summaryrefslogtreecommitdiff
path: root/deps/v8/src/execution/arm64/simulator-arm64.h
blob: ca1cef61aef9c55b64664cc89cd8933311289380 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_EXECUTION_ARM64_SIMULATOR_ARM64_H_
#define V8_EXECUTION_ARM64_SIMULATOR_ARM64_H_

// globals.h defines USE_SIMULATOR.
#include "src/common/globals.h"

#if defined(USE_SIMULATOR)

#include <stdarg.h>
#include <vector>

#include "src/base/compiler-specific.h"
#include "src/codegen/arm64/assembler-arm64.h"
#include "src/codegen/arm64/decoder-arm64.h"
#include "src/codegen/arm64/instrument-arm64.h"
#include "src/codegen/assembler.h"
#include "src/diagnostics/arm64/disasm-arm64.h"
#include "src/execution/simulator-base.h"
#include "src/utils/allocation.h"
#include "src/utils/utils.h"

namespace v8 {
namespace internal {

// Assemble the specified IEEE-754 components into the target type and apply
// appropriate rounding.
//  sign:     0 = positive, 1 = negative
//  exponent: Unbiased IEEE-754 exponent.
//  mantissa: The mantissa of the input. The top bit (which is not encoded for
//            normal IEEE-754 values) must not be omitted. This bit has the
//            value 'pow(2, exponent)'.
//
// The input value is assumed to be a normalized value. That is, the input may
// not be infinity or NaN. If the source value is subnormal, it must be
// normalized before calling this function such that the highest set bit in the
// mantissa has the value 'pow(2, exponent)'.
//
// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
// calling a templated FPRound.
template <class T, int ebits, int mbits>
T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
          FPRounding round_mode) {
  static_assert((sizeof(T) * 8) >= (1 + ebits + mbits),
                "destination type T not large enough");
  static_assert(sizeof(T) <= sizeof(uint64_t),
                "maximum size of destination type T is 64 bits");
  static_assert(std::is_unsigned<T>::value,
                "destination type T must be unsigned");

  DCHECK((sign == 0) || (sign == 1));

  // Only FPTieEven and FPRoundOdd rounding modes are implemented.
  DCHECK((round_mode == FPTieEven) || (round_mode == FPRoundOdd));

  // Rounding can promote subnormals to normals, and normals to infinities. For
  // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
  // encodable as a float, but rounding based on the low-order mantissa bits
  // could make it overflow. With ties-to-even rounding, this value would become
  // an infinity.

  // ---- Rounding Method ----
  //
  // The exponent is irrelevant in the rounding operation, so we treat the
  // lowest-order bit that will fit into the result ('onebit') as having
  // the value '1'. Similarly, the highest-order bit that won't fit into
  // the result ('halfbit') has the value '0.5'. The 'point' sits between
  // 'onebit' and 'halfbit':
  //
  //            These bits fit into the result.
  //               |---------------------|
  //  mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
  //                                     ||
  //                                    / |
  //                                   /  halfbit
  //                               onebit
  //
  // For subnormal outputs, the range of representable bits is smaller and
  // the position of onebit and halfbit depends on the exponent of the
  // input, but the method is otherwise similar.
  //
  //   onebit(frac)
  //     |
  //     | halfbit(frac)          halfbit(adjusted)
  //     | /                      /
  //     | |                      |
  //  0b00.0 (exact)      -> 0b00.0 (exact)                    -> 0b00
  //  0b00.0...           -> 0b00.0...                         -> 0b00
  //  0b00.1 (exact)      -> 0b00.0111..111                    -> 0b00
  //  0b00.1...           -> 0b00.1...                         -> 0b01
  //  0b01.0 (exact)      -> 0b01.0 (exact)                    -> 0b01
  //  0b01.0...           -> 0b01.0...                         -> 0b01
  //  0b01.1 (exact)      -> 0b01.1 (exact)                    -> 0b10
  //  0b01.1...           -> 0b01.1...                         -> 0b10
  //  0b10.0 (exact)      -> 0b10.0 (exact)                    -> 0b10
  //  0b10.0...           -> 0b10.0...                         -> 0b10
  //  0b10.1 (exact)      -> 0b10.0111..111                    -> 0b10
  //  0b10.1...           -> 0b10.1...                         -> 0b11
  //  0b11.0 (exact)      -> 0b11.0 (exact)                    -> 0b11
  //  ...                   /             |                      /   |
  //                       /              |                     /    |
  //                                                           /     |
  // adjusted = frac - (halfbit(mantissa) & ~onebit(frac));   /      |
  //
  //                   mantissa = (mantissa >> shift) + halfbit(adjusted);

  const int mantissa_offset = 0;
  const int exponent_offset = mantissa_offset + mbits;
  const int sign_offset = exponent_offset + ebits;
  DCHECK_EQ(sign_offset, static_cast<int>(sizeof(T) * 8 - 1));

  // Bail out early for zero inputs.
  if (mantissa == 0) {
    return static_cast<T>(sign << sign_offset);
  }

  // If all bits in the exponent are set, the value is infinite or NaN.
  // This is true for all binary IEEE-754 formats.
  const int infinite_exponent = (1 << ebits) - 1;
  const int max_normal_exponent = infinite_exponent - 1;

  // Apply the exponent bias to encode it for the result. Doing this early makes
  // it easy to detect values that will be infinite or subnormal.
  exponent += max_normal_exponent >> 1;

  if (exponent > max_normal_exponent) {
    // Overflow: the input is too large for the result type to represent.
    if (round_mode == FPTieEven) {
      // FPTieEven rounding mode handles overflows using infinities.
      exponent = infinite_exponent;
      mantissa = 0;
    } else {
      DCHECK_EQ(round_mode, FPRoundOdd);
      // FPRoundOdd rounding mode handles overflows using the largest magnitude
      // normal number.
      exponent = max_normal_exponent;
      mantissa = (UINT64_C(1) << exponent_offset) - 1;
    }
    return static_cast<T>((sign << sign_offset) |
                          (exponent << exponent_offset) |
                          (mantissa << mantissa_offset));
  }

  // Calculate the shift required to move the top mantissa bit to the proper
  // place in the destination type.
  const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64);
  int shift = highest_significant_bit - mbits;

  if (exponent <= 0) {
    // The output will be subnormal (before rounding).
    // For subnormal outputs, the shift must be adjusted by the exponent. The +1
    // is necessary because the exponent of a subnormal value (encoded as 0) is
    // the same as the exponent of the smallest normal value (encoded as 1).
    shift += -exponent + 1;

    // Handle inputs that would produce a zero output.
    //
    // Shifts higher than highest_significant_bit+1 will always produce a zero
    // result. A shift of exactly highest_significant_bit+1 might produce a
    // non-zero result after rounding.
    if (shift > (highest_significant_bit + 1)) {
      if (round_mode == FPTieEven) {
        // The result will always be +/-0.0.
        return static_cast<T>(sign << sign_offset);
      } else {
        DCHECK_EQ(round_mode, FPRoundOdd);
        DCHECK_NE(mantissa, 0U);
        // For FPRoundOdd, if the mantissa is too small to represent and
        // non-zero return the next "odd" value.
        return static_cast<T>((sign << sign_offset) | 1);
      }
    }

    // Properly encode the exponent for a subnormal output.
    exponent = 0;
  } else {
    // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
    // normal values.
    mantissa &= ~(UINT64_C(1) << highest_significant_bit);
  }

  if (shift > 0) {
    if (round_mode == FPTieEven) {
      // We have to shift the mantissa to the right. Some precision is lost, so
      // we need to apply rounding.
      uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
      uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1;
      uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
      uint64_t adjusted = mantissa - adjustment;
      T halfbit_adjusted = (adjusted >> (shift - 1)) & 1;

      T result =
          static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) |
                         ((mantissa >> shift) << mantissa_offset));

      // A very large mantissa can overflow during rounding. If this happens,
      // the exponent should be incremented and the mantissa set to 1.0
      // (encoded as 0). Applying halfbit_adjusted after assembling the float
      // has the nice side-effect that this case is handled for free.
      //
      // This also handles cases where a very large finite value overflows to
      // infinity, or where a very large subnormal value overflows to become
      // normal.
      return result + halfbit_adjusted;
    } else {
      DCHECK_EQ(round_mode, FPRoundOdd);
      // If any bits at position halfbit or below are set, onebit (ie. the
      // bottom bit of the resulting mantissa) must be set.
      uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
      if (fractional_bits != 0) {
        mantissa |= UINT64_C(1) << shift;
      }

      return static_cast<T>((sign << sign_offset) |
                            (exponent << exponent_offset) |
                            ((mantissa >> shift) << mantissa_offset));
    }
  } else {
    // We have to shift the mantissa to the left (or not at all). The input
    // mantissa is exactly representable in the output mantissa, so apply no
    // rounding correction.
    return static_cast<T>((sign << sign_offset) |
                          (exponent << exponent_offset) |
                          ((mantissa << -shift) << mantissa_offset));
  }
}

class CachePage {
  // TODO(all): Simulate instruction cache.
};

// Representation of memory, with typed getters and setters for access.
class SimMemory {
 public:
  template <typename T>
  static T AddressUntag(T address) {
    // Cast the address using a C-style cast. A reinterpret_cast would be
    // appropriate, but it can't cast one integral type to another.
    uint64_t bits = (uint64_t)address;
    return (T)(bits & ~kAddressTagMask);
  }

  template <typename T, typename A>
  static T Read(A address) {
    T value;
    address = AddressUntag(address);
    DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) ||
           (sizeof(value) == 4) || (sizeof(value) == 8) ||
           (sizeof(value) == 16));
    memcpy(&value, reinterpret_cast<const char*>(address), sizeof(value));
    return value;
  }

  template <typename T, typename A>
  static void Write(A address, T value) {
    address = AddressUntag(address);
    DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) ||
           (sizeof(value) == 4) || (sizeof(value) == 8) ||
           (sizeof(value) == 16));
    memcpy(reinterpret_cast<char*>(address), &value, sizeof(value));
  }
};

// The proper way to initialize a simulated system register (such as NZCV) is as
// follows:
//  SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV);
class SimSystemRegister {
 public:
  // The default constructor represents a register which has no writable bits.
  // It is not possible to set its value to anything other than 0.
  SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) {}

  uint32_t RawValue() const { return value_; }

  void SetRawValue(uint32_t new_value) {
    value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_);
  }

  uint32_t Bits(int msb, int lsb) const {
    return unsigned_bitextract_32(msb, lsb, value_);
  }

  int32_t SignedBits(int msb, int lsb) const {
    return signed_bitextract_32(msb, lsb, value_);
  }

  void SetBits(int msb, int lsb, uint32_t bits);

  // Default system register values.
  static SimSystemRegister DefaultValueFor(SystemRegister id);

#define DEFINE_GETTER(Name, HighBit, LowBit, Func, Type)                 \
  Type Name() const { return static_cast<Type>(Func(HighBit, LowBit)); } \
  void Set##Name(Type bits) {                                            \
    SetBits(HighBit, LowBit, static_cast<Type>(bits));                   \
  }
#define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \
  static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask);
  SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK)
#undef DEFINE_ZERO_BITS
#undef DEFINE_GETTER

 protected:
  // Most system registers only implement a few of the bits in the word. Other
  // bits are "read-as-zero, write-ignored". The write_ignore_mask argument
  // describes the bits which are not modifiable.
  SimSystemRegister(uint32_t value, uint32_t write_ignore_mask)
      : value_(value), write_ignore_mask_(write_ignore_mask) {}

  uint32_t value_;
  uint32_t write_ignore_mask_;
};

// Represent a register (r0-r31, v0-v31).
template <int kSizeInBytes>
class SimRegisterBase {
 public:
  template <typename T>
  void Set(T new_value) {
    static_assert(sizeof(new_value) <= kSizeInBytes,
                  "Size of new_value must be <= size of template type.");
    if (sizeof(new_value) < kSizeInBytes) {
      // All AArch64 registers are zero-extending.
      memset(value_ + sizeof(new_value), 0, kSizeInBytes - sizeof(new_value));
    }
    memcpy(&value_, &new_value, sizeof(T));
    NotifyRegisterWrite();
  }

  // Insert a typed value into a register, leaving the rest of the register
  // unchanged. The lane parameter indicates where in the register the value
  // should be inserted, in the range [ 0, sizeof(value_) / sizeof(T) ), where
  // 0 represents the least significant bits.
  template <typename T>
  void Insert(int lane, T new_value) {
    DCHECK_GE(lane, 0);
    DCHECK_LE(sizeof(new_value) + (lane * sizeof(new_value)),
              static_cast<unsigned>(kSizeInBytes));
    memcpy(&value_[lane * sizeof(new_value)], &new_value, sizeof(new_value));
    NotifyRegisterWrite();
  }

  template <typename T>
  T Get(int lane = 0) const {
    T result;
    DCHECK_GE(lane, 0);
    DCHECK_LE(sizeof(result) + (lane * sizeof(result)),
              static_cast<unsigned>(kSizeInBytes));
    memcpy(&result, &value_[lane * sizeof(result)], sizeof(result));
    return result;
  }

  // TODO(all): Make this return a map of updated bytes, so that we can
  // highlight updated lanes for load-and-insert. (That never happens for scalar
  // code, but NEON has some instructions that can update individual lanes.)
  bool WrittenSinceLastLog() const { return written_since_last_log_; }

  void NotifyRegisterLogged() { written_since_last_log_ = false; }

 protected:
  uint8_t value_[kSizeInBytes];

  // Helpers to aid with register tracing.
  bool written_since_last_log_;

  void NotifyRegisterWrite() { written_since_last_log_ = true; }
};

using SimRegister = SimRegisterBase<kXRegSize>;   // r0-r31
using SimVRegister = SimRegisterBase<kQRegSize>;  // v0-v31

// Representation of a vector register, with typed getters and setters for lanes
// and additional information to represent lane state.
class LogicVRegister {
 public:
  inline LogicVRegister(SimVRegister& other)  // NOLINT
      : register_(other) {
    for (unsigned i = 0; i < arraysize(saturated_); i++) {
      saturated_[i] = kNotSaturated;
    }
    for (unsigned i = 0; i < arraysize(round_); i++) {
      round_[i] = false;
    }
  }

  int64_t Int(VectorFormat vform, int index) const {
    int64_t element;
    switch (LaneSizeInBitsFromFormat(vform)) {
      case 8:
        element = register_.Get<int8_t>(index);
        break;
      case 16:
        element = register_.Get<int16_t>(index);
        break;
      case 32:
        element = register_.Get<int32_t>(index);
        break;
      case 64:
        element = register_.Get<int64_t>(index);
        break;
      default:
        UNREACHABLE();
        return 0;
    }
    return element;
  }

  uint64_t Uint(VectorFormat vform, int index) const {
    uint64_t element;
    switch (LaneSizeInBitsFromFormat(vform)) {
      case 8:
        element = register_.Get<uint8_t>(index);
        break;
      case 16:
        element = register_.Get<uint16_t>(index);
        break;
      case 32:
        element = register_.Get<uint32_t>(index);
        break;
      case 64:
        element = register_.Get<uint64_t>(index);
        break;
      default:
        UNREACHABLE();
        return 0;
    }
    return element;
  }

  uint64_t UintLeftJustified(VectorFormat vform, int index) const {
    return Uint(vform, index) << (64 - LaneSizeInBitsFromFormat(vform));
  }

  int64_t IntLeftJustified(VectorFormat vform, int index) const {
    uint64_t value = UintLeftJustified(vform, index);
    int64_t result;
    memcpy(&result, &value, sizeof(result));
    return result;
  }

  void SetInt(VectorFormat vform, int index, int64_t value) const {
    switch (LaneSizeInBitsFromFormat(vform)) {
      case 8:
        register_.Insert(index, static_cast<int8_t>(value));
        break;
      case 16:
        register_.Insert(index, static_cast<int16_t>(value));
        break;
      case 32:
        register_.Insert(index, static_cast<int32_t>(value));
        break;
      case 64:
        register_.Insert(index, static_cast<int64_t>(value));
        break;
      default:
        UNREACHABLE();
        return;
    }
  }

  void SetIntArray(VectorFormat vform, const int64_t* src) const {
    ClearForWrite(vform);
    for (int i = 0; i < LaneCountFromFormat(vform); i++) {
      SetInt(vform, i, src[i]);
    }
  }

  void SetUint(VectorFormat vform, int index, uint64_t value) const {
    switch (LaneSizeInBitsFromFormat(vform)) {
      case 8:
        register_.Insert(index, static_cast<uint8_t>(value));
        break;
      case 16:
        register_.Insert(index, static_cast<uint16_t>(value));
        break;
      case 32:
        register_.Insert(index, static_cast<uint32_t>(value));
        break;
      case 64:
        register_.Insert(index, static_cast<uint64_t>(value));
        break;
      default:
        UNREACHABLE();
        return;
    }
  }

  void SetUintArray(VectorFormat vform, const uint64_t* src) const {
    ClearForWrite(vform);
    for (int i = 0; i < LaneCountFromFormat(vform); i++) {
      SetUint(vform, i, src[i]);
    }
  }

  void ReadUintFromMem(VectorFormat vform, int index, uint64_t addr) const;

  void WriteUintToMem(VectorFormat vform, int index, uint64_t addr) const;

  template <typename T>
  T Float(int index) const {
    return register_.Get<T>(index);
  }

  template <typename T>
  void SetFloat(int index, T value) const {
    register_.Insert(index, value);
  }

  // When setting a result in a register of size less than Q, the top bits of
  // the Q register must be cleared.
  void ClearForWrite(VectorFormat vform) const {
    unsigned size = RegisterSizeInBytesFromFormat(vform);
    for (unsigned i = size; i < kQRegSize; i++) {
      SetUint(kFormat16B, i, 0);
    }
  }

  // Saturation state for each lane of a vector.
  enum Saturation {
    kNotSaturated = 0,
    kSignedSatPositive = 1 << 0,
    kSignedSatNegative = 1 << 1,
    kSignedSatMask = kSignedSatPositive | kSignedSatNegative,
    kSignedSatUndefined = kSignedSatMask,
    kUnsignedSatPositive = 1 << 2,
    kUnsignedSatNegative = 1 << 3,
    kUnsignedSatMask = kUnsignedSatPositive | kUnsignedSatNegative,
    kUnsignedSatUndefined = kUnsignedSatMask
  };

  // Getters for saturation state.
  Saturation GetSignedSaturation(int index) {
    return static_cast<Saturation>(saturated_[index] & kSignedSatMask);
  }

  Saturation GetUnsignedSaturation(int index) {
    return static_cast<Saturation>(saturated_[index] & kUnsignedSatMask);
  }

  // Setters for saturation state.
  void ClearSat(int index) { saturated_[index] = kNotSaturated; }

  void SetSignedSat(int index, bool positive) {
    SetSatFlag(index, positive ? kSignedSatPositive : kSignedSatNegative);
  }

  void SetUnsignedSat(int index, bool positive) {
    SetSatFlag(index, positive ? kUnsignedSatPositive : kUnsignedSatNegative);
  }

  void SetSatFlag(int index, Saturation sat) {
    saturated_[index] = static_cast<Saturation>(saturated_[index] | sat);
    DCHECK_NE(sat & kUnsignedSatMask, kUnsignedSatUndefined);
    DCHECK_NE(sat & kSignedSatMask, kSignedSatUndefined);
  }

  // Saturate lanes of a vector based on saturation state.
  LogicVRegister& SignedSaturate(VectorFormat vform) {
    for (int i = 0; i < LaneCountFromFormat(vform); i++) {
      Saturation sat = GetSignedSaturation(i);
      if (sat == kSignedSatPositive) {
        SetInt(vform, i, MaxIntFromFormat(vform));
      } else if (sat == kSignedSatNegative) {
        SetInt(vform, i, MinIntFromFormat(vform));
      }
    }
    return *this;
  }

  LogicVRegister& UnsignedSaturate(VectorFormat vform) {
    for (int i = 0; i < LaneCountFromFormat(vform); i++) {
      Saturation sat = GetUnsignedSaturation(i);
      if (sat == kUnsignedSatPositive) {
        SetUint(vform, i, MaxUintFromFormat(vform));
      } else if (sat == kUnsignedSatNegative) {
        SetUint(vform, i, 0);
      }
    }
    return *this;
  }

  // Getter for rounding state.
  bool GetRounding(int index) { return round_[index]; }

  // Setter for rounding state.
  void SetRounding(int index, bool round) { round_[index] = round; }

  // Round lanes of a vector based on rounding state.
  LogicVRegister& Round(VectorFormat vform) {
    for (int i = 0; i < LaneCountFromFormat(vform); i++) {
      SetUint(vform, i, Uint(vform, i) + (GetRounding(i) ? 1 : 0));
    }
    return *this;
  }

  // Unsigned halve lanes of a vector, and use the saturation state to set the
  // top bit.
  LogicVRegister& Uhalve(VectorFormat vform) {
    for (int i = 0; i < LaneCountFromFormat(vform); i++) {
      uint64_t val = Uint(vform, i);
      SetRounding(i, (val & 1) == 1);
      val >>= 1;
      if (GetUnsignedSaturation(i) != kNotSaturated) {
        // If the operation causes unsigned saturation, the bit shifted into the
        // most significant bit must be set.
        val |= (MaxUintFromFormat(vform) >> 1) + 1;
      }
      SetInt(vform, i, val);
    }
    return *this;
  }

  // Signed halve lanes of a vector, and use the carry state to set the top bit.
  LogicVRegister& Halve(VectorFormat vform) {
    for (int i = 0; i < LaneCountFromFormat(vform); i++) {
      int64_t val = Int(vform, i);
      SetRounding(i, (val & 1) == 1);
      val >>= 1;
      if (GetSignedSaturation(i) != kNotSaturated) {
        // If the operation causes signed saturation, the sign bit must be
        // inverted.
        val ^= (MaxUintFromFormat(vform) >> 1) + 1;
      }
      SetInt(vform, i, val);
    }
    return *this;
  }

 private:
  SimVRegister& register_;

  // Allocate one saturation state entry per lane; largest register is type Q,
  // and lanes can be a minimum of one byte wide.
  Saturation saturated_[kQRegSize];

  // Allocate one rounding state entry per lane.
  bool round_[kQRegSize];
};

// Using multiple inheritance here is permitted because {DecoderVisitor} is a
// pure interface class with only pure virtual methods.
class Simulator : public DecoderVisitor, public SimulatorBase {
 public:
  static void SetRedirectInstruction(Instruction* instruction);
  static bool ICacheMatch(void* one, void* two) { return false; }
  static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
                          size_t size) {
    USE(i_cache);
    USE(start);
    USE(size);
  }

  V8_EXPORT_PRIVATE explicit Simulator(
      Decoder<DispatchingDecoderVisitor>* decoder, Isolate* isolate = nullptr,
      FILE* stream = stderr);
  Simulator();
  V8_EXPORT_PRIVATE ~Simulator();

  // System functions.

  V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate);

  // A wrapper class that stores an argument for one of the above Call
  // functions.
  //
  // Only arguments up to 64 bits in size are supported.
  class CallArgument {
   public:
    template <typename T>
    explicit CallArgument(T argument) {
      bits_ = 0;
      DCHECK(sizeof(argument) <= sizeof(bits_));
      memcpy(&bits_, &argument, sizeof(argument));
      type_ = X_ARG;
    }

    explicit CallArgument(double argument) {
      DCHECK(sizeof(argument) == sizeof(bits_));
      memcpy(&bits_, &argument, sizeof(argument));
      type_ = D_ARG;
    }

    explicit CallArgument(float argument) {
      // TODO(all): CallArgument(float) is untested, remove this check once
      //            tested.
      UNIMPLEMENTED();
      // Make the D register a NaN to try to trap errors if the callee expects a
      // double. If it expects a float, the callee should ignore the top word.
      DCHECK(sizeof(kFP64SignallingNaN) == sizeof(bits_));
      memcpy(&bits_, &kFP64SignallingNaN, sizeof(kFP64SignallingNaN));
      // Write the float payload to the S register.
      DCHECK(sizeof(argument) <= sizeof(bits_));
      memcpy(&bits_, &argument, sizeof(argument));
      type_ = D_ARG;
    }

    // This indicates the end of the arguments list, so that CallArgument
    // objects can be passed into varargs functions.
    static CallArgument End() { return CallArgument(); }

    int64_t bits() const { return bits_; }
    bool IsEnd() const { return type_ == NO_ARG; }
    bool IsX() const { return type_ == X_ARG; }
    bool IsD() const { return type_ == D_ARG; }

   private:
    enum CallArgumentType { X_ARG, D_ARG, NO_ARG };

    // All arguments are aligned to at least 64 bits and we don't support
    // passing bigger arguments, so the payload size can be fixed at 64 bits.
    int64_t bits_;
    CallArgumentType type_;

    CallArgument() { type_ = NO_ARG; }
  };

  // Call an arbitrary function taking an arbitrary number of arguments.
  template <typename Return, typename... Args>
  Return Call(Address entry, Args... args) {
    // Convert all arguments to CallArgument.
    CallArgument call_args[] = {CallArgument(args)..., CallArgument::End()};
    CallImpl(entry, call_args);
    return ReadReturn<Return>();
  }

  // Start the debugging command line.
  void Debug();

  bool GetValue(const char* desc, int64_t* value);

  bool PrintValue(const char* desc);

  // Push an address onto the JS stack.
  uintptr_t PushAddress(uintptr_t address);

  // Pop an address from the JS stack.
  uintptr_t PopAddress();

  // Accessor to the internal simulator stack area.
  uintptr_t StackLimit(uintptr_t c_limit) const;

  V8_EXPORT_PRIVATE void ResetState();

  void DoRuntimeCall(Instruction* instr);

  // Run the simulator.
  static const Instruction* kEndOfSimAddress;
  void DecodeInstruction();
  void Run();
  V8_EXPORT_PRIVATE void RunFrom(Instruction* start);

  // Simulation helpers.
  template <typename T>
  void set_pc(T new_pc) {
    DCHECK(sizeof(T) == sizeof(pc_));
    memcpy(&pc_, &new_pc, sizeof(T));
    pc_modified_ = true;
  }
  Instruction* pc() { return pc_; }

  void increment_pc() {
    if (!pc_modified_) {
      pc_ = pc_->following();
    }

    pc_modified_ = false;
  }

  virtual void Decode(Instruction* instr) { decoder_->Decode(instr); }

  void ExecuteInstruction() {
    DCHECK(IsAligned(reinterpret_cast<uintptr_t>(pc_), kInstrSize));
    CheckBreakNext();
    Decode(pc_);
    increment_pc();
    LogAllWrittenRegisters();
    CheckBreakpoints();
  }

// Declare all Visitor functions.
#define DECLARE(A) void Visit##A(Instruction* instr);
  VISITOR_LIST(DECLARE)
#undef DECLARE

  bool IsZeroRegister(unsigned code, Reg31Mode r31mode) const {
    return ((code == 31) && (r31mode == Reg31IsZeroRegister));
  }

  // Register accessors.
  // Return 'size' bits of the value of an integer register, as the specified
  // type. The value is zero-extended to fill the result.
  //
  template <typename T>
  T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
    DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
    if (IsZeroRegister(code, r31mode)) {
      return 0;
    }
    return registers_[code].Get<T>();
  }

  // Common specialized accessors for the reg() template.
  int32_t wreg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
    return reg<int32_t>(code, r31mode);
  }

  int64_t xreg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
    return reg<int64_t>(code, r31mode);
  }

  enum RegLogMode { LogRegWrites, NoRegLog };

  // Write 'value' into an integer register. The value is zero-extended. This
  // behaviour matches AArch64 register writes.
  template <typename T>
  void set_reg(unsigned code, T value,
               Reg31Mode r31mode = Reg31IsZeroRegister) {
    set_reg_no_log(code, value, r31mode);
    LogRegister(code, r31mode);
  }

  // Common specialized accessors for the set_reg() template.
  void set_wreg(unsigned code, int32_t value,
                Reg31Mode r31mode = Reg31IsZeroRegister) {
    set_reg(code, value, r31mode);
  }

  void set_xreg(unsigned code, int64_t value,
                Reg31Mode r31mode = Reg31IsZeroRegister) {
    set_reg(code, value, r31mode);
  }

  // As above, but don't automatically log the register update.
  template <typename T>
  void set_reg_no_log(unsigned code, T value,
                      Reg31Mode r31mode = Reg31IsZeroRegister) {
    DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
    if (!IsZeroRegister(code, r31mode)) {
      registers_[code].Set(value);
    }
  }

  void set_wreg_no_log(unsigned code, int32_t value,
                       Reg31Mode r31mode = Reg31IsZeroRegister) {
    set_reg_no_log(code, value, r31mode);
  }

  void set_xreg_no_log(unsigned code, int64_t value,
                       Reg31Mode r31mode = Reg31IsZeroRegister) {
    set_reg_no_log(code, value, r31mode);
  }

  // Commonly-used special cases.
  template <typename T>
  void set_lr(T value) {
    DCHECK_EQ(sizeof(T), static_cast<unsigned>(kSystemPointerSize));
    set_reg(kLinkRegCode, value);
  }

  template <typename T>
  void set_sp(T value) {
    DCHECK_EQ(sizeof(T), static_cast<unsigned>(kSystemPointerSize));
    set_reg(31, value, Reg31IsStackPointer);
  }

  // Vector register accessors.
  // These are equivalent to the integer register accessors, but for vector
  // registers.

  // A structure for representing a 128-bit Q register.
  struct qreg_t {
    uint8_t val[kQRegSize];
  };

  // Basic accessor: read the register as the specified type.
  template <typename T>
  T vreg(unsigned code) const {
    static_assert((sizeof(T) == kBRegSize) || (sizeof(T) == kHRegSize) ||
                      (sizeof(T) == kSRegSize) || (sizeof(T) == kDRegSize) ||
                      (sizeof(T) == kQRegSize),
                  "Template type must match size of register.");
    DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));

    return vregisters_[code].Get<T>();
  }

  inline SimVRegister& vreg(unsigned code) { return vregisters_[code]; }

  int64_t sp() { return xreg(31, Reg31IsStackPointer); }
  int64_t fp() { return xreg(kFramePointerRegCode, Reg31IsStackPointer); }
  Instruction* lr() { return reg<Instruction*>(kLinkRegCode); }

  Address get_sp() const { return reg<Address>(31, Reg31IsStackPointer); }

  // Common specialized accessors for the vreg() template.
  uint8_t breg(unsigned code) const { return vreg<uint8_t>(code); }

  float hreg(unsigned code) const { return vreg<uint16_t>(code); }

  float sreg(unsigned code) const { return vreg<float>(code); }

  uint32_t sreg_bits(unsigned code) const { return vreg<uint32_t>(code); }

  double dreg(unsigned code) const { return vreg<double>(code); }

  uint64_t dreg_bits(unsigned code) const { return vreg<uint64_t>(code); }

  qreg_t qreg(unsigned code) const { return vreg<qreg_t>(code); }

  // As above, with parameterized size and return type. The value is
  // either zero-extended or truncated to fit, as required.
  template <typename T>
  T vreg(unsigned size, unsigned code) const {
    uint64_t raw = 0;
    T result;

    switch (size) {
      case kSRegSize:
        raw = vreg<uint32_t>(code);
        break;
      case kDRegSize:
        raw = vreg<uint64_t>(code);
        break;
      default:
        UNREACHABLE();
    }

    static_assert(sizeof(result) <= sizeof(raw),
                  "Template type must be <= 64 bits.");
    // Copy the result and truncate to fit. This assumes a little-endian host.
    memcpy(&result, &raw, sizeof(result));
    return result;
  }

  // Write 'value' into a floating-point register. The value is zero-extended.
  // This behaviour matches AArch64 register writes.
  template <typename T>
  void set_vreg(unsigned code, T value, RegLogMode log_mode = LogRegWrites) {
    static_assert(
        (sizeof(value) == kBRegSize) || (sizeof(value) == kHRegSize) ||
            (sizeof(value) == kSRegSize) || (sizeof(value) == kDRegSize) ||
            (sizeof(value) == kQRegSize),
        "Template type must match size of register.");
    DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
    vregisters_[code].Set(value);

    if (log_mode == LogRegWrites) {
      LogVRegister(code, GetPrintRegisterFormat(value));
    }
  }

  // Common specialized accessors for the set_vreg() template.
  void set_breg(unsigned code, int8_t value,
                RegLogMode log_mode = LogRegWrites) {
    set_vreg(code, value, log_mode);
  }

  void set_hreg(unsigned code, int16_t value,
                RegLogMode log_mode = LogRegWrites) {
    set_vreg(code, value, log_mode);
  }

  void set_sreg(unsigned code, float value,
                RegLogMode log_mode = LogRegWrites) {
    set_vreg(code, value, log_mode);
  }

  void set_sreg_bits(unsigned code, uint32_t value,
                     RegLogMode log_mode = LogRegWrites) {
    set_vreg(code, value, log_mode);
  }

  void set_dreg(unsigned code, double value,
                RegLogMode log_mode = LogRegWrites) {
    set_vreg(code, value, log_mode);
  }

  void set_dreg_bits(unsigned code, uint64_t value,
                     RegLogMode log_mode = LogRegWrites) {
    set_vreg(code, value, log_mode);
  }

  void set_qreg(unsigned code, qreg_t value,
                RegLogMode log_mode = LogRegWrites) {
    set_vreg(code, value, log_mode);
  }

  // As above, but don't automatically log the register update.
  template <typename T>
  void set_vreg_no_log(unsigned code, T value) {
    STATIC_ASSERT((sizeof(value) == kBRegSize) ||
                  (sizeof(value) == kHRegSize) ||
                  (sizeof(value) == kSRegSize) ||
                  (sizeof(value) == kDRegSize) || (sizeof(value) == kQRegSize));
    DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
    vregisters_[code].Set(value);
  }

  void set_breg_no_log(unsigned code, uint8_t value) {
    set_vreg_no_log(code, value);
  }

  void set_hreg_no_log(unsigned code, uint16_t value) {
    set_vreg_no_log(code, value);
  }

  void set_sreg_no_log(unsigned code, float value) {
    set_vreg_no_log(code, value);
  }

  void set_dreg_no_log(unsigned code, double value) {
    set_vreg_no_log(code, value);
  }

  void set_qreg_no_log(unsigned code, qreg_t value) {
    set_vreg_no_log(code, value);
  }

  SimSystemRegister& nzcv() { return nzcv_; }
  SimSystemRegister& fpcr() { return fpcr_; }
  FPRounding RMode() { return static_cast<FPRounding>(fpcr_.RMode()); }
  bool DN() { return fpcr_.DN() != 0; }

  // Debug helpers

  // Simulator breakpoints.
  struct Breakpoint {
    Instruction* location;
    bool enabled;
  };
  std::vector<Breakpoint> breakpoints_;
  void SetBreakpoint(Instruction* breakpoint);
  void ListBreakpoints();
  void CheckBreakpoints();

  // Helpers for the 'next' command.
  // When this is set, the Simulator will insert a breakpoint after the next BL
  // instruction it meets.
  bool break_on_next_;
  // Check if the Simulator should insert a break after the current instruction
  // for the 'next' command.
  void CheckBreakNext();

  // Disassemble instruction at the given address.
  void PrintInstructionsAt(Instruction* pc, uint64_t count);

  // Print all registers of the specified types.
  void PrintRegisters();
  void PrintVRegisters();
  void PrintSystemRegisters();

  // As above, but only print the registers that have been updated.
  void PrintWrittenRegisters();
  void PrintWrittenVRegisters();

  // As above, but respect LOG_REG and LOG_VREG.
  void LogWrittenRegisters() {
    if (log_parameters() & LOG_REGS) PrintWrittenRegisters();
  }
  void LogWrittenVRegisters() {
    if (log_parameters() & LOG_VREGS) PrintWrittenVRegisters();
  }
  void LogAllWrittenRegisters() {
    LogWrittenRegisters();
    LogWrittenVRegisters();
  }

  // Specify relevant register formats for Print(V)Register and related helpers.
  enum PrintRegisterFormat {
    // The lane size.
    kPrintRegLaneSizeB = 0 << 0,
    kPrintRegLaneSizeH = 1 << 0,
    kPrintRegLaneSizeS = 2 << 0,
    kPrintRegLaneSizeW = kPrintRegLaneSizeS,
    kPrintRegLaneSizeD = 3 << 0,
    kPrintRegLaneSizeX = kPrintRegLaneSizeD,
    kPrintRegLaneSizeQ = 4 << 0,

    kPrintRegLaneSizeOffset = 0,
    kPrintRegLaneSizeMask = 7 << 0,

    // The lane count.
    kPrintRegAsScalar = 0,
    kPrintRegAsDVector = 1 << 3,
    kPrintRegAsQVector = 2 << 3,

    kPrintRegAsVectorMask = 3 << 3,

    // Indicate floating-point format lanes. (This flag is only supported for S-
    // and D-sized lanes.)
    kPrintRegAsFP = 1 << 5,

    // Supported combinations.

    kPrintXReg = kPrintRegLaneSizeX | kPrintRegAsScalar,
    kPrintWReg = kPrintRegLaneSizeW | kPrintRegAsScalar,
    kPrintSReg = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP,
    kPrintDReg = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP,

    kPrintReg1B = kPrintRegLaneSizeB | kPrintRegAsScalar,
    kPrintReg8B = kPrintRegLaneSizeB | kPrintRegAsDVector,
    kPrintReg16B = kPrintRegLaneSizeB | kPrintRegAsQVector,
    kPrintReg1H = kPrintRegLaneSizeH | kPrintRegAsScalar,
    kPrintReg4H = kPrintRegLaneSizeH | kPrintRegAsDVector,
    kPrintReg8H = kPrintRegLaneSizeH | kPrintRegAsQVector,
    kPrintReg1S = kPrintRegLaneSizeS | kPrintRegAsScalar,
    kPrintReg2S = kPrintRegLaneSizeS | kPrintRegAsDVector,
    kPrintReg4S = kPrintRegLaneSizeS | kPrintRegAsQVector,
    kPrintReg1SFP = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP,
    kPrintReg2SFP = kPrintRegLaneSizeS | kPrintRegAsDVector | kPrintRegAsFP,
    kPrintReg4SFP = kPrintRegLaneSizeS | kPrintRegAsQVector | kPrintRegAsFP,
    kPrintReg1D = kPrintRegLaneSizeD | kPrintRegAsScalar,
    kPrintReg2D = kPrintRegLaneSizeD | kPrintRegAsQVector,
    kPrintReg1DFP = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP,
    kPrintReg2DFP = kPrintRegLaneSizeD | kPrintRegAsQVector | kPrintRegAsFP,
    kPrintReg1Q = kPrintRegLaneSizeQ | kPrintRegAsScalar
  };

  unsigned GetPrintRegLaneSizeInBytesLog2(PrintRegisterFormat format) {
    return (format & kPrintRegLaneSizeMask) >> kPrintRegLaneSizeOffset;
  }

  unsigned GetPrintRegLaneSizeInBytes(PrintRegisterFormat format) {
    return 1 << GetPrintRegLaneSizeInBytesLog2(format);
  }

  unsigned GetPrintRegSizeInBytesLog2(PrintRegisterFormat format) {
    if (format & kPrintRegAsDVector) return kDRegSizeLog2;
    if (format & kPrintRegAsQVector) return kQRegSizeLog2;

    // Scalar types.
    return GetPrintRegLaneSizeInBytesLog2(format);
  }

  unsigned GetPrintRegSizeInBytes(PrintRegisterFormat format) {
    return 1 << GetPrintRegSizeInBytesLog2(format);
  }

  unsigned GetPrintRegLaneCount(PrintRegisterFormat format) {
    unsigned reg_size_log2 = GetPrintRegSizeInBytesLog2(format);
    unsigned lane_size_log2 = GetPrintRegLaneSizeInBytesLog2(format);
    DCHECK_GE(reg_size_log2, lane_size_log2);
    return 1 << (reg_size_log2 - lane_size_log2);
  }

  template <typename T>
  PrintRegisterFormat GetPrintRegisterFormat(T value) {
    return GetPrintRegisterFormatForSize(sizeof(value));
  }

  PrintRegisterFormat GetPrintRegisterFormat(double value) {
    static_assert(sizeof(value) == kDRegSize,
                  "D register must be size of double.");
    return GetPrintRegisterFormatForSizeFP(sizeof(value));
  }

  PrintRegisterFormat GetPrintRegisterFormat(float value) {
    static_assert(sizeof(value) == kSRegSize,
                  "S register must be size of float.");
    return GetPrintRegisterFormatForSizeFP(sizeof(value));
  }

  PrintRegisterFormat GetPrintRegisterFormat(VectorFormat vform);
  PrintRegisterFormat GetPrintRegisterFormatFP(VectorFormat vform);

  PrintRegisterFormat GetPrintRegisterFormatForSize(size_t reg_size,
                                                    size_t lane_size);

  PrintRegisterFormat GetPrintRegisterFormatForSize(size_t size) {
    return GetPrintRegisterFormatForSize(size, size);
  }

  PrintRegisterFormat GetPrintRegisterFormatForSizeFP(size_t size) {
    switch (size) {
      default:
        UNREACHABLE();
      case kDRegSize:
        return kPrintDReg;
      case kSRegSize:
        return kPrintSReg;
    }
  }

  PrintRegisterFormat GetPrintRegisterFormatTryFP(PrintRegisterFormat format) {
    if ((GetPrintRegLaneSizeInBytes(format) == kSRegSize) ||
        (GetPrintRegLaneSizeInBytes(format) == kDRegSize)) {
      return static_cast<PrintRegisterFormat>(format | kPrintRegAsFP);
    }
    return format;
  }

  // Print individual register values (after update).
  void PrintRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer);
  void PrintVRegister(unsigned code, PrintRegisterFormat sizes);
  void PrintSystemRegister(SystemRegister id);

  // Like Print* (above), but respect log_parameters().
  void LogRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer) {
    if (log_parameters() & LOG_REGS) PrintRegister(code, r31mode);
  }
  void LogVRegister(unsigned code, PrintRegisterFormat format) {
    if (log_parameters() & LOG_VREGS) PrintVRegister(code, format);
  }
  void LogSystemRegister(SystemRegister id) {
    if (log_parameters() & LOG_SYS_REGS) PrintSystemRegister(id);
  }

  // Print memory accesses.
  void PrintRead(uintptr_t address, unsigned reg_code,
                 PrintRegisterFormat format);
  void PrintWrite(uintptr_t address, unsigned reg_code,
                  PrintRegisterFormat format);
  void PrintVRead(uintptr_t address, unsigned reg_code,
                  PrintRegisterFormat format, unsigned lane);
  void PrintVWrite(uintptr_t address, unsigned reg_code,
                   PrintRegisterFormat format, unsigned lane);

  // Like Print* (above), but respect log_parameters().
  void LogRead(uintptr_t address, unsigned reg_code,
               PrintRegisterFormat format) {
    if (log_parameters() & LOG_REGS) PrintRead(address, reg_code, format);
  }
  void LogWrite(uintptr_t address, unsigned reg_code,
                PrintRegisterFormat format) {
    if (log_parameters() & LOG_WRITE) PrintWrite(address, reg_code, format);
  }
  void LogVRead(uintptr_t address, unsigned reg_code,
                PrintRegisterFormat format, unsigned lane = 0) {
    if (log_parameters() & LOG_VREGS) {
      PrintVRead(address, reg_code, format, lane);
    }
  }
  void LogVWrite(uintptr_t address, unsigned reg_code,
                 PrintRegisterFormat format, unsigned lane = 0) {
    if (log_parameters() & LOG_WRITE) {
      PrintVWrite(address, reg_code, format, lane);
    }
  }

  int log_parameters() { return log_parameters_; }
  void set_log_parameters(int new_parameters) {
    log_parameters_ = new_parameters;
    if (!decoder_) {
      if (new_parameters & LOG_DISASM) {
        PrintF("Run --debug-sim to dynamically turn on disassembler\n");
      }
      return;
    }
    if (new_parameters & LOG_DISASM) {
      decoder_->InsertVisitorBefore(print_disasm_, this);
    } else {
      decoder_->RemoveVisitor(print_disasm_);
    }
  }

  // Helper functions for register tracing.
  void PrintRegisterRawHelper(unsigned code, Reg31Mode r31mode,
                              int size_in_bytes = kXRegSize);
  void PrintVRegisterRawHelper(unsigned code, int bytes = kQRegSize,
                               int lsb = 0);
  void PrintVRegisterFPHelper(unsigned code, unsigned lane_size_in_bytes,
                              int lane_count = 1, int rightmost_lane = 0);

  static inline const char* WRegNameForCode(
      unsigned code, Reg31Mode mode = Reg31IsZeroRegister);
  static inline const char* XRegNameForCode(
      unsigned code, Reg31Mode mode = Reg31IsZeroRegister);
  static inline const char* SRegNameForCode(unsigned code);
  static inline const char* DRegNameForCode(unsigned code);
  static inline const char* VRegNameForCode(unsigned code);
  static inline int CodeFromName(const char* name);

 protected:
  // Simulation helpers ------------------------------------
  bool ConditionPassed(Condition cond) {
    SimSystemRegister& flags = nzcv();
    switch (cond) {
      case eq:
        return flags.Z();
      case ne:
        return !flags.Z();
      case hs:
        return flags.C();
      case lo:
        return !flags.C();
      case mi:
        return flags.N();
      case pl:
        return !flags.N();
      case vs:
        return flags.V();
      case vc:
        return !flags.V();
      case hi:
        return flags.C() && !flags.Z();
      case ls:
        return !(flags.C() && !flags.Z());
      case ge:
        return flags.N() == flags.V();
      case lt:
        return flags.N() != flags.V();
      case gt:
        return !flags.Z() && (flags.N() == flags.V());
      case le:
        return !(!flags.Z() && (flags.N() == flags.V()));
      case nv:  // Fall through.
      case al:
        return true;
      default:
        UNREACHABLE();
    }
  }

  bool ConditionFailed(Condition cond) { return !ConditionPassed(cond); }

  template <typename T>
  void AddSubHelper(Instruction* instr, T op2);
  template <typename T>
  T AddWithCarry(bool set_flags, T left, T right, int carry_in = 0);
  template <typename T>
  void AddSubWithCarry(Instruction* instr);
  template <typename T>
  void LogicalHelper(Instruction* instr, T op2);
  template <typename T>
  void ConditionalCompareHelper(Instruction* instr, T op2);
  void LoadStoreHelper(Instruction* instr, int64_t offset, AddrMode addrmode);
  void LoadStorePairHelper(Instruction* instr, AddrMode addrmode);
  uintptr_t LoadStoreAddress(unsigned addr_reg, int64_t offset,
                             AddrMode addrmode);
  void LoadStoreWriteBack(unsigned addr_reg, int64_t offset, AddrMode addrmode);
  void NEONLoadStoreMultiStructHelper(const Instruction* instr,
                                      AddrMode addr_mode);
  void NEONLoadStoreSingleStructHelper(const Instruction* instr,
                                       AddrMode addr_mode);
  void CheckMemoryAccess(uintptr_t address, uintptr_t stack);

  // Memory read helpers.
  template <typename T, typename A>
  T MemoryRead(A address) {
    T value;
    STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
                  (sizeof(value) == 4) || (sizeof(value) == 8) ||
                  (sizeof(value) == 16));
    memcpy(&value, reinterpret_cast<const void*>(address), sizeof(value));
    return value;
  }

  // Memory write helpers.
  template <typename T, typename A>
  void MemoryWrite(A address, T value) {
    STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
                  (sizeof(value) == 4) || (sizeof(value) == 8) ||
                  (sizeof(value) == 16));
    memcpy(reinterpret_cast<void*>(address), &value, sizeof(value));
  }

  template <typename T>
  T ShiftOperand(T value, Shift shift_type, unsigned amount);
  template <typename T>
  T ExtendValue(T value, Extend extend_type, unsigned left_shift = 0);
  template <typename T>
  void Extract(Instruction* instr);
  template <typename T>
  void DataProcessing2Source(Instruction* instr);
  template <typename T>
  void BitfieldHelper(Instruction* instr);
  uint16_t PolynomialMult(uint8_t op1, uint8_t op2);

  void ld1(VectorFormat vform, LogicVRegister dst, uint64_t addr);
  void ld1(VectorFormat vform, LogicVRegister dst, int index, uint64_t addr);
  void ld1r(VectorFormat vform, LogicVRegister dst, uint64_t addr);
  void ld2(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
           uint64_t addr);
  void ld2(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
           int index, uint64_t addr);
  void ld2r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
            uint64_t addr);
  void ld3(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
           LogicVRegister dst3, uint64_t addr);
  void ld3(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
           LogicVRegister dst3, int index, uint64_t addr);
  void ld3r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
            LogicVRegister dst3, uint64_t addr);
  void ld4(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
           LogicVRegister dst3, LogicVRegister dst4, uint64_t addr);
  void ld4(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
           LogicVRegister dst3, LogicVRegister dst4, int index, uint64_t addr);
  void ld4r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
            LogicVRegister dst3, LogicVRegister dst4, uint64_t addr);
  void st1(VectorFormat vform, LogicVRegister src, uint64_t addr);
  void st1(VectorFormat vform, LogicVRegister src, int index, uint64_t addr);
  void st2(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
           uint64_t addr);
  void st2(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
           int index, uint64_t addr);
  void st3(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
           LogicVRegister src3, uint64_t addr);
  void st3(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
           LogicVRegister src3, int index, uint64_t addr);
  void st4(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
           LogicVRegister src3, LogicVRegister src4, uint64_t addr);
  void st4(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
           LogicVRegister src3, LogicVRegister src4, int index, uint64_t addr);
  LogicVRegister cmp(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2,
                     Condition cond);
  LogicVRegister cmp(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, int imm, Condition cond);
  LogicVRegister cmptst(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister add(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister addp(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister mla(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister mls(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister mul(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister mul(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2,
                     int index);
  LogicVRegister mla(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2,
                     int index);
  LogicVRegister mls(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2,
                     int index);
  LogicVRegister pmul(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);

  using ByElementOp = LogicVRegister (Simulator::*)(VectorFormat vform,
                                                    LogicVRegister dst,
                                                    const LogicVRegister& src1,
                                                    const LogicVRegister& src2,
                                                    int index);
  LogicVRegister fmul(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2,
                      int index);
  LogicVRegister fmla(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2,
                      int index);
  LogicVRegister fmls(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2,
                      int index);
  LogicVRegister fmulx(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2,
                       int index);
  LogicVRegister smull(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2,
                       int index);
  LogicVRegister smull2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2,
                        int index);
  LogicVRegister umull(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2,
                       int index);
  LogicVRegister umull2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2,
                        int index);
  LogicVRegister smlal(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2,
                       int index);
  LogicVRegister smlal2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2,
                        int index);
  LogicVRegister umlal(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2,
                       int index);
  LogicVRegister umlal2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2,
                        int index);
  LogicVRegister smlsl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2,
                       int index);
  LogicVRegister smlsl2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2,
                        int index);
  LogicVRegister umlsl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2,
                       int index);
  LogicVRegister umlsl2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2,
                        int index);
  LogicVRegister sqdmull(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         int index);
  LogicVRegister sqdmull2(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src1,
                          const LogicVRegister& src2, int index);
  LogicVRegister sqdmlal(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         int index);
  LogicVRegister sqdmlal2(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src1,
                          const LogicVRegister& src2, int index);
  LogicVRegister sqdmlsl(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         int index);
  LogicVRegister sqdmlsl2(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src1,
                          const LogicVRegister& src2, int index);
  LogicVRegister sqdmulh(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         int index);
  LogicVRegister sqrdmulh(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src1,
                          const LogicVRegister& src2, int index);
  LogicVRegister sub(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister and_(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister orr(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister orn(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister eor(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister bic(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister bic(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src, uint64_t imm);
  LogicVRegister bif(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister bit(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister bsl(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister cls(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src);
  LogicVRegister clz(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src);
  LogicVRegister cnt(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src);
  LogicVRegister not_(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister rbit(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister rev(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src, int revSize);
  LogicVRegister rev16(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister rev32(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister rev64(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister addlp(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, bool is_signed,
                       bool do_accumulate);
  LogicVRegister saddlp(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister uaddlp(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister sadalp(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister uadalp(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister ext(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src1, const LogicVRegister& src2,
                     int index);
  LogicVRegister ins_element(VectorFormat vform, LogicVRegister dst,
                             int dst_index, const LogicVRegister& src,
                             int src_index);
  LogicVRegister ins_immediate(VectorFormat vform, LogicVRegister dst,
                               int dst_index, uint64_t imm);
  LogicVRegister dup_element(VectorFormat vform, LogicVRegister dst,
                             const LogicVRegister& src, int src_index);
  LogicVRegister dup_immediate(VectorFormat vform, LogicVRegister dst,
                               uint64_t imm);
  LogicVRegister movi(VectorFormat vform, LogicVRegister dst, uint64_t imm);
  LogicVRegister mvni(VectorFormat vform, LogicVRegister dst, uint64_t imm);
  LogicVRegister orr(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src, uint64_t imm);
  LogicVRegister sshl(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister ushl(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister SMinMax(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         bool max);
  LogicVRegister smax(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister smin(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister SMinMaxP(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src1,
                          const LogicVRegister& src2, bool max);
  LogicVRegister smaxp(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister sminp(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister addp(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister addv(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister uaddlv(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister saddlv(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister SMinMaxV(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src, bool max);
  LogicVRegister smaxv(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister sminv(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister uxtl(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister uxtl2(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister sxtl(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister sxtl2(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister Table(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& ind, bool zero_out_of_bounds,
                       const LogicVRegister* tab1,
                       const LogicVRegister* tab2 = nullptr,
                       const LogicVRegister* tab3 = nullptr,
                       const LogicVRegister* tab4 = nullptr);
  LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& ind);
  LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& tab2,
                     const LogicVRegister& ind);
  LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& tab2,
                     const LogicVRegister& tab3, const LogicVRegister& ind);
  LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& tab2,
                     const LogicVRegister& tab3, const LogicVRegister& tab4,
                     const LogicVRegister& ind);
  LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& ind);
  LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& tab2,
                     const LogicVRegister& ind);
  LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& tab2,
                     const LogicVRegister& tab3, const LogicVRegister& ind);
  LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& tab, const LogicVRegister& tab2,
                     const LogicVRegister& tab3, const LogicVRegister& tab4,
                     const LogicVRegister& ind);
  LogicVRegister uaddl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister uaddl2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister uaddw(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister uaddw2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister saddl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister saddl2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister saddw(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister saddw2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister usubl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister usubl2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister usubw(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister usubw2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister ssubl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister ssubl2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister ssubw(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister ssubw2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister UMinMax(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         bool max);
  LogicVRegister umax(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister umin(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister UMinMaxP(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src1,
                          const LogicVRegister& src2, bool max);
  LogicVRegister umaxp(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister uminp(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister UMinMaxV(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src, bool max);
  LogicVRegister umaxv(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister uminv(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister trn1(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister trn2(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister zip1(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister zip2(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister uzp1(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister uzp2(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister shl(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src, int shift);
  LogicVRegister scvtf(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int fbits,
                       FPRounding rounding_mode);
  LogicVRegister ucvtf(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int fbits,
                       FPRounding rounding_mode);
  LogicVRegister sshll(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister sshll2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src, int shift);
  LogicVRegister shll(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister shll2(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister ushll(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister ushll2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src, int shift);
  LogicVRegister sli(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src, int shift);
  LogicVRegister sri(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src, int shift);
  LogicVRegister sshr(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src, int shift);
  LogicVRegister ushr(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src, int shift);
  LogicVRegister ssra(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src, int shift);
  LogicVRegister usra(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src, int shift);
  LogicVRegister srsra(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister ursra(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister suqadd(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister usqadd(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister sqshl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister uqshl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister sqshlu(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src, int shift);
  LogicVRegister abs(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src);
  LogicVRegister neg(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src);
  LogicVRegister ExtractNarrow(VectorFormat vform, LogicVRegister dst,
                               bool dstIsSigned, const LogicVRegister& src,
                               bool srcIsSigned);
  LogicVRegister xtn(VectorFormat vform, LogicVRegister dst,
                     const LogicVRegister& src);
  LogicVRegister sqxtn(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister uqxtn(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister sqxtun(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister AbsDiff(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         bool issigned);
  LogicVRegister saba(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister uaba(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister shrn(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src, int shift);
  LogicVRegister shrn2(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister rshrn(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, int shift);
  LogicVRegister rshrn2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src, int shift);
  LogicVRegister uqshrn(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src, int shift);
  LogicVRegister uqshrn2(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src, int shift);
  LogicVRegister uqrshrn(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src, int shift);
  LogicVRegister uqrshrn2(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src, int shift);
  LogicVRegister sqshrn(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src, int shift);
  LogicVRegister sqshrn2(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src, int shift);
  LogicVRegister sqrshrn(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src, int shift);
  LogicVRegister sqrshrn2(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src, int shift);
  LogicVRegister sqshrun(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src, int shift);
  LogicVRegister sqshrun2(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src, int shift);
  LogicVRegister sqrshrun(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src, int shift);
  LogicVRegister sqrshrun2(VectorFormat vform, LogicVRegister dst,
                           const LogicVRegister& src, int shift);
  LogicVRegister sqrdmulh(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src1,
                          const LogicVRegister& src2, bool round = true);
  LogicVRegister sqdmulh(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1,
                         const LogicVRegister& src2);
#define NEON_3VREG_LOGIC_LIST(V) \
  V(addhn)                       \
  V(addhn2)                      \
  V(raddhn)                      \
  V(raddhn2)                     \
  V(subhn)                       \
  V(subhn2)                      \
  V(rsubhn)                      \
  V(rsubhn2)                     \
  V(pmull)                       \
  V(pmull2)                      \
  V(sabal)                       \
  V(sabal2)                      \
  V(uabal)                       \
  V(uabal2)                      \
  V(sabdl)                       \
  V(sabdl2)                      \
  V(uabdl)                       \
  V(uabdl2)                      \
  V(smull)                       \
  V(smull2)                      \
  V(umull)                       \
  V(umull2)                      \
  V(smlal)                       \
  V(smlal2)                      \
  V(umlal)                       \
  V(umlal2)                      \
  V(smlsl)                       \
  V(smlsl2)                      \
  V(umlsl)                       \
  V(umlsl2)                      \
  V(sqdmlal)                     \
  V(sqdmlal2)                    \
  V(sqdmlsl)                     \
  V(sqdmlsl2)                    \
  V(sqdmull)                     \
  V(sqdmull2)

#define DEFINE_LOGIC_FUNC(FXN)                               \
  LogicVRegister FXN(VectorFormat vform, LogicVRegister dst, \
                     const LogicVRegister& src1, const LogicVRegister& src2);
  NEON_3VREG_LOGIC_LIST(DEFINE_LOGIC_FUNC)
#undef DEFINE_LOGIC_FUNC

#define NEON_FP3SAME_LIST(V) \
  V(fadd, FPAdd, false)      \
  V(fsub, FPSub, true)       \
  V(fmul, FPMul, true)       \
  V(fmulx, FPMulx, true)     \
  V(fdiv, FPDiv, true)       \
  V(fmax, FPMax, false)      \
  V(fmin, FPMin, false)      \
  V(fmaxnm, FPMaxNM, false)  \
  V(fminnm, FPMinNM, false)

#define DECLARE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN)                           \
  template <typename T>                                                      \
  LogicVRegister FN(VectorFormat vform, LogicVRegister dst,                  \
                    const LogicVRegister& src1, const LogicVRegister& src2); \
  LogicVRegister FN(VectorFormat vform, LogicVRegister dst,                  \
                    const LogicVRegister& src1, const LogicVRegister& src2);
  NEON_FP3SAME_LIST(DECLARE_NEON_FP_VECTOR_OP)
#undef DECLARE_NEON_FP_VECTOR_OP

#define NEON_FPPAIRWISE_LIST(V) \
  V(faddp, fadd, FPAdd)         \
  V(fmaxp, fmax, FPMax)         \
  V(fmaxnmp, fmaxnm, FPMaxNM)   \
  V(fminp, fmin, FPMin)         \
  V(fminnmp, fminnm, FPMinNM)

#define DECLARE_NEON_FP_PAIR_OP(FNP, FN, OP)                                  \
  LogicVRegister FNP(VectorFormat vform, LogicVRegister dst,                  \
                     const LogicVRegister& src1, const LogicVRegister& src2); \
  LogicVRegister FNP(VectorFormat vform, LogicVRegister dst,                  \
                     const LogicVRegister& src);
  NEON_FPPAIRWISE_LIST(DECLARE_NEON_FP_PAIR_OP)
#undef DECLARE_NEON_FP_PAIR_OP

  template <typename T>
  LogicVRegister frecps(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister frecps(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src1, const LogicVRegister& src2);
  template <typename T>
  LogicVRegister frsqrts(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1,
                         const LogicVRegister& src2);
  LogicVRegister frsqrts(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1,
                         const LogicVRegister& src2);
  template <typename T>
  LogicVRegister fmla(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister fmla(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  template <typename T>
  LogicVRegister fmls(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister fmls(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister fnmul(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src1, const LogicVRegister& src2);

  template <typename T>
  LogicVRegister fcmp(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2,
                      Condition cond);
  LogicVRegister fcmp(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2,
                      Condition cond);
  LogicVRegister fabscmp(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src1, const LogicVRegister& src2,
                         Condition cond);
  LogicVRegister fcmp_zero(VectorFormat vform, LogicVRegister dst,
                           const LogicVRegister& src, Condition cond);

  template <typename T>
  LogicVRegister fneg(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  LogicVRegister fneg(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src);
  template <typename T>
  LogicVRegister frecpx(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister frecpx(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  template <typename T>
  LogicVRegister fabs_(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister fabs_(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister fabd(VectorFormat vform, LogicVRegister dst,
                      const LogicVRegister& src1, const LogicVRegister& src2);
  LogicVRegister frint(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, FPRounding rounding_mode,
                       bool inexact_exception = false);
  LogicVRegister fcvts(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, FPRounding rounding_mode,
                       int fbits = 0);
  LogicVRegister fcvtu(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src, FPRounding rounding_mode,
                       int fbits = 0);
  LogicVRegister fcvtl(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister fcvtl2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister fcvtn(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister fcvtn2(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister fcvtxn(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);
  LogicVRegister fcvtxn2(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src);
  LogicVRegister fsqrt(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister frsqrte(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src);
  LogicVRegister frecpe(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src, FPRounding rounding);
  LogicVRegister ursqrte(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src);
  LogicVRegister urecpe(VectorFormat vform, LogicVRegister dst,
                        const LogicVRegister& src);

  using FPMinMaxOp = float (Simulator::*)(float a, float b);

  LogicVRegister FMinMaxV(VectorFormat vform, LogicVRegister dst,
                          const LogicVRegister& src, FPMinMaxOp Op);

  LogicVRegister fminv(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister fmaxv(VectorFormat vform, LogicVRegister dst,
                       const LogicVRegister& src);
  LogicVRegister fminnmv(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src);
  LogicVRegister fmaxnmv(VectorFormat vform, LogicVRegister dst,
                         const LogicVRegister& src);

  template <typename T>
  T FPRecipSqrtEstimate(T op);
  template <typename T>
  T FPRecipEstimate(T op, FPRounding rounding);
  template <typename T, typename R>
  R FPToFixed(T op, int fbits, bool is_signed, FPRounding rounding);

  void FPCompare(double val0, double val1);
  double FPRoundInt(double value, FPRounding round_mode);
  double FPToDouble(float value);
  float FPToFloat(double value, FPRounding round_mode);
  float FPToFloat(float16 value);
  float16 FPToFloat16(float value, FPRounding round_mode);
  float16 FPToFloat16(double value, FPRounding round_mode);
  double recip_sqrt_estimate(double a);
  double recip_estimate(double a);
  double FPRecipSqrtEstimate(double a);
  double FPRecipEstimate(double a);
  double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
  double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
  float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
  float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode);
  int32_t FPToInt32(double value, FPRounding rmode);
  int64_t FPToInt64(double value, FPRounding rmode);
  uint32_t FPToUInt32(double value, FPRounding rmode);
  uint64_t FPToUInt64(double value, FPRounding rmode);

  template <typename T>
  T FPAdd(T op1, T op2);

  template <typename T>
  T FPDiv(T op1, T op2);

  template <typename T>
  T FPMax(T a, T b);

  template <typename T>
  T FPMaxNM(T a, T b);

  template <typename T>
  T FPMin(T a, T b);

  template <typename T>
  T FPMinNM(T a, T b);

  template <typename T>
  T FPMul(T op1, T op2);

  template <typename T>
  T FPMulx(T op1, T op2);

  template <typename T>
  T FPMulAdd(T a, T op1, T op2);

  template <typename T>
  T FPSqrt(T op);

  template <typename T>
  T FPSub(T op1, T op2);

  template <typename T>
  T FPRecipStepFused(T op1, T op2);

  template <typename T>
  T FPRSqrtStepFused(T op1, T op2);

  // This doesn't do anything at the moment. We'll need it if we want support
  // for cumulative exception bits or floating-point exceptions.
  void FPProcessException() {}

  // Standard NaN processing.
  bool FPProcessNaNs(Instruction* instr);

  void CheckStackAlignment();

  inline void CheckPCSComplianceAndRun();

#ifdef DEBUG
  // Corruption values should have their least significant byte cleared to
  // allow the code of the register being corrupted to be inserted.
  static const uint64_t kCallerSavedRegisterCorruptionValue =
      0xca11edc0de000000UL;
  // This value is a NaN in both 32-bit and 64-bit FP.
  static const uint64_t kCallerSavedVRegisterCorruptionValue =
      0x7ff000007f801000UL;
  // This value is a mix of 32/64-bits NaN and "verbose" immediate.
  static const uint64_t kDefaultCPURegisterCorruptionValue =
      0x7ffbad007f8bad00UL;

  void CorruptRegisters(CPURegList* list,
                        uint64_t value = kDefaultCPURegisterCorruptionValue);
  void CorruptAllCallerSavedCPURegisters();
#endif

  // Pseudo Printf instruction
  void DoPrintf(Instruction* instr);

  // Processor state ---------------------------------------

  // Output stream.
  FILE* stream_;
  PrintDisassembler* print_disasm_;
  void PRINTF_FORMAT(2, 3) TraceSim(const char* format, ...);

  // Instrumentation.
  Instrument* instrument_;

  // General purpose registers. Register 31 is the stack pointer.
  SimRegister registers_[kNumberOfRegisters];

  // Floating point registers
  SimVRegister vregisters_[kNumberOfVRegisters];

  // Processor state
  // bits[31, 27]: Condition flags N, Z, C, and V.
  //               (Negative, Zero, Carry, Overflow)
  SimSystemRegister nzcv_;

  // Floating-Point Control Register
  SimSystemRegister fpcr_;

  // Only a subset of FPCR features are supported by the simulator. This helper
  // checks that the FPCR settings are supported.
  //
  // This is checked when floating-point instructions are executed, not when
  // FPCR is set. This allows generated code to modify FPCR for external
  // functions, or to save and restore it when entering and leaving generated
  // code.
  void AssertSupportedFPCR() {
    DCHECK_EQ(fpcr().FZ(), 0);            // No flush-to-zero support.
    DCHECK(fpcr().RMode() == FPTieEven);  // Ties-to-even rounding only.

    // The simulator does not support half-precision operations so fpcr().AHP()
    // is irrelevant, and is not checked here.
  }

  template <typename T>
  static int CalcNFlag(T result) {
    return (result >> (sizeof(T) * 8 - 1)) & 1;
  }

  static int CalcZFlag(uint64_t result) { return result == 0; }

  static const uint32_t kConditionFlagsMask = 0xf0000000;

  // Stack
  uintptr_t stack_;
  static const size_t stack_protection_size_ = KB;
  size_t stack_size_;
  uintptr_t stack_limit_;

  Decoder<DispatchingDecoderVisitor>* decoder_;
  Decoder<DispatchingDecoderVisitor>* disassembler_decoder_;

  // Indicates if the pc has been modified by the instruction and should not be
  // automatically incremented.
  bool pc_modified_;
  Instruction* pc_;

  static const char* xreg_names[];
  static const char* wreg_names[];
  static const char* sreg_names[];
  static const char* dreg_names[];
  static const char* vreg_names[];

  // Debugger input.
  void set_last_debugger_input(char* input) {
    DeleteArray(last_debugger_input_);
    last_debugger_input_ = input;
  }
  char* last_debugger_input() { return last_debugger_input_; }
  char* last_debugger_input_;

  // Synchronization primitives. See ARM DDI 0487A.a, B2.10. Pair types not
  // implemented.
  enum class MonitorAccess {
    Open,
    Exclusive,
  };

  enum class TransactionSize {
    None = 0,
    Byte = 1,
    HalfWord = 2,
    Word = 4,
    DoubleWord = 8,
  };

  TransactionSize get_transaction_size(unsigned size);

  // The least-significant bits of the address are ignored. The number of bits
  // is implementation-defined, between 3 and 11. See ARM DDI 0487A.a, B2.10.3.
  static const uintptr_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1);

  class LocalMonitor {
   public:
    LocalMonitor();

    // These functions manage the state machine for the local monitor, but do
    // not actually perform loads and stores. NotifyStoreExcl only returns
    // true if the exclusive store is allowed; the global monitor will still
    // have to be checked to see whether the memory should be updated.
    void NotifyLoad();
    void NotifyLoadExcl(uintptr_t addr, TransactionSize size);
    void NotifyStore();
    bool NotifyStoreExcl(uintptr_t addr, TransactionSize size);

   private:
    void Clear();

    MonitorAccess access_state_;
    uintptr_t tagged_addr_;
    TransactionSize size_;
  };

  class GlobalMonitor {
   public:
    class Processor {
     public:
      Processor();

     private:
      friend class GlobalMonitor;
      // These functions manage the state machine for the global monitor, but do
      // not actually perform loads and stores.
      void Clear_Locked();
      void NotifyLoadExcl_Locked(uintptr_t addr);
      void NotifyStore_Locked(bool is_requesting_processor);
      bool NotifyStoreExcl_Locked(uintptr_t addr, bool is_requesting_processor);

      MonitorAccess access_state_;
      uintptr_t tagged_addr_;
      Processor* next_;
      Processor* prev_;
      // A stxr can fail due to background cache evictions. Rather than
      // simulating this, we'll just occasionally introduce cases where an
      // exclusive store fails. This will happen once after every
      // kMaxFailureCounter exclusive stores.
      static const int kMaxFailureCounter = 5;
      int failure_counter_;
    };

    // Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
    base::Mutex mutex;

    void NotifyLoadExcl_Locked(uintptr_t addr, Processor* processor);
    void NotifyStore_Locked(Processor* processor);
    bool NotifyStoreExcl_Locked(uintptr_t addr, Processor* processor);

    // Called when the simulator is destroyed.
    void RemoveProcessor(Processor* processor);

    static GlobalMonitor* Get();

   private:
    // Private constructor. Call {GlobalMonitor::Get()} to get the singleton.
    GlobalMonitor() = default;
    friend class base::LeakyObject<GlobalMonitor>;

    bool IsProcessorInLinkedList_Locked(Processor* processor) const;
    void PrependProcessor_Locked(Processor* processor);

    Processor* head_ = nullptr;
  };

  LocalMonitor local_monitor_;
  GlobalMonitor::Processor global_monitor_processor_;

 private:
  void Init(FILE* stream);

  V8_EXPORT_PRIVATE void CallImpl(Address entry, CallArgument* args);

  // Read floating point return values.
  template <typename T>
  typename std::enable_if<std::is_floating_point<T>::value, T>::type
  ReadReturn() {
    return static_cast<T>(dreg(0));
  }
  // Read non-float return values.
  template <typename T>
  typename std::enable_if<!std::is_floating_point<T>::value, T>::type
  ReadReturn() {
    return ConvertReturn<T>(xreg(0));
  }

  template <typename T>
  static T FPDefaultNaN();

  template <typename T>
  T FPProcessNaN(T op) {
    DCHECK(std::isnan(op));
    return fpcr().DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
  }

  template <typename T>
  T FPProcessNaNs(T op1, T op2) {
    if (IsSignallingNaN(op1)) {
      return FPProcessNaN(op1);
    } else if (IsSignallingNaN(op2)) {
      return FPProcessNaN(op2);
    } else if (std::isnan(op1)) {
      DCHECK(IsQuietNaN(op1));
      return FPProcessNaN(op1);
    } else if (std::isnan(op2)) {
      DCHECK(IsQuietNaN(op2));
      return FPProcessNaN(op2);
    } else {
      return 0.0;
    }
  }

  template <typename T>
  T FPProcessNaNs3(T op1, T op2, T op3) {
    if (IsSignallingNaN(op1)) {
      return FPProcessNaN(op1);
    } else if (IsSignallingNaN(op2)) {
      return FPProcessNaN(op2);
    } else if (IsSignallingNaN(op3)) {
      return FPProcessNaN(op3);
    } else if (std::isnan(op1)) {
      DCHECK(IsQuietNaN(op1));
      return FPProcessNaN(op1);
    } else if (std::isnan(op2)) {
      DCHECK(IsQuietNaN(op2));
      return FPProcessNaN(op2);
    } else if (std::isnan(op3)) {
      DCHECK(IsQuietNaN(op3));
      return FPProcessNaN(op3);
    } else {
      return 0.0;
    }
  }

  int log_parameters_;
  Isolate* isolate_;
};

template <>
inline double Simulator::FPDefaultNaN<double>() {
  return kFP64DefaultNaN;
}

template <>
inline float Simulator::FPDefaultNaN<float>() {
  return kFP32DefaultNaN;
}

}  // namespace internal
}  // namespace v8

#endif  // defined(USE_SIMULATOR)
#endif  // V8_EXECUTION_ARM64_SIMULATOR_ARM64_H_