summaryrefslogtreecommitdiff
path: root/deps/v8/src/full-codegen/full-codegen.h
blob: 34a5dc0454793e65d4fc6be035c6f09735df7d8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_FULL_CODEGEN_FULL_CODEGEN_H_
#define V8_FULL_CODEGEN_FULL_CODEGEN_H_

#include "src/allocation.h"
#include "src/assert-scope.h"
#include "src/ast.h"
#include "src/bit-vector.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/compiler.h"
#include "src/globals.h"
#include "src/objects.h"
#include "src/scopes.h"

namespace v8 {
namespace internal {

// Forward declarations.
class JumpPatchSite;

// -----------------------------------------------------------------------------
// Full code generator.

class FullCodeGenerator: public AstVisitor {
 public:
  enum State {
    NO_REGISTERS,
    TOS_REG
  };

  FullCodeGenerator(MacroAssembler* masm, CompilationInfo* info)
      : masm_(masm),
        info_(info),
        scope_(info->scope()),
        nesting_stack_(NULL),
        loop_depth_(0),
        try_catch_depth_(0),
        globals_(NULL),
        context_(NULL),
        bailout_entries_(info->HasDeoptimizationSupport()
                             ? info->literal()->ast_node_count()
                             : 0,
                         info->zone()),
        back_edges_(2, info->zone()),
        handler_table_(info->zone()),
        ic_total_count_(0) {
    DCHECK(!info->IsStub());
    Initialize();
  }

  void Initialize();

  static bool MakeCode(CompilationInfo* info);

  // Encode state and pc-offset as a BitField<type, start, size>.
  // Only use 30 bits because we encode the result as a smi.
  class StateField : public BitField<State, 0, 1> { };
  class PcField    : public BitField<unsigned, 1, 30-1> { };

  static const char* State2String(State state) {
    switch (state) {
      case NO_REGISTERS: return "NO_REGISTERS";
      case TOS_REG: return "TOS_REG";
    }
    UNREACHABLE();
    return NULL;
  }

  static const int kMaxBackEdgeWeight = 127;

  // Platform-specific code size multiplier.
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
  static const int kCodeSizeMultiplier = 105;
#elif V8_TARGET_ARCH_X64
  static const int kCodeSizeMultiplier = 170;
#elif V8_TARGET_ARCH_ARM
  static const int kCodeSizeMultiplier = 149;
#elif V8_TARGET_ARCH_ARM64
// TODO(all): Copied ARM value. Check this is sensible for ARM64.
  static const int kCodeSizeMultiplier = 149;
#elif V8_TARGET_ARCH_PPC64
  static const int kCodeSizeMultiplier = 200;
#elif V8_TARGET_ARCH_PPC
  static const int kCodeSizeMultiplier = 200;
#elif V8_TARGET_ARCH_MIPS
  static const int kCodeSizeMultiplier = 149;
#elif V8_TARGET_ARCH_MIPS64
  static const int kCodeSizeMultiplier = 149;
#else
#error Unsupported target architecture.
#endif

 private:
  class Breakable;
  class Iteration;

  class TestContext;

  class NestedStatement BASE_EMBEDDED {
   public:
    explicit NestedStatement(FullCodeGenerator* codegen) : codegen_(codegen) {
      // Link into codegen's nesting stack.
      previous_ = codegen->nesting_stack_;
      codegen->nesting_stack_ = this;
    }
    virtual ~NestedStatement() {
      // Unlink from codegen's nesting stack.
      DCHECK_EQ(this, codegen_->nesting_stack_);
      codegen_->nesting_stack_ = previous_;
    }

    virtual Breakable* AsBreakable() { return NULL; }
    virtual Iteration* AsIteration() { return NULL; }

    virtual bool IsContinueTarget(Statement* target) { return false; }
    virtual bool IsBreakTarget(Statement* target) { return false; }

    // Notify the statement that we are exiting it via break, continue, or
    // return and give it a chance to generate cleanup code.  Return the
    // next outer statement in the nesting stack.  We accumulate in
    // *stack_depth the amount to drop the stack and in *context_length the
    // number of context chain links to unwind as we traverse the nesting
    // stack from an exit to its target.
    virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
      return previous_;
    }

    // Like the Exit() method above, but limited to accumulating stack depth.
    virtual NestedStatement* AccumulateDepth(int* stack_depth) {
      return previous_;
    }

   protected:
    MacroAssembler* masm() { return codegen_->masm(); }

    FullCodeGenerator* codegen_;
    NestedStatement* previous_;

   private:
    DISALLOW_COPY_AND_ASSIGN(NestedStatement);
  };

  // A breakable statement such as a block.
  class Breakable : public NestedStatement {
   public:
    Breakable(FullCodeGenerator* codegen, BreakableStatement* statement)
        : NestedStatement(codegen), statement_(statement) {
    }
    virtual ~Breakable() {}

    virtual Breakable* AsBreakable() { return this; }
    virtual bool IsBreakTarget(Statement* target) {
      return statement() == target;
    }

    BreakableStatement* statement() { return statement_; }
    Label* break_label() { return &break_label_; }

   private:
    BreakableStatement* statement_;
    Label break_label_;
  };

  // An iteration statement such as a while, for, or do loop.
  class Iteration : public Breakable {
   public:
    Iteration(FullCodeGenerator* codegen, IterationStatement* statement)
        : Breakable(codegen, statement) {
    }
    virtual ~Iteration() {}

    virtual Iteration* AsIteration() { return this; }
    virtual bool IsContinueTarget(Statement* target) {
      return statement() == target;
    }

    Label* continue_label() { return &continue_label_; }

   private:
    Label continue_label_;
  };

  // A nested block statement.
  class NestedBlock : public Breakable {
   public:
    NestedBlock(FullCodeGenerator* codegen, Block* block)
        : Breakable(codegen, block) {
    }
    virtual ~NestedBlock() {}

    virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
      auto block_scope = statement()->AsBlock()->scope();
      if (block_scope != nullptr) {
        if (block_scope->ContextLocalCount() > 0) ++(*context_length);
      }
      return previous_;
    }
  };

  // The try block of a try/catch statement.
  class TryCatch : public NestedStatement {
   public:
    static const int kElementCount = TryBlockConstant::kElementCount;

    explicit TryCatch(FullCodeGenerator* codegen) : NestedStatement(codegen) {}
    virtual ~TryCatch() {}

    virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
      *stack_depth += kElementCount;
      return previous_;
    }
    virtual NestedStatement* AccumulateDepth(int* stack_depth) {
      *stack_depth += kElementCount;
      return previous_;
    }
  };

  // The try block of a try/finally statement.
  class TryFinally : public NestedStatement {
   public:
    static const int kElementCount = TryBlockConstant::kElementCount;

    TryFinally(FullCodeGenerator* codegen, Label* finally_entry)
        : NestedStatement(codegen), finally_entry_(finally_entry) {
    }
    virtual ~TryFinally() {}

    virtual NestedStatement* Exit(int* stack_depth, int* context_length);
    virtual NestedStatement* AccumulateDepth(int* stack_depth) {
      *stack_depth += kElementCount;
      return previous_;
    }

   private:
    Label* finally_entry_;
  };

  // The finally block of a try/finally statement.
  class Finally : public NestedStatement {
   public:
    static const int kElementCount = 3;

    explicit Finally(FullCodeGenerator* codegen) : NestedStatement(codegen) {}
    virtual ~Finally() {}

    virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
      *stack_depth += kElementCount;
      return previous_;
    }
    virtual NestedStatement* AccumulateDepth(int* stack_depth) {
      *stack_depth += kElementCount;
      return previous_;
    }
  };

  // The body of a for/in loop.
  class ForIn : public Iteration {
   public:
    static const int kElementCount = 5;

    ForIn(FullCodeGenerator* codegen, ForInStatement* statement)
        : Iteration(codegen, statement) {
    }
    virtual ~ForIn() {}

    virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
      *stack_depth += kElementCount;
      return previous_;
    }
    virtual NestedStatement* AccumulateDepth(int* stack_depth) {
      *stack_depth += kElementCount;
      return previous_;
    }
  };


  // The body of a with or catch.
  class WithOrCatch : public NestedStatement {
   public:
    explicit WithOrCatch(FullCodeGenerator* codegen)
        : NestedStatement(codegen) {
    }
    virtual ~WithOrCatch() {}

    virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
      ++(*context_length);
      return previous_;
    }
  };

  // A platform-specific utility to overwrite the accumulator register
  // with a GC-safe value.
  void ClearAccumulator();

  // Determine whether or not to inline the smi case for the given
  // operation.
  bool ShouldInlineSmiCase(Token::Value op);

  // Helper function to convert a pure value into a test context.  The value
  // is expected on the stack or the accumulator, depending on the platform.
  // See the platform-specific implementation for details.
  void DoTest(Expression* condition,
              Label* if_true,
              Label* if_false,
              Label* fall_through);
  void DoTest(const TestContext* context);

  // Helper function to split control flow and avoid a branch to the
  // fall-through label if it is set up.
#if V8_TARGET_ARCH_MIPS
  void Split(Condition cc,
             Register lhs,
             const Operand&  rhs,
             Label* if_true,
             Label* if_false,
             Label* fall_through);
#elif V8_TARGET_ARCH_MIPS64
  void Split(Condition cc,
             Register lhs,
             const Operand&  rhs,
             Label* if_true,
             Label* if_false,
             Label* fall_through);
#elif V8_TARGET_ARCH_PPC
  void Split(Condition cc, Label* if_true, Label* if_false, Label* fall_through,
             CRegister cr = cr7);
#else  // All other arch.
  void Split(Condition cc,
             Label* if_true,
             Label* if_false,
             Label* fall_through);
#endif

  // Load the value of a known (PARAMETER, LOCAL, or CONTEXT) variable into
  // a register.  Emits a context chain walk if if necessary (so does
  // SetVar) so avoid calling both on the same variable.
  void GetVar(Register destination, Variable* var);

  // Assign to a known (PARAMETER, LOCAL, or CONTEXT) variable.  If it's in
  // the context, the write barrier will be emitted and source, scratch0,
  // scratch1 will be clobbered.  Emits a context chain walk if if necessary
  // (so does GetVar) so avoid calling both on the same variable.
  void SetVar(Variable* var,
              Register source,
              Register scratch0,
              Register scratch1);

  // An operand used to read/write a stack-allocated (PARAMETER or LOCAL)
  // variable.  Writing does not need the write barrier.
  MemOperand StackOperand(Variable* var);

  // An operand used to read/write a known (PARAMETER, LOCAL, or CONTEXT)
  // variable.  May emit code to traverse the context chain, loading the
  // found context into the scratch register.  Writing to this operand will
  // need the write barrier if location is CONTEXT.
  MemOperand VarOperand(Variable* var, Register scratch);

  void VisitForEffect(Expression* expr) {
    EffectContext context(this);
    Visit(expr);
    PrepareForBailout(expr, NO_REGISTERS);
  }

  void VisitForAccumulatorValue(Expression* expr) {
    AccumulatorValueContext context(this);
    Visit(expr);
    PrepareForBailout(expr, TOS_REG);
  }

  void VisitForStackValue(Expression* expr) {
    StackValueContext context(this);
    Visit(expr);
    PrepareForBailout(expr, NO_REGISTERS);
  }

  void VisitForControl(Expression* expr,
                       Label* if_true,
                       Label* if_false,
                       Label* fall_through) {
    TestContext context(this, expr, if_true, if_false, fall_through);
    Visit(expr);
    // For test contexts, we prepare for bailout before branching, not at
    // the end of the entire expression.  This happens as part of visiting
    // the expression.
  }

  void VisitInDuplicateContext(Expression* expr);

  void VisitDeclarations(ZoneList<Declaration*>* declarations) override;
  void DeclareModules(Handle<FixedArray> descriptions);
  void DeclareGlobals(Handle<FixedArray> pairs);
  int DeclareGlobalsFlags();

  // Generate code to create an iterator result object.  The "value" property is
  // set to a value popped from the stack, and "done" is set according to the
  // argument.  The result object is left in the result register.
  void EmitCreateIteratorResult(bool done);

  // Try to perform a comparison as a fast inlined literal compare if
  // the operands allow it.  Returns true if the compare operations
  // has been matched and all code generated; false otherwise.
  bool TryLiteralCompare(CompareOperation* compare);

  // Platform-specific code for comparing the type of a value with
  // a given literal string.
  void EmitLiteralCompareTypeof(Expression* expr,
                                Expression* sub_expr,
                                Handle<String> check);

  // Platform-specific code for equality comparison with a nil-like value.
  void EmitLiteralCompareNil(CompareOperation* expr,
                             Expression* sub_expr,
                             NilValue nil);

  // Bailout support.
  void PrepareForBailout(Expression* node, State state);
  void PrepareForBailoutForId(BailoutId id, State state);

  // Feedback slot support. The feedback vector will be cleared during gc and
  // collected by the type-feedback oracle.
  Handle<TypeFeedbackVector> FeedbackVector() const {
    return info_->feedback_vector();
  }
  void EnsureSlotContainsAllocationSite(FeedbackVectorSlot slot);
  void EnsureSlotContainsAllocationSite(FeedbackVectorICSlot slot);

  // Returns a smi for the index into the FixedArray that backs the feedback
  // vector
  Smi* SmiFromSlot(FeedbackVectorSlot slot) const {
    return Smi::FromInt(FeedbackVector()->GetIndex(slot));
  }

  Smi* SmiFromSlot(FeedbackVectorICSlot slot) const {
    return Smi::FromInt(FeedbackVector()->GetIndex(slot));
  }

  // Record a call's return site offset, used to rebuild the frame if the
  // called function was inlined at the site.
  void RecordJSReturnSite(Call* call);

  // Prepare for bailout before a test (or compare) and branch.  If
  // should_normalize, then the following comparison will not handle the
  // canonical JS true value so we will insert a (dead) test against true at
  // the actual bailout target from the optimized code. If not
  // should_normalize, the true and false labels are ignored.
  void PrepareForBailoutBeforeSplit(Expression* expr,
                                    bool should_normalize,
                                    Label* if_true,
                                    Label* if_false);

  // If enabled, emit debug code for checking that the current context is
  // neither a with nor a catch context.
  void EmitDebugCheckDeclarationContext(Variable* variable);

  // This is meant to be called at loop back edges, |back_edge_target| is
  // the jump target of the back edge and is used to approximate the amount
  // of code inside the loop.
  void EmitBackEdgeBookkeeping(IterationStatement* stmt,
                               Label* back_edge_target);
  // Record the OSR AST id corresponding to a back edge in the code.
  void RecordBackEdge(BailoutId osr_ast_id);
  // Emit a table of back edge ids, pcs and loop depths into the code stream.
  // Return the offset of the start of the table.
  unsigned EmitBackEdgeTable();

  void EmitProfilingCounterDecrement(int delta);
  void EmitProfilingCounterReset();

  // Emit code to pop values from the stack associated with nested statements
  // like try/catch, try/finally, etc, running the finallies and unwinding the
  // handlers as needed.
  void EmitUnwindBeforeReturn();

  // Platform-specific return sequence
  void EmitReturnSequence();

  // Platform-specific code sequences for calls
  void EmitCall(Call* expr, CallICState::CallType = CallICState::FUNCTION);
  void EmitSuperConstructorCall(Call* expr);
  void EmitCallWithLoadIC(Call* expr);
  void EmitSuperCallWithLoadIC(Call* expr);
  void EmitKeyedCallWithLoadIC(Call* expr, Expression* key);
  void EmitKeyedSuperCallWithLoadIC(Call* expr);

#define FOR_EACH_FULL_CODE_INTRINSIC(F)   \
  F(IsSmi)                                \
  F(IsNonNegativeSmi)                     \
  F(IsArray)                              \
  F(IsTypedArray)                         \
  F(IsRegExp)                             \
  F(IsJSProxy)                            \
  F(IsConstructCall)                      \
  F(CallFunction)                         \
  F(DefaultConstructorCallSuper)          \
  F(ArgumentsLength)                      \
  F(Arguments)                            \
  F(ValueOf)                              \
  F(SetValueOf)                           \
  F(IsDate)                               \
  F(DateField)                            \
  F(StringCharFromCode)                   \
  F(StringCharAt)                         \
  F(OneByteSeqStringSetChar)              \
  F(TwoByteSeqStringSetChar)              \
  F(ObjectEquals)                         \
  F(IsObject)                             \
  F(IsFunction)                           \
  F(IsSpecObject)                         \
  F(IsSimdValue)                          \
  F(IsStringWrapperSafeForDefaultValueOf) \
  F(MathPow)                              \
  F(IsMinusZero)                          \
  F(HasCachedArrayIndex)                  \
  F(GetCachedArrayIndex)                  \
  F(FastOneByteArrayJoin)                 \
  F(GeneratorNext)                        \
  F(GeneratorThrow)                       \
  F(DebugBreakInOptimizedCode)            \
  F(ClassOf)                              \
  F(StringCharCodeAt)                     \
  F(StringAdd)                            \
  F(SubString)                            \
  F(StringCompare)                        \
  F(RegExpExec)                           \
  F(RegExpConstructResult)                \
  F(NumberToString)                       \
  F(ToObject)                             \
  F(DebugIsActive)

#define GENERATOR_DECLARATION(Name) void Emit##Name(CallRuntime* call);
  FOR_EACH_FULL_CODE_INTRINSIC(GENERATOR_DECLARATION)
#undef GENERATOR_DECLARATION

  // Platform-specific code for resuming generators.
  void EmitGeneratorResume(Expression *generator,
                           Expression *value,
                           JSGeneratorObject::ResumeMode resume_mode);

  // Platform-specific code for loading variables.
  void EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
                                     TypeofMode typeof_mode, Label* slow);
  MemOperand ContextSlotOperandCheckExtensions(Variable* var, Label* slow);
  void EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofMode typeof_mode,
                                 Label* slow, Label* done);
  void EmitGlobalVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode);
  void EmitVariableLoad(VariableProxy* proxy,
                        TypeofMode typeof_mode = NOT_INSIDE_TYPEOF);

  void EmitAccessor(Expression* expression);

  // Expects the arguments and the function already pushed.
  void EmitResolvePossiblyDirectEval(int arg_count);

  // Platform-specific support for allocating a new closure based on
  // the given function info.
  void EmitNewClosure(Handle<SharedFunctionInfo> info, bool pretenure);

  // Re-usable portions of CallRuntime
  void EmitLoadJSRuntimeFunction(CallRuntime* expr);
  void EmitCallJSRuntimeFunction(CallRuntime* expr);

  // Load a value from a named property.
  // The receiver is left on the stack by the IC.
  void EmitNamedPropertyLoad(Property* expr);

  // Load a value from super.named property.
  // Expect receiver ('this' value) and home_object on the stack.
  void EmitNamedSuperPropertyLoad(Property* expr);

  // Load a value from super[keyed] property.
  // Expect receiver ('this' value), home_object and key on the stack.
  void EmitKeyedSuperPropertyLoad(Property* expr);

  // Load a value from a keyed property.
  // The receiver and the key is left on the stack by the IC.
  void EmitKeyedPropertyLoad(Property* expr);

  // Adds the properties to the class (function) object and to its prototype.
  // Expects the class (function) in the accumulator. The class (function) is
  // in the accumulator after installing all the properties.
  void EmitClassDefineProperties(ClassLiteral* lit, int* used_store_slots);

  // Pushes the property key as a Name on the stack.
  void EmitPropertyKey(ObjectLiteralProperty* property, BailoutId bailout_id);

  // Apply the compound assignment operator. Expects the left operand on top
  // of the stack and the right one in the accumulator.
  void EmitBinaryOp(BinaryOperation* expr, Token::Value op);

  // Helper functions for generating inlined smi code for certain
  // binary operations.
  void EmitInlineSmiBinaryOp(BinaryOperation* expr,
                             Token::Value op,
                             Expression* left,
                             Expression* right);

  // Assign to the given expression as if via '='. The right-hand-side value
  // is expected in the accumulator. slot is only used if FLAG_vector_stores
  // is true.
  void EmitAssignment(Expression* expr, FeedbackVectorICSlot slot);

  // Complete a variable assignment.  The right-hand-side value is expected
  // in the accumulator.
  void EmitVariableAssignment(Variable* var, Token::Value op,
                              FeedbackVectorICSlot slot);

  // Helper functions to EmitVariableAssignment
  void EmitStoreToStackLocalOrContextSlot(Variable* var,
                                          MemOperand location);

  // Complete a named property assignment.  The receiver is expected on top
  // of the stack and the right-hand-side value in the accumulator.
  void EmitNamedPropertyAssignment(Assignment* expr);

  // Complete a super named property assignment. The right-hand-side value
  // is expected in accumulator.
  void EmitNamedSuperPropertyStore(Property* prop);

  // Complete a super named property assignment. The right-hand-side value
  // is expected in accumulator.
  void EmitKeyedSuperPropertyStore(Property* prop);

  // Complete a keyed property assignment.  The receiver and key are
  // expected on top of the stack and the right-hand-side value in the
  // accumulator.
  void EmitKeyedPropertyAssignment(Assignment* expr);

  static bool NeedsHomeObject(Expression* expr) {
    return FunctionLiteral::NeedsHomeObject(expr);
  }

  // Adds the [[HomeObject]] to |initializer| if it is a FunctionLiteral.
  // The value of the initializer is expected to be at the top of the stack.
  // |offset| is the offset in the stack where the home object can be found.
  void EmitSetHomeObjectIfNeeded(
      Expression* initializer, int offset,
      FeedbackVectorICSlot slot = FeedbackVectorICSlot::Invalid());

  void EmitLoadSuperConstructor(SuperCallReference* super_call_ref);

  void CallIC(Handle<Code> code,
              TypeFeedbackId id = TypeFeedbackId::None());

  // Inside typeof reference errors are never thrown.
  void CallLoadIC(TypeofMode typeof_mode, LanguageMode language_mode = SLOPPY,
                  TypeFeedbackId id = TypeFeedbackId::None());
  void CallStoreIC(TypeFeedbackId id = TypeFeedbackId::None());

  void SetFunctionPosition(FunctionLiteral* fun);
  void SetReturnPosition(FunctionLiteral* fun);

  enum InsertBreak { INSERT_BREAK, SKIP_BREAK };

  // During stepping we want to be able to break at each statement, but not at
  // every (sub-)expression. That is why by default we insert breaks at every
  // statement position, but not at every expression position, unless stated
  // otherwise.
  void SetStatementPosition(Statement* stmt,
                            InsertBreak insert_break = INSERT_BREAK);
  void SetExpressionPosition(Expression* expr,
                             InsertBreak insert_break = SKIP_BREAK);

  // Consider an expression a statement. As such, we also insert a break.
  // This is used in loop headers where we want to break for each iteration.
  void SetExpressionAsStatementPosition(Expression* expr);

  void SetCallPosition(Expression* expr, int argc);

  void SetConstructCallPosition(Expression* expr);

  // Non-local control flow support.
  void EnterTryBlock(int handler_index, Label* handler);
  void ExitTryBlock(int handler_index);
  void EnterFinallyBlock();
  void ExitFinallyBlock();
  void ClearPendingMessage();

  // Loop nesting counter.
  int loop_depth() { return loop_depth_; }
  void increment_loop_depth() { loop_depth_++; }
  void decrement_loop_depth() {
    DCHECK(loop_depth_ > 0);
    loop_depth_--;
  }

  MacroAssembler* masm() const { return masm_; }

  class ExpressionContext;
  const ExpressionContext* context() { return context_; }
  void set_new_context(const ExpressionContext* context) { context_ = context; }

  Handle<Script> script() { return info_->script(); }
  bool is_eval() { return info_->is_eval(); }
  bool is_native() { return info_->is_native(); }
  LanguageMode language_mode() { return function()->language_mode(); }
  bool has_simple_parameters() { return info_->has_simple_parameters(); }
  // TODO(titzer): rename this to literal().
  FunctionLiteral* function() { return info_->literal(); }
  Scope* scope() { return scope_; }

  static Register result_register();
  static Register context_register();

  // Set fields in the stack frame. Offsets are the frame pointer relative
  // offsets defined in, e.g., StandardFrameConstants.
  void StoreToFrameField(int frame_offset, Register value);

  // Load a value from the current context. Indices are defined as an enum
  // in v8::internal::Context.
  void LoadContextField(Register dst, int context_index);

  // Push the function argument for the runtime functions PushWithContext
  // and PushCatchContext.
  void PushFunctionArgumentForContextAllocation();

  void PushCalleeAndWithBaseObject(Call* expr);

  // AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node) override;
  AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT

  void VisitComma(BinaryOperation* expr);
  void VisitLogicalExpression(BinaryOperation* expr);
  void VisitArithmeticExpression(BinaryOperation* expr);

  void VisitForTypeofValue(Expression* expr);

  void Generate();
  void PopulateDeoptimizationData(Handle<Code> code);
  void PopulateTypeFeedbackInfo(Handle<Code> code);
  void PopulateHandlerTable(Handle<Code> code);

  bool MustCreateObjectLiteralWithRuntime(ObjectLiteral* expr) const;
  bool MustCreateArrayLiteralWithRuntime(ArrayLiteral* expr) const;

  void EmitLoadStoreICSlot(FeedbackVectorICSlot slot);

  int NewHandlerTableEntry();

  struct BailoutEntry {
    BailoutId id;
    unsigned pc_and_state;
  };

  struct BackEdgeEntry {
    BailoutId id;
    unsigned pc;
    uint32_t loop_depth;
  };

  struct HandlerTableEntry {
    unsigned range_start;
    unsigned range_end;
    unsigned handler_offset;
    int stack_depth;
    int try_catch_depth;
  };

  class ExpressionContext BASE_EMBEDDED {
   public:
    explicit ExpressionContext(FullCodeGenerator* codegen)
        : masm_(codegen->masm()), old_(codegen->context()), codegen_(codegen) {
      codegen->set_new_context(this);
    }

    virtual ~ExpressionContext() {
      codegen_->set_new_context(old_);
    }

    Isolate* isolate() const { return codegen_->isolate(); }

    // Convert constant control flow (true or false) to the result expected for
    // this expression context.
    virtual void Plug(bool flag) const = 0;

    // Emit code to convert a pure value (in a register, known variable
    // location, as a literal, or on top of the stack) into the result
    // expected according to this expression context.
    virtual void Plug(Register reg) const = 0;
    virtual void Plug(Variable* var) const = 0;
    virtual void Plug(Handle<Object> lit) const = 0;
    virtual void Plug(Heap::RootListIndex index) const = 0;
    virtual void PlugTOS() const = 0;

    // Emit code to convert pure control flow to a pair of unbound labels into
    // the result expected according to this expression context.  The
    // implementation will bind both labels unless it's a TestContext, which
    // won't bind them at this point.
    virtual void Plug(Label* materialize_true,
                      Label* materialize_false) const = 0;

    // Emit code to discard count elements from the top of stack, then convert
    // a pure value into the result expected according to this expression
    // context.
    virtual void DropAndPlug(int count, Register reg) const = 0;

    // Set up branch labels for a test expression.  The three Label** parameters
    // are output parameters.
    virtual void PrepareTest(Label* materialize_true,
                             Label* materialize_false,
                             Label** if_true,
                             Label** if_false,
                             Label** fall_through) const = 0;

    // Returns true if we are evaluating only for side effects (i.e. if the
    // result will be discarded).
    virtual bool IsEffect() const { return false; }

    // Returns true if we are evaluating for the value (in accu/on stack).
    virtual bool IsAccumulatorValue() const { return false; }
    virtual bool IsStackValue() const { return false; }

    // Returns true if we are branching on the value rather than materializing
    // it.  Only used for asserts.
    virtual bool IsTest() const { return false; }

   protected:
    FullCodeGenerator* codegen() const { return codegen_; }
    MacroAssembler* masm() const { return masm_; }
    MacroAssembler* masm_;

   private:
    const ExpressionContext* old_;
    FullCodeGenerator* codegen_;
  };

  class AccumulatorValueContext : public ExpressionContext {
   public:
    explicit AccumulatorValueContext(FullCodeGenerator* codegen)
        : ExpressionContext(codegen) { }

    virtual void Plug(bool flag) const;
    virtual void Plug(Register reg) const;
    virtual void Plug(Label* materialize_true, Label* materialize_false) const;
    virtual void Plug(Variable* var) const;
    virtual void Plug(Handle<Object> lit) const;
    virtual void Plug(Heap::RootListIndex) const;
    virtual void PlugTOS() const;
    virtual void DropAndPlug(int count, Register reg) const;
    virtual void PrepareTest(Label* materialize_true,
                             Label* materialize_false,
                             Label** if_true,
                             Label** if_false,
                             Label** fall_through) const;
    virtual bool IsAccumulatorValue() const { return true; }
  };

  class StackValueContext : public ExpressionContext {
   public:
    explicit StackValueContext(FullCodeGenerator* codegen)
        : ExpressionContext(codegen) { }

    virtual void Plug(bool flag) const;
    virtual void Plug(Register reg) const;
    virtual void Plug(Label* materialize_true, Label* materialize_false) const;
    virtual void Plug(Variable* var) const;
    virtual void Plug(Handle<Object> lit) const;
    virtual void Plug(Heap::RootListIndex) const;
    virtual void PlugTOS() const;
    virtual void DropAndPlug(int count, Register reg) const;
    virtual void PrepareTest(Label* materialize_true,
                             Label* materialize_false,
                             Label** if_true,
                             Label** if_false,
                             Label** fall_through) const;
    virtual bool IsStackValue() const { return true; }
  };

  class TestContext : public ExpressionContext {
   public:
    TestContext(FullCodeGenerator* codegen,
                Expression* condition,
                Label* true_label,
                Label* false_label,
                Label* fall_through)
        : ExpressionContext(codegen),
          condition_(condition),
          true_label_(true_label),
          false_label_(false_label),
          fall_through_(fall_through) { }

    static const TestContext* cast(const ExpressionContext* context) {
      DCHECK(context->IsTest());
      return reinterpret_cast<const TestContext*>(context);
    }

    Expression* condition() const { return condition_; }
    Label* true_label() const { return true_label_; }
    Label* false_label() const { return false_label_; }
    Label* fall_through() const { return fall_through_; }

    virtual void Plug(bool flag) const;
    virtual void Plug(Register reg) const;
    virtual void Plug(Label* materialize_true, Label* materialize_false) const;
    virtual void Plug(Variable* var) const;
    virtual void Plug(Handle<Object> lit) const;
    virtual void Plug(Heap::RootListIndex) const;
    virtual void PlugTOS() const;
    virtual void DropAndPlug(int count, Register reg) const;
    virtual void PrepareTest(Label* materialize_true,
                             Label* materialize_false,
                             Label** if_true,
                             Label** if_false,
                             Label** fall_through) const;
    virtual bool IsTest() const { return true; }

   private:
    Expression* condition_;
    Label* true_label_;
    Label* false_label_;
    Label* fall_through_;
  };

  class EffectContext : public ExpressionContext {
   public:
    explicit EffectContext(FullCodeGenerator* codegen)
        : ExpressionContext(codegen) { }

    virtual void Plug(bool flag) const;
    virtual void Plug(Register reg) const;
    virtual void Plug(Label* materialize_true, Label* materialize_false) const;
    virtual void Plug(Variable* var) const;
    virtual void Plug(Handle<Object> lit) const;
    virtual void Plug(Heap::RootListIndex) const;
    virtual void PlugTOS() const;
    virtual void DropAndPlug(int count, Register reg) const;
    virtual void PrepareTest(Label* materialize_true,
                             Label* materialize_false,
                             Label** if_true,
                             Label** if_false,
                             Label** fall_through) const;
    virtual bool IsEffect() const { return true; }
  };

  class EnterBlockScopeIfNeeded {
   public:
    EnterBlockScopeIfNeeded(FullCodeGenerator* codegen, Scope* scope,
                            BailoutId entry_id, BailoutId declarations_id,
                            BailoutId exit_id);
    ~EnterBlockScopeIfNeeded();

   private:
    MacroAssembler* masm() const { return codegen_->masm(); }

    FullCodeGenerator* codegen_;
    Scope* saved_scope_;
    BailoutId exit_id_;
    bool needs_block_context_;
  };

  MacroAssembler* masm_;
  CompilationInfo* info_;
  Scope* scope_;
  Label return_label_;
  NestedStatement* nesting_stack_;
  int loop_depth_;
  int try_catch_depth_;
  ZoneList<Handle<Object> >* globals_;
  Handle<FixedArray> modules_;
  int module_index_;
  const ExpressionContext* context_;
  ZoneList<BailoutEntry> bailout_entries_;
  ZoneList<BackEdgeEntry> back_edges_;
  ZoneVector<HandlerTableEntry> handler_table_;
  int ic_total_count_;
  Handle<Cell> profiling_counter_;
  bool generate_debug_code_;

  friend class NestedStatement;

  DEFINE_AST_VISITOR_SUBCLASS_MEMBERS();
  DISALLOW_COPY_AND_ASSIGN(FullCodeGenerator);
};


// A map from property names to getter/setter pairs allocated in the zone.
class AccessorTable: public TemplateHashMap<Literal,
                                            ObjectLiteral::Accessors,
                                            ZoneAllocationPolicy> {
 public:
  explicit AccessorTable(Zone* zone) :
      TemplateHashMap<Literal, ObjectLiteral::Accessors,
                      ZoneAllocationPolicy>(Literal::Match,
                                            ZoneAllocationPolicy(zone)),
      zone_(zone) { }

  Iterator lookup(Literal* literal) {
    Iterator it = find(literal, true, ZoneAllocationPolicy(zone_));
    if (it->second == NULL) it->second = new(zone_) ObjectLiteral::Accessors();
    return it;
  }

 private:
  Zone* zone_;
};


class BackEdgeTable {
 public:
  BackEdgeTable(Code* code, DisallowHeapAllocation* required) {
    DCHECK(code->kind() == Code::FUNCTION);
    instruction_start_ = code->instruction_start();
    Address table_address = instruction_start_ + code->back_edge_table_offset();
    length_ = Memory::uint32_at(table_address);
    start_ = table_address + kTableLengthSize;
  }

  uint32_t length() { return length_; }

  BailoutId ast_id(uint32_t index) {
    return BailoutId(static_cast<int>(
        Memory::uint32_at(entry_at(index) + kAstIdOffset)));
  }

  uint32_t loop_depth(uint32_t index) {
    return Memory::uint32_at(entry_at(index) + kLoopDepthOffset);
  }

  uint32_t pc_offset(uint32_t index) {
    return Memory::uint32_at(entry_at(index) + kPcOffsetOffset);
  }

  Address pc(uint32_t index) {
    return instruction_start_ + pc_offset(index);
  }

  enum BackEdgeState {
    INTERRUPT,
    ON_STACK_REPLACEMENT,
    OSR_AFTER_STACK_CHECK
  };

  // Increase allowed loop nesting level by one and patch those matching loops.
  static void Patch(Isolate* isolate, Code* unoptimized_code);

  // Patch the back edge to the target state, provided the correct callee.
  static void PatchAt(Code* unoptimized_code,
                      Address pc,
                      BackEdgeState target_state,
                      Code* replacement_code);

  // Change all patched back edges back to normal interrupts.
  static void Revert(Isolate* isolate,
                     Code* unoptimized_code);

  // Change a back edge patched for on-stack replacement to perform a
  // stack check first.
  static void AddStackCheck(Handle<Code> code, uint32_t pc_offset);

  // Revert the patch by AddStackCheck.
  static void RemoveStackCheck(Handle<Code> code, uint32_t pc_offset);

  // Return the current patch state of the back edge.
  static BackEdgeState GetBackEdgeState(Isolate* isolate,
                                        Code* unoptimized_code,
                                        Address pc_after);

#ifdef DEBUG
  // Verify that all back edges of a certain loop depth are patched.
  static bool Verify(Isolate* isolate, Code* unoptimized_code);
#endif  // DEBUG

 private:
  Address entry_at(uint32_t index) {
    DCHECK(index < length_);
    return start_ + index * kEntrySize;
  }

  static const int kTableLengthSize = kIntSize;
  static const int kAstIdOffset = 0 * kIntSize;
  static const int kPcOffsetOffset = 1 * kIntSize;
  static const int kLoopDepthOffset = 2 * kIntSize;
  static const int kEntrySize = 3 * kIntSize;

  Address start_;
  Address instruction_start_;
  uint32_t length_;
};


} }  // namespace v8::internal

#endif  // V8_FULL_CODEGEN_FULL_CODEGEN_H_