMarkingVisitor visitor(heap()->mark_compact_collector(),
                                           marking_state());
  return visitor.Visit(map, obj);
}

void IncrementalMarking::ProcessBlackAllocatedObject(HeapObject* obj) {
  if (IsMarking() && marking_state()->IsBlack(obj)) {
    RevisitObject(obj);
  }
}

void IncrementalMarking::RevisitObject(HeapObject* obj) {
  DCHECK(IsMarking());
  DCHECK(FLAG_concurrent_marking || marking_state()->IsBlack(obj));
  Page* page = Page::FromAddress(obj->address());
  if ((page->owner() != nullptr) && (page->owner()->identity() == LO_SPACE)) {
    page->ResetProgressBar();
  }
  Map* map = obj->map();
  WhiteToGreyAndPush(map);
  IncrementalMarkingMarkingVisitor visitor(heap()->mark_compact_collector(),
                                           marking_state());
  visitor.Visit(map, obj);
}

template <WorklistToProcess worklist_to_process>
intptr_t IncrementalMarking::ProcessMarkingWorklist(
    intptr_t bytes_to_process, ForceCompletionAction completion) {
  intptr_t bytes_processed = 0;
  while (bytes_processed < bytes_to_process || completion == FORCE_COMPLETION) {
    HeapObject* obj;
    if (worklist_to_process == WorklistToProcess::kBailout) {
      obj = marking_worklist()->PopBailout();
    } else {
      obj = marking_worklist()->Pop();
    }
    if (obj == nullptr) break;
    // Left trimming may result in white, grey, or black filler objects on the
    // marking deque. Ignore these objects.
    if (obj->IsFiller()) {
      DCHECK(!marking_state()->IsImpossible(obj));
      continue;
    }
    unscanned_bytes_of_large_object_ = 0;
    int size = VisitObject(obj->map(), obj);
    bytes_processed += size - unscanned_bytes_of_large_object_;
  }
  // Report all found wrappers to the embedder. This is necessary as the
  // embedder could potentially invalidate wrappers as soon as V8 is done
  // with its incremental marking processing. Any cached wrappers could
  // result in broken pointers at this point.
  heap_->local_embedder_heap_tracer()->RegisterWrappersWithRemoteTracer();
  return bytes_processed;
}


void IncrementalMarking::Hurry() {
  // A scavenge may have pushed new objects on the marking deque (due to black
  // allocation) even in COMPLETE state. This may happen if scavenges are
  // forced e.g. in tests. It should not happen when COMPLETE was set when
  // incremental marking finished and a regular GC was triggered after that
  // because should_hurry_ will force a full GC.
  if (!marking_worklist()->IsEmpty()) {
    double start = 0.0;
    if (FLAG_trace_incremental_marking) {
      start = heap_->MonotonicallyIncreasingTimeInMs();
      if (FLAG_trace_incremental_marking) {
        heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Hurry\n");
      }
    }
    // TODO(gc) hurry can mark objects it encounters black as mutator
    // was stopped.
    ProcessMarkingWorklist(0, FORCE_COMPLETION);
    SetState(COMPLETE);
    if (FLAG_trace_incremental_marking) {
      double end = heap_->MonotonicallyIncreasingTimeInMs();
      double delta = end - start;
      if (FLAG_trace_incremental_marking) {
        heap()->isolate()->PrintWithTimestamp(
            "[IncrementalMarking] Complete (hurry), spent %d ms.\n",
            static_cast<int>(delta));
      }
    }
  }
}


void IncrementalMarking::Stop() {
  if (IsStopped()) return;
  if (FLAG_trace_incremental_marking) {
    int old_generation_size_mb =
        static_cast<int>(heap()->PromotedSpaceSizeOfObjects() / MB);
    int old_generation_limit_mb =
        static_cast<int>(heap()->old_generation_allocation_limit() / MB);
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Stopping: old generation %dMB, limit %dMB, "
        "overshoot %dMB\n",
        old_generation_size_mb, old_generation_limit_mb,
        Max(0, old_generation_size_mb - old_generation_limit_mb));
  }

  SpaceIterator it(heap_);
  while (it.has_next()) {
    Space* space = it.next();
    if (space == heap_->new_space()) {
      space->RemoveAllocationObserver(&new_generation_observer_);
    } else {
      space->RemoveAllocationObserver(&old_generation_observer_);
    }
  }

  IncrementalMarking::set_should_hurry(false);
  heap_->isolate()->stack_guard()->ClearGC();
  SetState(STOPPED);
  is_compacting_ = false;
  FinishBlackAllocation();
}


void IncrementalMarking::Finalize() {
  Hurry();
  Stop();
}


void IncrementalMarking::FinalizeMarking(CompletionAction action) {
  DCHECK(!finalize_marking_completed_);
  if (FLAG_trace_incremental_marking) {
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] requesting finalization of incremental "
        "marking.\n");
  }
  request_type_ = FINALIZATION;
  if (action == GC_VIA_STACK_GUARD) {
    heap_->isolate()->stack_guard()->RequestGC();
  }
}


void IncrementalMarking::MarkingComplete(CompletionAction action) {
  SetState(COMPLETE);
  // We will set the stack guard to request a GC now.  This will mean the rest
  // of the GC gets performed as soon as possible (we can't do a GC here in a
  // record-write context).  If a few things get allocated between now and then
  // that shouldn't make us do a scavenge and keep being incremental, so we set
  // the should-hurry flag to indicate that there can't be much work left to do.
  set_should_hurry(true);
  if (FLAG_trace_incremental_marking) {
    heap()->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Complete (normal).\n");
  }
  request_type_ = COMPLETE_MARKING;
  if (action == GC_VIA_STACK_GUARD) {
    heap_->isolate()->stack_guard()->RequestGC();
  }
}


void IncrementalMarking::Epilogue() {
  was_activated_ = false;
  finalize_marking_completed_ = false;
}

double IncrementalMarking::AdvanceIncrementalMarking(
    double deadline_in_ms, CompletionAction completion_action,
    StepOrigin step_origin) {
  HistogramTimerScope incremental_marking_scope(
      heap_->isolate()->counters()->gc_incremental_marking());
  TRACE_EVENT0("v8", "V8.GCIncrementalMarking");
  TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL);
  DCHECK(!IsStopped());
  DCHECK_EQ(
      0, heap_->local_embedder_heap_tracer()->NumberOfCachedWrappersToTrace());

  double remaining_time_in_ms = 0.0;
  intptr_t step_size_in_bytes = GCIdleTimeHandler::EstimateMarkingStepSize(
      kStepSizeInMs,
      heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond());

  const bool incremental_wrapper_tracing =
      state_ == MARKING && FLAG_incremental_marking_wrappers &&
      heap_->local_embedder_heap_tracer()->InUse();
  do {
    if (incremental_wrapper_tracing && trace_wrappers_toggle_) {
      TRACE_GC(heap()->tracer(),
               GCTracer::Scope::MC_INCREMENTAL_WRAPPER_TRACING);
      const double wrapper_deadline =
          heap_->MonotonicallyIncreasingTimeInMs() + kStepSizeInMs;
      if (!heap_->local_embedder_heap_tracer()
               ->ShouldFinalizeIncrementalMarking()) {
        heap_->local_embedder_heap_tracer()->Trace(
            wrapper_deadline, EmbedderHeapTracer::AdvanceTracingActions(
                                  EmbedderHeapTracer::ForceCompletionAction::
                                      DO_NOT_FORCE_COMPLETION));
      }
    } else {
      Step(step_size_in_bytes, completion_action, step_origin);
    }
    trace_wrappers_toggle_ = !trace_wrappers_toggle_;
    remaining_time_in_ms =
        deadline_in_ms - heap()->MonotonicallyIncreasingTimeInMs();
  } while (remaining_time_in_ms >= kStepSizeInMs && !IsComplete() &&
           !marking_worklist()->IsEmpty());
  return remaining_time_in_ms;
}


void IncrementalMarking::FinalizeSweeping() {
  DCHECK(state_ == SWEEPING);
  if (heap_->mark_compact_collector()->sweeping_in_progress() &&
      (!FLAG_concurrent_sweeping ||
       !heap_->mark_compact_collector()->sweeper()->AreSweeperTasksRunning())) {
    heap_->mark_compact_collector()->EnsureSweepingCompleted();
  }
  if (!heap_->mark_compact_collector()->sweeping_in_progress()) {
#ifdef DEBUG
    heap_->VerifyCountersAfterSweeping();
#endif
    StartMarking();
  }
}

size_t IncrementalMarking::StepSizeToKeepUpWithAllocations() {
  // Update bytes_allocated_ based on the allocation counter.
  size_t current_counter = heap_->OldGenerationAllocationCounter();
  bytes_allocated_ += current_counter - old_generation_allocation_counter_;
  old_generation_allocation_counter_ = current_counter;
  return bytes_allocated_;
}

size_t IncrementalMarking::StepSizeToMakeProgress() {
  // We increase step size gradually based on the time passed in order to
  // leave marking work to standalone tasks. The ramp up duration and the
  // target step count are chosen based on benchmarks.
  const int kRampUpIntervalMs = 300;
  const size_t kTargetStepCount = 256;
  const size_t kTargetStepCountAtOOM = 32;
  size_t oom_slack = heap()->new_space()->Capacity() + 64 * MB;

  if (heap()->IsCloseToOutOfMemory(oom_slack)) {
    return heap()->PromotedSpaceSizeOfObjects() / kTargetStepCountAtOOM;
  }

  size_t step_size = Max(initial_old_generation_size_ / kTargetStepCount,
                         IncrementalMarking::kMinStepSizeInBytes);
  double time_passed_ms =
      heap_->MonotonicallyIncreasingTimeInMs() - start_time_ms_;
  double factor = Min(time_passed_ms / kRampUpIntervalMs, 1.0);
  return static_cast<size_t>(factor * step_size);
}

void IncrementalMarking::AdvanceIncrementalMarkingOnAllocation() {
  // Code using an AlwaysAllocateScope assumes that the GC state does not
  // change; that implies that no marking steps must be performed.
  if (heap_->gc_state() != Heap::NOT_IN_GC || !FLAG_incremental_marking ||
      (state_ != SWEEPING && state_ != MARKING) || heap_->always_allocate()) {
    return;
  }

  size_t bytes_to_process =
      StepSizeToKeepUpWithAllocations() + StepSizeToMakeProgress();

  if (bytes_to_process >= IncrementalMarking::kMinStepSizeInBytes) {
    HistogramTimerScope incremental_marking_scope(
        heap_->isolate()->counters()->gc_incremental_marking());
    TRACE_EVENT0("v8", "V8.GCIncrementalMarking");
    TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL);
    // The first step after Scavenge will see many allocated bytes.
    // Cap the step size to distribute the marking work more uniformly.
    size_t max_step_size = GCIdleTimeHandler::EstimateMarkingStepSize(
        kMaxStepSizeInMs,
        heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond());
    bytes_to_process = Min(bytes_to_process, max_step_size);
    size_t bytes_processed = 0;
    if (FLAG_concurrent_marking) {
      bytes_processed = Step(bytes_to_process, GC_VIA_STACK_GUARD,
                             StepOrigin::kV8, WorklistToProcess::kBailout);
      bytes_to_process = (bytes_processed >= bytes_to_process)
                             ? 0
                             : bytes_to_process - bytes_processed;
      size_t current_bytes_marked_concurrently =
          heap()->concurrent_marking()->TotalMarkedBytes();
      // The concurrent_marking()->TotalMarkedBytes() is not monothonic for a
      // short period of time when a concurrent marking task is finishing.
      if (current_bytes_marked_concurrently > bytes_marked_concurrently_) {
        bytes_marked_ahead_of_schedule_ +=
            current_bytes_marked_concurrently - bytes_marked_concurrently_;
        bytes_marked_concurrently_ = current_bytes_marked_concurrently;
      }
    }
    if (bytes_marked_ahead_of_schedule_ >= bytes_to_process) {
      // Steps performed in tasks and concurrently have put us ahead of
      // schedule. We skip processing of marking dequeue here and thus shift
      // marking time from inside V8 to standalone tasks.
      bytes_marked_ahead_of_schedule_ -= bytes_to_process;
      bytes_processed += bytes_to_process;
      bytes_to_process = IncrementalMarking::kMinStepSizeInBytes;
    }
    bytes_processed += Step(bytes_to_process, GC_VIA_STACK_GUARD,
                            StepOrigin::kV8, WorklistToProcess::kAll);
    bytes_allocated_ -= Min(bytes_allocated_, bytes_processed);
  }
}

size_t IncrementalMarking::Step(size_t bytes_to_process,
                                CompletionAction action, StepOrigin step_origin,
                                WorklistToProcess worklist_to_process) {
  double start = heap_->MonotonicallyIncreasingTimeInMs();

  if (state_ == SWEEPING) {
    TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL_SWEEPING);
    FinalizeSweeping();
  }

  size_t bytes_processed = 0;
  if (state_ == MARKING) {
    if (FLAG_concurrent_marking) {
      heap_->new_space()->ResetOriginalTop();
      // It is safe to merge back all objects that were on hold to the shared
      // work list at Step because we are at a safepoint where all objects
      // are properly initialized.
      marking_worklist()->shared()->MergeGlobalPool(
          marking_worklist()->on_hold());
    }
    if (FLAG_trace_incremental_marking && FLAG_trace_concurrent_marking &&
        FLAG_trace_gc_verbose) {
      marking_worklist()->Print();
    }

    if (worklist_to_process == WorklistToProcess::kBailout) {
      bytes_processed =
          ProcessMarkingWorklist<WorklistToProcess::kBailout>(bytes_to_process);
    } else {
      bytes_processed =
          ProcessMarkingWorklist<WorklistToProcess::kAll>(bytes_to_process);
    }

    if (step_origin == StepOrigin::kTask) {
      bytes_marked_ahead_of_schedule_ += bytes_processed;
    }

    if (marking_worklist()->IsEmpty()) {
      if (heap_->local_embedder_heap_tracer()
              ->ShouldFinalizeIncrementalMarking()) {
        if (!finalize_marking_completed_) {
          FinalizeMarking(action);
        } else {
          MarkingComplete(action);
        }
      } else {
        heap_->local_embedder_heap_tracer()->NotifyV8MarkingWorklistWasEmpty();
      }
    }
  }
  if (FLAG_concurrent_marking) {
    heap_->concurrent_marking()->RescheduleTasksIfNeeded();
  }

  double end = heap_->MonotonicallyIncreasingTimeInMs();
  double duration = (end - start);
  // Note that we report zero bytes here when sweeping was in progress or
  // when we just started incremental marking. In these cases we did not
  // process the marking deque.
  heap_->tracer()->AddIncrementalMarkingStep(duration, bytes_processed);
  if (FLAG_trace_incremental_marking) {
    heap_->isolate()->PrintWithTimestamp(
        "[IncrementalMarking] Step %s %" PRIuS "KB (%" PRIuS "KB) in %.1f\n",
        step_origin == StepOrigin::kV8 ? "in v8" : "in task",
        bytes_processed / KB, bytes_to_process / KB, duration);
  }
  if (FLAG_trace_concurrent_marking) {
    heap_->isolate()->PrintWithTimestamp(
        "Concurrently marked %" PRIuS "KB\n",
        heap_->concurrent_marking()->TotalMarkedBytes() / KB);
  }
  return bytes_processed;
}

}  // namespace internal
}  // namespace v8