summaryrefslogtreecommitdiff
path: root/deps/v8/src/execution.cc
blob: dc8f4fbb2cfa90eec943480cf5ea832632ea9e02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/execution.h"

#include "src/api.h"
#include "src/bootstrapper.h"
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/debug/debug.h"
#include "src/isolate-inl.h"
#include "src/messages.h"
#include "src/runtime-profiler.h"
#include "src/vm-state-inl.h"

namespace v8 {
namespace internal {

StackGuard::StackGuard() : isolate_(nullptr) {}

void StackGuard::set_interrupt_limits(const ExecutionAccess& lock) {
  DCHECK_NOT_NULL(isolate_);
  thread_local_.set_jslimit(kInterruptLimit);
  thread_local_.set_climit(kInterruptLimit);
  isolate_->heap()->SetStackLimits();
}


void StackGuard::reset_limits(const ExecutionAccess& lock) {
  DCHECK_NOT_NULL(isolate_);
  thread_local_.set_jslimit(thread_local_.real_jslimit_);
  thread_local_.set_climit(thread_local_.real_climit_);
  isolate_->heap()->SetStackLimits();
}


static void PrintDeserializedCodeInfo(Handle<JSFunction> function) {
  if (function->code() == function->shared()->GetCode() &&
      function->shared()->deserialized()) {
    PrintF("[Running deserialized script");
    Object* script = function->shared()->script();
    if (script->IsScript()) {
      Object* name = Script::cast(script)->name();
      if (name->IsString()) {
        PrintF(": %s", String::cast(name)->ToCString().get());
      }
    }
    PrintF("]\n");
  }
}


namespace {

V8_WARN_UNUSED_RESULT MaybeHandle<Object> Invoke(
    Isolate* isolate, bool is_construct, Handle<Object> target,
    Handle<Object> receiver, int argc, Handle<Object> args[],
    Handle<Object> new_target, Execution::MessageHandling message_handling,
    Execution::Target execution_target) {
  DCHECK(!receiver->IsJSGlobalObject());

#ifdef USE_SIMULATOR
  // Simulators use separate stacks for C++ and JS. JS stack overflow checks
  // are performed whenever a JS function is called. However, it can be the case
  // that the C++ stack grows faster than the JS stack, resulting in an overflow
  // there. Add a check here to make that less likely.
  StackLimitCheck check(isolate);
  if (check.HasOverflowed()) {
    isolate->StackOverflow();
    if (message_handling == Execution::MessageHandling::kReport) {
      isolate->ReportPendingMessages();
    }
    return MaybeHandle<Object>();
  }
#endif

  // api callbacks can be called directly, unless we want to take the detour
  // through JS to set up a frame for break-at-entry.
  if (target->IsJSFunction()) {
    Handle<JSFunction> function = Handle<JSFunction>::cast(target);
    if ((!is_construct || function->IsConstructor()) &&
        function->shared()->IsApiFunction() &&
        !function->shared()->BreakAtEntry()) {
      SaveContext save(isolate);
      isolate->set_context(function->context());
      DCHECK(function->context()->global_object()->IsJSGlobalObject());
      if (is_construct) receiver = isolate->factory()->the_hole_value();
      auto value = Builtins::InvokeApiFunction(
          isolate, is_construct, function, receiver, argc, args,
          Handle<HeapObject>::cast(new_target));
      bool has_exception = value.is_null();
      DCHECK(has_exception == isolate->has_pending_exception());
      if (has_exception) {
        if (message_handling == Execution::MessageHandling::kReport) {
          isolate->ReportPendingMessages();
        }
        return MaybeHandle<Object>();
      } else {
        isolate->clear_pending_message();
      }
      return value;
    }
  }

  // Entering JavaScript.
  VMState<JS> state(isolate);
  CHECK(AllowJavascriptExecution::IsAllowed(isolate));
  if (!ThrowOnJavascriptExecution::IsAllowed(isolate)) {
    isolate->ThrowIllegalOperation();
    if (message_handling == Execution::MessageHandling::kReport) {
      isolate->ReportPendingMessages();
    }
    return MaybeHandle<Object>();
  }

  // Placeholder for return value.
  Object* value = nullptr;

  using JSEntryFunction =
      GeneratedCode<Object*(Object * new_target, Object * target,
                            Object * receiver, int argc, Object*** args)>;

  Handle<Code> code;
  switch (execution_target) {
    case Execution::Target::kCallable:
      code = is_construct ? isolate->factory()->js_construct_entry_code()
                          : isolate->factory()->js_entry_code();
      break;
    case Execution::Target::kRunMicrotasks:
      code = isolate->factory()->js_run_microtasks_entry_code();
      break;
    default:
      UNREACHABLE();
  }

  {
    // Save and restore context around invocation and block the
    // allocation of handles without explicit handle scopes.
    SaveContext save(isolate);
    SealHandleScope shs(isolate);
    JSEntryFunction stub_entry =
        JSEntryFunction::FromAddress(isolate, code->entry());

    if (FLAG_clear_exceptions_on_js_entry) isolate->clear_pending_exception();

    // Call the function through the right JS entry stub.
    Object* orig_func = *new_target;
    Object* func = *target;
    Object* recv = *receiver;
    Object*** argv = reinterpret_cast<Object***>(args);
    if (FLAG_profile_deserialization && target->IsJSFunction()) {
      PrintDeserializedCodeInfo(Handle<JSFunction>::cast(target));
    }
    RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kJS_Execution);
    value = stub_entry.Call(orig_func, func, recv, argc, argv);
  }

#ifdef VERIFY_HEAP
  if (FLAG_verify_heap) {
    value->ObjectVerify(isolate);
  }
#endif

  // Update the pending exception flag and return the value.
  bool has_exception = value->IsException(isolate);
  DCHECK(has_exception == isolate->has_pending_exception());
  if (has_exception) {
    if (message_handling == Execution::MessageHandling::kReport) {
      isolate->ReportPendingMessages();
    }
    return MaybeHandle<Object>();
  } else {
    isolate->clear_pending_message();
  }

  return Handle<Object>(value, isolate);
}

MaybeHandle<Object> CallInternal(Isolate* isolate, Handle<Object> callable,
                                 Handle<Object> receiver, int argc,
                                 Handle<Object> argv[],
                                 Execution::MessageHandling message_handling,
                                 Execution::Target target) {
  // Convert calls on global objects to be calls on the global
  // receiver instead to avoid having a 'this' pointer which refers
  // directly to a global object.
  if (receiver->IsJSGlobalObject()) {
    receiver =
        handle(Handle<JSGlobalObject>::cast(receiver)->global_proxy(), isolate);
  }
  return Invoke(isolate, false, callable, receiver, argc, argv,
                isolate->factory()->undefined_value(), message_handling,
                target);
}

}  // namespace

// static
MaybeHandle<Object> Execution::Call(Isolate* isolate, Handle<Object> callable,
                                    Handle<Object> receiver, int argc,
                                    Handle<Object> argv[]) {
  return CallInternal(isolate, callable, receiver, argc, argv,
                      MessageHandling::kReport, Execution::Target::kCallable);
}


// static
MaybeHandle<Object> Execution::New(Isolate* isolate, Handle<Object> constructor,
                                   int argc, Handle<Object> argv[]) {
  return New(isolate, constructor, constructor, argc, argv);
}


// static
MaybeHandle<Object> Execution::New(Isolate* isolate, Handle<Object> constructor,
                                   Handle<Object> new_target, int argc,
                                   Handle<Object> argv[]) {
  return Invoke(isolate, true, constructor,
                isolate->factory()->undefined_value(), argc, argv, new_target,
                MessageHandling::kReport, Execution::Target::kCallable);
}

MaybeHandle<Object> Execution::TryCall(
    Isolate* isolate, Handle<Object> callable, Handle<Object> receiver,
    int argc, Handle<Object> args[], MessageHandling message_handling,
    MaybeHandle<Object>* exception_out, Target target) {
  bool is_termination = false;
  MaybeHandle<Object> maybe_result;
  if (exception_out != nullptr) *exception_out = MaybeHandle<Object>();
  DCHECK_IMPLIES(message_handling == MessageHandling::kKeepPending,
                 exception_out == nullptr);
  // Enter a try-block while executing the JavaScript code. To avoid
  // duplicate error printing it must be non-verbose.  Also, to avoid
  // creating message objects during stack overflow we shouldn't
  // capture messages.
  {
    v8::TryCatch catcher(reinterpret_cast<v8::Isolate*>(isolate));
    catcher.SetVerbose(false);
    catcher.SetCaptureMessage(false);

    maybe_result = CallInternal(isolate, callable, receiver, argc, args,
                                message_handling, target);

    if (maybe_result.is_null()) {
      DCHECK(isolate->has_pending_exception());
      if (isolate->pending_exception() ==
          ReadOnlyRoots(isolate).termination_exception()) {
        is_termination = true;
      } else {
        if (exception_out != nullptr) {
          DCHECK(catcher.HasCaught());
          DCHECK(isolate->external_caught_exception());
          *exception_out = v8::Utils::OpenHandle(*catcher.Exception());
        }
      }
      if (message_handling == MessageHandling::kReport) {
        isolate->OptionalRescheduleException(true);
      }
    }
  }

  // Re-request terminate execution interrupt to trigger later.
  if (is_termination) isolate->stack_guard()->RequestTerminateExecution();

  return maybe_result;
}

MaybeHandle<Object> Execution::RunMicrotasks(
    Isolate* isolate, MessageHandling message_handling,
    MaybeHandle<Object>* exception_out) {
  auto undefined = isolate->factory()->undefined_value();
  return TryCall(isolate, undefined, undefined, 0, {}, message_handling,
                 exception_out, Target::kRunMicrotasks);
}

void StackGuard::SetStackLimit(uintptr_t limit) {
  ExecutionAccess access(isolate_);
  // If the current limits are special (e.g. due to a pending interrupt) then
  // leave them alone.
  uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, limit);
  if (thread_local_.jslimit() == thread_local_.real_jslimit_) {
    thread_local_.set_jslimit(jslimit);
  }
  if (thread_local_.climit() == thread_local_.real_climit_) {
    thread_local_.set_climit(limit);
  }
  thread_local_.real_climit_ = limit;
  thread_local_.real_jslimit_ = jslimit;
}


void StackGuard::AdjustStackLimitForSimulator() {
  ExecutionAccess access(isolate_);
  uintptr_t climit = thread_local_.real_climit_;
  // If the current limits are special (e.g. due to a pending interrupt) then
  // leave them alone.
  uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, climit);
  if (thread_local_.jslimit() == thread_local_.real_jslimit_) {
    thread_local_.set_jslimit(jslimit);
    isolate_->heap()->SetStackLimits();
  }
}


void StackGuard::EnableInterrupts() {
  ExecutionAccess access(isolate_);
  if (has_pending_interrupts(access)) {
    set_interrupt_limits(access);
  }
}


void StackGuard::DisableInterrupts() {
  ExecutionAccess access(isolate_);
  reset_limits(access);
}

void StackGuard::PushInterruptsScope(InterruptsScope* scope) {
  ExecutionAccess access(isolate_);
  DCHECK_NE(scope->mode_, InterruptsScope::kNoop);
  if (scope->mode_ == InterruptsScope::kPostponeInterrupts) {
    // Intercept already requested interrupts.
    int intercepted = thread_local_.interrupt_flags_ & scope->intercept_mask_;
    scope->intercepted_flags_ = intercepted;
    thread_local_.interrupt_flags_ &= ~intercepted;
  } else {
    DCHECK_EQ(scope->mode_, InterruptsScope::kRunInterrupts);
    // Restore postponed interrupts.
    int restored_flags = 0;
    for (InterruptsScope* current = thread_local_.interrupt_scopes_;
         current != nullptr; current = current->prev_) {
      restored_flags |= (current->intercepted_flags_ & scope->intercept_mask_);
      current->intercepted_flags_ &= ~scope->intercept_mask_;
    }
    thread_local_.interrupt_flags_ |= restored_flags;
  }
  if (!has_pending_interrupts(access)) reset_limits(access);
  // Add scope to the chain.
  scope->prev_ = thread_local_.interrupt_scopes_;
  thread_local_.interrupt_scopes_ = scope;
}

void StackGuard::PopInterruptsScope() {
  ExecutionAccess access(isolate_);
  InterruptsScope* top = thread_local_.interrupt_scopes_;
  DCHECK_NE(top->mode_, InterruptsScope::kNoop);
  if (top->mode_ == InterruptsScope::kPostponeInterrupts) {
    // Make intercepted interrupts active.
    DCHECK_EQ(thread_local_.interrupt_flags_ & top->intercept_mask_, 0);
    thread_local_.interrupt_flags_ |= top->intercepted_flags_;
  } else {
    DCHECK_EQ(top->mode_, InterruptsScope::kRunInterrupts);
    // Postpone existing interupts if needed.
    if (top->prev_) {
      for (int interrupt = 1; interrupt < ALL_INTERRUPTS;
           interrupt = interrupt << 1) {
        InterruptFlag flag = static_cast<InterruptFlag>(interrupt);
        if ((thread_local_.interrupt_flags_ & flag) &&
            top->prev_->Intercept(flag)) {
          thread_local_.interrupt_flags_ &= ~flag;
        }
      }
    }
  }
  if (has_pending_interrupts(access)) set_interrupt_limits(access);
  // Remove scope from chain.
  thread_local_.interrupt_scopes_ = top->prev_;
}


bool StackGuard::CheckInterrupt(InterruptFlag flag) {
  ExecutionAccess access(isolate_);
  return thread_local_.interrupt_flags_ & flag;
}


void StackGuard::RequestInterrupt(InterruptFlag flag) {
  ExecutionAccess access(isolate_);
  // Check the chain of InterruptsScope for interception.
  if (thread_local_.interrupt_scopes_ &&
      thread_local_.interrupt_scopes_->Intercept(flag)) {
    return;
  }

  // Not intercepted.  Set as active interrupt flag.
  thread_local_.interrupt_flags_ |= flag;
  set_interrupt_limits(access);

  // If this isolate is waiting in a futex, notify it to wake up.
  isolate_->futex_wait_list_node()->NotifyWake();
}


void StackGuard::ClearInterrupt(InterruptFlag flag) {
  ExecutionAccess access(isolate_);
  // Clear the interrupt flag from the chain of InterruptsScope.
  for (InterruptsScope* current = thread_local_.interrupt_scopes_;
       current != nullptr; current = current->prev_) {
    current->intercepted_flags_ &= ~flag;
  }

  // Clear the interrupt flag from the active interrupt flags.
  thread_local_.interrupt_flags_ &= ~flag;
  if (!has_pending_interrupts(access)) reset_limits(access);
}


bool StackGuard::CheckAndClearInterrupt(InterruptFlag flag) {
  ExecutionAccess access(isolate_);
  bool result = (thread_local_.interrupt_flags_ & flag);
  thread_local_.interrupt_flags_ &= ~flag;
  if (!has_pending_interrupts(access)) reset_limits(access);
  return result;
}


char* StackGuard::ArchiveStackGuard(char* to) {
  ExecutionAccess access(isolate_);
  MemCopy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal));
  ThreadLocal blank;

  // Set the stack limits using the old thread_local_.
  // TODO(isolates): This was the old semantics of constructing a ThreadLocal
  //                 (as the ctor called SetStackLimits, which looked at the
  //                 current thread_local_ from StackGuard)-- but is this
  //                 really what was intended?
  isolate_->heap()->SetStackLimits();
  thread_local_ = blank;

  return to + sizeof(ThreadLocal);
}


char* StackGuard::RestoreStackGuard(char* from) {
  ExecutionAccess access(isolate_);
  MemCopy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal));
  isolate_->heap()->SetStackLimits();
  return from + sizeof(ThreadLocal);
}


void StackGuard::FreeThreadResources() {
  Isolate::PerIsolateThreadData* per_thread =
      isolate_->FindOrAllocatePerThreadDataForThisThread();
  per_thread->set_stack_limit(thread_local_.real_climit_);
}


void StackGuard::ThreadLocal::Clear() {
  real_jslimit_ = kIllegalLimit;
  set_jslimit(kIllegalLimit);
  real_climit_ = kIllegalLimit;
  set_climit(kIllegalLimit);
  interrupt_scopes_ = nullptr;
  interrupt_flags_ = 0;
}


bool StackGuard::ThreadLocal::Initialize(Isolate* isolate) {
  bool should_set_stack_limits = false;
  if (real_climit_ == kIllegalLimit) {
    const uintptr_t kLimitSize = FLAG_stack_size * KB;
    DCHECK_GT(GetCurrentStackPosition(), kLimitSize);
    uintptr_t limit = GetCurrentStackPosition() - kLimitSize;
    real_jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit);
    set_jslimit(SimulatorStack::JsLimitFromCLimit(isolate, limit));
    real_climit_ = limit;
    set_climit(limit);
    should_set_stack_limits = true;
  }
  interrupt_scopes_ = nullptr;
  interrupt_flags_ = 0;
  return should_set_stack_limits;
}


void StackGuard::ClearThread(const ExecutionAccess& lock) {
  thread_local_.Clear();
  isolate_->heap()->SetStackLimits();
}


void StackGuard::InitThread(const ExecutionAccess& lock) {
  if (thread_local_.Initialize(isolate_)) isolate_->heap()->SetStackLimits();
  Isolate::PerIsolateThreadData* per_thread =
      isolate_->FindOrAllocatePerThreadDataForThisThread();
  uintptr_t stored_limit = per_thread->stack_limit();
  // You should hold the ExecutionAccess lock when you call this.
  if (stored_limit != 0) {
    SetStackLimit(stored_limit);
  }
}


// --- C a l l s   t o   n a t i v e s ---


Object* StackGuard::HandleInterrupts() {
  if (FLAG_verify_predictable) {
    // Advance synthetic time by making a time request.
    isolate_->heap()->MonotonicallyIncreasingTimeInMs();
  }

  bool any_interrupt_handled = false;
  if (FLAG_trace_interrupts) {
    PrintF("[Handling interrupts: ");
  }

  if (CheckAndClearInterrupt(GC_REQUEST)) {
    if (FLAG_trace_interrupts) {
      PrintF("GC_REQUEST");
      any_interrupt_handled = true;
    }
    isolate_->heap()->HandleGCRequest();
  }

  if (CheckAndClearInterrupt(TERMINATE_EXECUTION)) {
    if (FLAG_trace_interrupts) {
      if (any_interrupt_handled) PrintF(", ");
      PrintF("TERMINATE_EXECUTION");
      any_interrupt_handled = true;
    }
    return isolate_->TerminateExecution();
  }

  if (CheckAndClearInterrupt(DEOPT_MARKED_ALLOCATION_SITES)) {
    if (FLAG_trace_interrupts) {
      if (any_interrupt_handled) PrintF(", ");
      PrintF("DEOPT_MARKED_ALLOCATION_SITES");
      any_interrupt_handled = true;
    }
    isolate_->heap()->DeoptMarkedAllocationSites();
  }

  if (CheckAndClearInterrupt(INSTALL_CODE)) {
    if (FLAG_trace_interrupts) {
      if (any_interrupt_handled) PrintF(", ");
      PrintF("INSTALL_CODE");
      any_interrupt_handled = true;
    }
    DCHECK(isolate_->concurrent_recompilation_enabled());
    isolate_->optimizing_compile_dispatcher()->InstallOptimizedFunctions();
  }

  if (CheckAndClearInterrupt(API_INTERRUPT)) {
    if (FLAG_trace_interrupts) {
      if (any_interrupt_handled) PrintF(", ");
      PrintF("API_INTERRUPT");
      any_interrupt_handled = true;
    }
    // Callbacks must be invoked outside of ExecusionAccess lock.
    isolate_->InvokeApiInterruptCallbacks();
  }

  if (FLAG_trace_interrupts) {
    if (!any_interrupt_handled) {
      PrintF("No interrupt flags set");
    }
    PrintF("]\n");
  }

  isolate_->counters()->stack_interrupts()->Increment();
  isolate_->counters()->runtime_profiler_ticks()->Increment();
  isolate_->runtime_profiler()->MarkCandidatesForOptimization();

  return ReadOnlyRoots(isolate_).undefined_value();
}

}  // namespace internal
}  // namespace v8