summaryrefslogtreecommitdiff
path: root/deps/v8/src/execution/futex-emulation.cc
blob: 8c3b54c2a7e6afd0b4125ada2818cdc55c5ed4b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/execution/futex-emulation.h"

#include <limits>

#include "src/base/macros.h"
#include "src/base/platform/time.h"
#include "src/execution/isolate.h"
#include "src/handles/handles-inl.h"
#include "src/numbers/conversions.h"
#include "src/objects/bigint.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/objects-inl.h"

namespace v8 {
namespace internal {

using AtomicsWaitEvent = v8::Isolate::AtomicsWaitEvent;

base::LazyMutex FutexEmulation::mutex_ = LAZY_MUTEX_INITIALIZER;
base::LazyInstance<FutexWaitList>::type FutexEmulation::wait_list_ =
    LAZY_INSTANCE_INITIALIZER;

void FutexWaitListNode::NotifyWake() {
  // Lock the FutexEmulation mutex before notifying. We know that the mutex
  // will have been unlocked if we are currently waiting on the condition
  // variable. The mutex will not be locked if FutexEmulation::Wait hasn't
  // locked it yet. In that case, we set the interrupted_
  // flag to true, which will be tested after the mutex locked by a future wait.
  base::MutexGuard lock_guard(FutexEmulation::mutex_.Pointer());
  // if not waiting, this will not have any effect.
  cond_.NotifyOne();
  interrupted_ = true;
}

FutexWaitList::FutexWaitList() : head_(nullptr), tail_(nullptr) {}

void FutexWaitList::AddNode(FutexWaitListNode* node) {
  DCHECK(node->prev_ == nullptr && node->next_ == nullptr);
  if (tail_) {
    tail_->next_ = node;
  } else {
    head_ = node;
  }

  node->prev_ = tail_;
  node->next_ = nullptr;
  tail_ = node;
}

void FutexWaitList::RemoveNode(FutexWaitListNode* node) {
  if (node->prev_) {
    node->prev_->next_ = node->next_;
  } else {
    head_ = node->next_;
  }

  if (node->next_) {
    node->next_->prev_ = node->prev_;
  } else {
    tail_ = node->prev_;
  }

  node->prev_ = node->next_ = nullptr;
}

void AtomicsWaitWakeHandle::Wake() {
  // Adding a separate `NotifyWake()` variant that doesn't acquire the lock
  // itself would likely just add unnecessary complexity..
  // The split lock by itself isn’t an issue, as long as the caller properly
  // synchronizes this with the closing `AtomicsWaitCallback`.
  {
    base::MutexGuard lock_guard(FutexEmulation::mutex_.Pointer());
    stopped_ = true;
  }
  isolate_->futex_wait_list_node()->NotifyWake();
}

enum WaitReturnValue : int { kOk = 0, kNotEqual = 1, kTimedOut = 2 };

namespace {

Object WaitJsTranslateReturn(Isolate* isolate, Object res) {
  if (res.IsSmi()) {
    int val = Smi::ToInt(res);
    switch (val) {
      case WaitReturnValue::kOk:
        return ReadOnlyRoots(isolate).ok();
      case WaitReturnValue::kNotEqual:
        return ReadOnlyRoots(isolate).not_equal();
      case WaitReturnValue::kTimedOut:
        return ReadOnlyRoots(isolate).timed_out();
      default:
        UNREACHABLE();
    }
  }
  return res;
}

}  // namespace

Object FutexEmulation::WaitJs32(Isolate* isolate,
                                Handle<JSArrayBuffer> array_buffer, size_t addr,
                                int32_t value, double rel_timeout_ms) {
  Object res = Wait32(isolate, array_buffer, addr, value, rel_timeout_ms);
  return WaitJsTranslateReturn(isolate, res);
}

Object FutexEmulation::WaitJs64(Isolate* isolate,
                                Handle<JSArrayBuffer> array_buffer, size_t addr,
                                int64_t value, double rel_timeout_ms) {
  Object res = Wait64(isolate, array_buffer, addr, value, rel_timeout_ms);
  return WaitJsTranslateReturn(isolate, res);
}

Object FutexEmulation::Wait32(Isolate* isolate,
                              Handle<JSArrayBuffer> array_buffer, size_t addr,
                              int32_t value, double rel_timeout_ms) {
  return Wait<int32_t>(isolate, array_buffer, addr, value, rel_timeout_ms);
}

Object FutexEmulation::Wait64(Isolate* isolate,
                              Handle<JSArrayBuffer> array_buffer, size_t addr,
                              int64_t value, double rel_timeout_ms) {
  return Wait<int64_t>(isolate, array_buffer, addr, value, rel_timeout_ms);
}

template <typename T>
Object FutexEmulation::Wait(Isolate* isolate,
                            Handle<JSArrayBuffer> array_buffer, size_t addr,
                            T value, double rel_timeout_ms) {
  DCHECK_LT(addr, array_buffer->byte_length());

  bool use_timeout = rel_timeout_ms != V8_INFINITY;

  base::TimeDelta rel_timeout;
  if (use_timeout) {
    // Convert to nanoseconds.
    double rel_timeout_ns = rel_timeout_ms *
                            base::Time::kNanosecondsPerMicrosecond *
                            base::Time::kMicrosecondsPerMillisecond;
    if (rel_timeout_ns >
        static_cast<double>(std::numeric_limits<int64_t>::max())) {
      // 2**63 nanoseconds is 292 years. Let's just treat anything greater as
      // infinite.
      use_timeout = false;
    } else {
      rel_timeout = base::TimeDelta::FromNanoseconds(
          static_cast<int64_t>(rel_timeout_ns));
    }
  }

  AtomicsWaitWakeHandle stop_handle(isolate);

  isolate->RunAtomicsWaitCallback(AtomicsWaitEvent::kStartWait, array_buffer,
                                  addr, value, rel_timeout_ms, &stop_handle);

  if (isolate->has_scheduled_exception()) {
    return isolate->PromoteScheduledException();
  }

  Object result;
  AtomicsWaitEvent callback_result = AtomicsWaitEvent::kWokenUp;

  do {  // Not really a loop, just makes it easier to break out early.
    base::MutexGuard lock_guard(mutex_.Pointer());
    void* backing_store = array_buffer->backing_store();

    FutexWaitListNode* node = isolate->futex_wait_list_node();
    node->backing_store_ = backing_store;
    node->wait_addr_ = addr;
    node->waiting_ = true;

    // Reset node->waiting_ = false when leaving this scope (but while
    // still holding the lock).
    ResetWaitingOnScopeExit reset_waiting(node);

    T* p = reinterpret_cast<T*>(static_cast<int8_t*>(backing_store) + addr);
    if (*p != value) {
      result = Smi::FromInt(WaitReturnValue::kNotEqual);
      callback_result = AtomicsWaitEvent::kNotEqual;
      break;
    }

    base::TimeTicks timeout_time;
    base::TimeTicks current_time;

    if (use_timeout) {
      current_time = base::TimeTicks::Now();
      timeout_time = current_time + rel_timeout;
    }

    wait_list_.Pointer()->AddNode(node);

    while (true) {
      bool interrupted = node->interrupted_;
      node->interrupted_ = false;

      // Unlock the mutex here to prevent deadlock from lock ordering between
      // mutex_ and mutexes locked by HandleInterrupts.
      mutex_.Pointer()->Unlock();

      // Because the mutex is unlocked, we have to be careful about not dropping
      // an interrupt. The notification can happen in three different places:
      // 1) Before Wait is called: the notification will be dropped, but
      //    interrupted_ will be set to 1. This will be checked below.
      // 2) After interrupted has been checked here, but before mutex_ is
      //    acquired: interrupted is checked again below, with mutex_ locked.
      //    Because the wakeup signal also acquires mutex_, we know it will not
      //    be able to notify until mutex_ is released below, when waiting on
      //    the condition variable.
      // 3) After the mutex is released in the call to WaitFor(): this
      // notification will wake up the condition variable. node->waiting() will
      // be false, so we'll loop and then check interrupts.
      if (interrupted) {
        Object interrupt_object = isolate->stack_guard()->HandleInterrupts();
        if (interrupt_object.IsException(isolate)) {
          result = interrupt_object;
          callback_result = AtomicsWaitEvent::kTerminatedExecution;
          mutex_.Pointer()->Lock();
          break;
        }
      }

      mutex_.Pointer()->Lock();

      if (node->interrupted_) {
        // An interrupt occurred while the mutex_ was unlocked. Don't wait yet.
        continue;
      }

      if (stop_handle.has_stopped()) {
        node->waiting_ = false;
        callback_result = AtomicsWaitEvent::kAPIStopped;
      }

      if (!node->waiting_) {
        result = Smi::FromInt(WaitReturnValue::kOk);
        break;
      }

      // No interrupts, now wait.
      if (use_timeout) {
        current_time = base::TimeTicks::Now();
        if (current_time >= timeout_time) {
          result = Smi::FromInt(WaitReturnValue::kTimedOut);
          callback_result = AtomicsWaitEvent::kTimedOut;
          break;
        }

        base::TimeDelta time_until_timeout = timeout_time - current_time;
        DCHECK_GE(time_until_timeout.InMicroseconds(), 0);
        bool wait_for_result =
            node->cond_.WaitFor(mutex_.Pointer(), time_until_timeout);
        USE(wait_for_result);
      } else {
        node->cond_.Wait(mutex_.Pointer());
      }

      // Spurious wakeup, interrupt or timeout.
    }

    wait_list_.Pointer()->RemoveNode(node);
  } while (false);

  isolate->RunAtomicsWaitCallback(callback_result, array_buffer, addr, value,
                                  rel_timeout_ms, nullptr);

  if (isolate->has_scheduled_exception()) {
    CHECK_NE(callback_result, AtomicsWaitEvent::kTerminatedExecution);
    result = isolate->PromoteScheduledException();
  }

  return result;
}

Object FutexEmulation::Wake(Handle<JSArrayBuffer> array_buffer, size_t addr,
                            uint32_t num_waiters_to_wake) {
  DCHECK_LT(addr, array_buffer->byte_length());

  int waiters_woken = 0;
  void* backing_store = array_buffer->backing_store();

  base::MutexGuard lock_guard(mutex_.Pointer());
  FutexWaitListNode* node = wait_list_.Pointer()->head_;
  while (node && num_waiters_to_wake > 0) {
    if (backing_store == node->backing_store_ && addr == node->wait_addr_ &&
        node->waiting_) {
      node->waiting_ = false;
      node->cond_.NotifyOne();
      if (num_waiters_to_wake != kWakeAll) {
        --num_waiters_to_wake;
      }
      waiters_woken++;
    }

    node = node->next_;
  }

  return Smi::FromInt(waiters_woken);
}

Object FutexEmulation::NumWaitersForTesting(Handle<JSArrayBuffer> array_buffer,
                                            size_t addr) {
  DCHECK_LT(addr, array_buffer->byte_length());
  void* backing_store = array_buffer->backing_store();

  base::MutexGuard lock_guard(mutex_.Pointer());

  int waiters = 0;
  FutexWaitListNode* node = wait_list_.Pointer()->head_;
  while (node) {
    if (backing_store == node->backing_store_ && addr == node->wait_addr_ &&
        node->waiting_) {
      waiters++;
    }

    node = node->next_;
  }

  return Smi::FromInt(waiters);
}

}  // namespace internal
}  // namespace v8