summaryrefslogtreecommitdiff
path: root/deps/v8/src/debug/debug-coverage.cc
blob: cb466ab6ab7596c150360d0b9248af09a570c3d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/debug/debug-coverage.h"

#include "src/ast/ast-source-ranges.h"
#include "src/ast/ast.h"
#include "src/base/hashmap.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frames-inl.h"
#include "src/execution/isolate.h"
#include "src/objects/debug-objects-inl.h"
#include "src/objects/objects.h"

namespace v8 {
namespace internal {

class SharedToCounterMap
    : public base::TemplateHashMapImpl<SharedFunctionInfo, uint32_t,
                                       base::KeyEqualityMatcher<Object>,
                                       base::DefaultAllocationPolicy> {
 public:
  using Entry = base::TemplateHashMapEntry<SharedFunctionInfo, uint32_t>;
  inline void Add(SharedFunctionInfo key, uint32_t count) {
    Entry* entry = LookupOrInsert(key, Hash(key), []() { return 0; });
    uint32_t old_count = entry->value;
    if (UINT32_MAX - count < old_count) {
      entry->value = UINT32_MAX;
    } else {
      entry->value = old_count + count;
    }
  }

  inline uint32_t Get(SharedFunctionInfo key) {
    Entry* entry = Lookup(key, Hash(key));
    if (entry == nullptr) return 0;
    return entry->value;
  }

 private:
  static uint32_t Hash(SharedFunctionInfo key) {
    return static_cast<uint32_t>(key.ptr());
  }

  DisallowHeapAllocation no_gc;
};

namespace {
int StartPosition(SharedFunctionInfo info) {
  int start = info.function_token_position();
  if (start == kNoSourcePosition) start = info.StartPosition();
  return start;
}

bool CompareCoverageBlock(const CoverageBlock& a, const CoverageBlock& b) {
  DCHECK_NE(kNoSourcePosition, a.start);
  DCHECK_NE(kNoSourcePosition, b.start);
  if (a.start == b.start) return a.end > b.end;
  return a.start < b.start;
}

void SortBlockData(
    std::vector<CoverageBlock>& v) {  // NOLINT(runtime/references)
  // Sort according to the block nesting structure.
  std::sort(v.begin(), v.end(), CompareCoverageBlock);
}

std::vector<CoverageBlock> GetSortedBlockData(SharedFunctionInfo shared) {
  DCHECK(shared.HasCoverageInfo());

  CoverageInfo coverage_info =
      CoverageInfo::cast(shared.GetDebugInfo().coverage_info());

  std::vector<CoverageBlock> result;
  if (coverage_info.SlotCount() == 0) return result;

  for (int i = 0; i < coverage_info.SlotCount(); i++) {
    const int start_pos = coverage_info.StartSourcePosition(i);
    const int until_pos = coverage_info.EndSourcePosition(i);
    const int count = coverage_info.BlockCount(i);

    DCHECK_NE(kNoSourcePosition, start_pos);
    result.emplace_back(start_pos, until_pos, count);
  }

  SortBlockData(result);

  return result;
}

// A utility class to simplify logic for performing passes over block coverage
// ranges. Provides access to the implicit tree structure of ranges (i.e. access
// to parent and sibling blocks), and supports efficient in-place editing and
// deletion. The underlying backing store is the array of CoverageBlocks stored
// on the CoverageFunction.
class CoverageBlockIterator final {
 public:
  explicit CoverageBlockIterator(CoverageFunction* function)
      : function_(function) {
    DCHECK(std::is_sorted(function_->blocks.begin(), function_->blocks.end(),
                          CompareCoverageBlock));
  }

  ~CoverageBlockIterator() {
    Finalize();
    DCHECK(std::is_sorted(function_->blocks.begin(), function_->blocks.end(),
                          CompareCoverageBlock));
  }

  bool HasNext() const {
    return read_index_ + 1 < static_cast<int>(function_->blocks.size());
  }

  bool Next() {
    if (!HasNext()) {
      if (!ended_) MaybeWriteCurrent();
      ended_ = true;
      return false;
    }

    // If a block has been deleted, subsequent iteration moves trailing blocks
    // to their updated position within the array.
    MaybeWriteCurrent();

    if (read_index_ == -1) {
      // Initialize the nesting stack with the function range.
      nesting_stack_.emplace_back(function_->start, function_->end,
                                  function_->count);
    } else if (!delete_current_) {
      nesting_stack_.emplace_back(GetBlock());
    }

    delete_current_ = false;
    read_index_++;

    DCHECK(IsActive());

    CoverageBlock& block = GetBlock();
    while (nesting_stack_.size() > 1 &&
           nesting_stack_.back().end <= block.start) {
      nesting_stack_.pop_back();
    }

    DCHECK_IMPLIES(block.start >= function_->end,
                   block.end == kNoSourcePosition);
    DCHECK_NE(block.start, kNoSourcePosition);
    DCHECK_LE(block.end, GetParent().end);

    return true;
  }

  CoverageBlock& GetBlock() {
    DCHECK(IsActive());
    return function_->blocks[read_index_];
  }

  CoverageBlock& GetNextBlock() {
    DCHECK(IsActive());
    DCHECK(HasNext());
    return function_->blocks[read_index_ + 1];
  }

  CoverageBlock& GetPreviousBlock() {
    DCHECK(IsActive());
    DCHECK_GT(read_index_, 0);
    return function_->blocks[read_index_ - 1];
  }

  CoverageBlock& GetParent() {
    DCHECK(IsActive());
    return nesting_stack_.back();
  }

  bool HasSiblingOrChild() {
    DCHECK(IsActive());
    return HasNext() && GetNextBlock().start < GetParent().end;
  }

  CoverageBlock& GetSiblingOrChild() {
    DCHECK(HasSiblingOrChild());
    DCHECK(IsActive());
    return GetNextBlock();
  }

  // A range is considered to be at top level if its parent range is the
  // function range.
  bool IsTopLevel() const { return nesting_stack_.size() == 1; }

  void DeleteBlock() {
    DCHECK(!delete_current_);
    DCHECK(IsActive());
    delete_current_ = true;
  }

 private:
  void MaybeWriteCurrent() {
    if (delete_current_) return;
    if (read_index_ >= 0 && write_index_ != read_index_) {
      function_->blocks[write_index_] = function_->blocks[read_index_];
    }
    write_index_++;
  }

  void Finalize() {
    while (Next()) {
      // Just iterate to the end.
    }
    function_->blocks.resize(write_index_);
  }

  bool IsActive() const { return read_index_ >= 0 && !ended_; }

  CoverageFunction* function_;
  std::vector<CoverageBlock> nesting_stack_;
  bool ended_ = false;
  bool delete_current_ = false;
  int read_index_ = -1;
  int write_index_ = -1;
};

bool HaveSameSourceRange(const CoverageBlock& lhs, const CoverageBlock& rhs) {
  return lhs.start == rhs.start && lhs.end == rhs.end;
}

void MergeDuplicateRanges(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  while (iter.Next() && iter.HasNext()) {
    CoverageBlock& block = iter.GetBlock();
    CoverageBlock& next_block = iter.GetNextBlock();

    if (!HaveSameSourceRange(block, next_block)) continue;

    DCHECK_NE(kNoSourcePosition, block.end);  // Non-singleton range.
    next_block.count = std::max(block.count, next_block.count);
    iter.DeleteBlock();
  }
}

// Rewrite position singletons (produced by unconditional control flow
// like return statements, and by continuation counters) into source
// ranges that end at the next sibling range or the end of the parent
// range, whichever comes first.
void RewritePositionSingletonsToRanges(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  while (iter.Next()) {
    CoverageBlock& block = iter.GetBlock();
    CoverageBlock& parent = iter.GetParent();

    if (block.start >= function->end) {
      DCHECK_EQ(block.end, kNoSourcePosition);
      iter.DeleteBlock();
    } else if (block.end == kNoSourcePosition) {
      // The current block ends at the next sibling block (if it exists) or the
      // end of the parent block otherwise.
      if (iter.HasSiblingOrChild()) {
        block.end = iter.GetSiblingOrChild().start;
      } else if (iter.IsTopLevel()) {
        // See https://crbug.com/v8/6661. Functions are special-cased because
        // we never want the closing brace to be uncovered. This is mainly to
        // avoid a noisy UI.
        block.end = parent.end - 1;
      } else {
        block.end = parent.end;
      }
    }
  }
}

void MergeConsecutiveRanges(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  while (iter.Next()) {
    CoverageBlock& block = iter.GetBlock();

    if (iter.HasSiblingOrChild()) {
      CoverageBlock& sibling = iter.GetSiblingOrChild();
      if (sibling.start == block.end && sibling.count == block.count) {
        // Best-effort: this pass may miss mergeable siblings in the presence of
        // child blocks.
        sibling.start = block.start;
        iter.DeleteBlock();
      }
    }
  }
}

void MergeNestedRanges(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  while (iter.Next()) {
    CoverageBlock& block = iter.GetBlock();
    CoverageBlock& parent = iter.GetParent();

    if (parent.count == block.count) {
      // Transformation may not be valid if sibling blocks exist with a
      // differing count.
      iter.DeleteBlock();
    }
  }
}

void RewriteFunctionScopeCounter(CoverageFunction* function) {
  // Every function must have at least the top-level function counter.
  DCHECK(!function->blocks.empty());

  CoverageBlockIterator iter(function);
  if (iter.Next()) {
    DCHECK(iter.IsTopLevel());

    CoverageBlock& block = iter.GetBlock();
    if (block.start == SourceRange::kFunctionLiteralSourcePosition &&
        block.end == SourceRange::kFunctionLiteralSourcePosition) {
      // If a function-scope block exists, overwrite the function count. It has
      // a more reliable count than what we get from the FeedbackVector (which
      // is imprecise e.g. for generator functions and optimized code).
      function->count = block.count;

      // Then delete it; for compatibility with non-block coverage modes, the
      // function-scope block is expected in CoverageFunction, not as a
      // CoverageBlock.
      iter.DeleteBlock();
    }
  }
}

void FilterAliasedSingletons(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  iter.Next();  // Advance once since we reference the previous block later.

  while (iter.Next()) {
    CoverageBlock& previous_block = iter.GetPreviousBlock();
    CoverageBlock& block = iter.GetBlock();

    bool is_singleton = block.end == kNoSourcePosition;
    bool aliases_start = block.start == previous_block.start;

    if (is_singleton && aliases_start) {
      // The previous block must have a full range since duplicate singletons
      // have already been merged.
      DCHECK_NE(previous_block.end, kNoSourcePosition);
      // Likewise, the next block must have another start position since
      // singletons are sorted to the end.
      DCHECK_IMPLIES(iter.HasNext(), iter.GetNextBlock().start != block.start);
      iter.DeleteBlock();
    }
  }
}

void FilterUncoveredRanges(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  while (iter.Next()) {
    CoverageBlock& block = iter.GetBlock();
    CoverageBlock& parent = iter.GetParent();
    if (block.count == 0 && parent.count == 0) iter.DeleteBlock();
  }
}

void FilterEmptyRanges(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  while (iter.Next()) {
    CoverageBlock& block = iter.GetBlock();
    if (block.start == block.end) iter.DeleteBlock();
  }
}

void ClampToBinary(CoverageFunction* function) {
  CoverageBlockIterator iter(function);

  while (iter.Next()) {
    CoverageBlock& block = iter.GetBlock();
    if (block.count > 0) block.count = 1;
  }
}

void ResetAllBlockCounts(SharedFunctionInfo shared) {
  DCHECK(shared.HasCoverageInfo());

  CoverageInfo coverage_info =
      CoverageInfo::cast(shared.GetDebugInfo().coverage_info());

  for (int i = 0; i < coverage_info.SlotCount(); i++) {
    coverage_info.ResetBlockCount(i);
  }
}

bool IsBlockMode(debug::CoverageMode mode) {
  switch (mode) {
    case debug::CoverageMode::kBlockBinary:
    case debug::CoverageMode::kBlockCount:
      return true;
    default:
      return false;
  }
}

bool IsBinaryMode(debug::CoverageMode mode) {
  switch (mode) {
    case debug::CoverageMode::kBlockBinary:
    case debug::CoverageMode::kPreciseBinary:
      return true;
    default:
      return false;
  }
}

void CollectBlockCoverageInternal(CoverageFunction* function,
                                  SharedFunctionInfo info,
                                  debug::CoverageMode mode) {
  DCHECK(IsBlockMode(mode));

  // Functions with empty source ranges are not interesting to report. This can
  // happen e.g. for internally-generated functions like class constructors.
  if (!function->HasNonEmptySourceRange()) return;

  function->has_block_coverage = true;
  function->blocks = GetSortedBlockData(info);

  // If in binary mode, only report counts of 0/1.
  if (mode == debug::CoverageMode::kBlockBinary) ClampToBinary(function);

  // To stay compatible with non-block coverage modes, the function-scope count
  // is expected to be in the CoverageFunction, not as part of its blocks.
  // This finds the function-scope counter, overwrites CoverageFunction::count,
  // and removes it from the block list.
  //
  // Important: Must be called before other transformation passes.
  RewriteFunctionScopeCounter(function);

  // Functions without blocks don't need to be processed further.
  if (!function->HasBlocks()) return;

  // Remove singleton ranges with the same start position as a full range and
  // throw away their counts.
  // Singleton ranges are only intended to split existing full ranges and should
  // never expand into a full range. Consider 'if (cond) { ... } else { ... }'
  // as a problematic example; if the then-block produces a continuation
  // singleton, it would incorrectly expand into the else range.
  // For more context, see https://crbug.com/v8/8237.
  FilterAliasedSingletons(function);

  // Rewrite all singletons (created e.g. by continuations and unconditional
  // control flow) to ranges.
  RewritePositionSingletonsToRanges(function);

  // Merge nested and consecutive ranges with identical counts.
  // Note that it's necessary to merge duplicate ranges prior to merging nested
  // changes in order to avoid invalid transformations. See crbug.com/827530.
  MergeConsecutiveRanges(function);

  SortBlockData(function->blocks);
  MergeDuplicateRanges(function);
  MergeNestedRanges(function);

  MergeConsecutiveRanges(function);

  // Filter out ranges with count == 0 unless the immediate parent range has
  // a count != 0.
  FilterUncoveredRanges(function);

  // Filter out ranges of zero length.
  FilterEmptyRanges(function);
}

void CollectBlockCoverage(CoverageFunction* function, SharedFunctionInfo info,
                          debug::CoverageMode mode) {
  CollectBlockCoverageInternal(function, info, mode);

  // Reset all counters on the DebugInfo to zero.
  ResetAllBlockCounts(info);
}

void PrintBlockCoverage(const CoverageFunction* function,
                        SharedFunctionInfo info, bool has_nonempty_source_range,
                        bool function_is_relevant) {
  DCHECK(FLAG_trace_block_coverage);
  std::unique_ptr<char[]> function_name =
      function->name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
  i::PrintF(
      "Coverage for function='%s', SFI=%p, has_nonempty_source_range=%d, "
      "function_is_relevant=%d\n",
      function_name.get(), reinterpret_cast<void*>(info.ptr()),
      has_nonempty_source_range, function_is_relevant);
  i::PrintF("{start: %d, end: %d, count: %d}\n", function->start, function->end,
            function->count);
  for (const auto& block : function->blocks) {
    i::PrintF("{start: %d, end: %d, count: %d}\n", block.start, block.end,
              block.count);
  }
}

void CollectAndMaybeResetCounts(Isolate* isolate,
                                SharedToCounterMap* counter_map,
                                v8::debug::CoverageMode coverage_mode) {
  const bool reset_count =
      coverage_mode != v8::debug::CoverageMode::kBestEffort;

  switch (isolate->code_coverage_mode()) {
    case v8::debug::CoverageMode::kBlockBinary:
    case v8::debug::CoverageMode::kBlockCount:
    case v8::debug::CoverageMode::kPreciseBinary:
    case v8::debug::CoverageMode::kPreciseCount: {
      // Feedback vectors are already listed to prevent losing them to GC.
      DCHECK(isolate->factory()
                 ->feedback_vectors_for_profiling_tools()
                 ->IsArrayList());
      Handle<ArrayList> list = Handle<ArrayList>::cast(
          isolate->factory()->feedback_vectors_for_profiling_tools());
      for (int i = 0; i < list->Length(); i++) {
        FeedbackVector vector = FeedbackVector::cast(list->Get(i));
        SharedFunctionInfo shared = vector.shared_function_info();
        DCHECK(shared.IsSubjectToDebugging());
        uint32_t count = static_cast<uint32_t>(vector.invocation_count());
        if (reset_count) vector.clear_invocation_count();
        counter_map->Add(shared, count);
      }
      break;
    }
    case v8::debug::CoverageMode::kBestEffort: {
      DCHECK(!isolate->factory()
                  ->feedback_vectors_for_profiling_tools()
                  ->IsArrayList());
      DCHECK_EQ(v8::debug::CoverageMode::kBestEffort, coverage_mode);
      HeapObjectIterator heap_iterator(isolate->heap());
      for (HeapObject current_obj = heap_iterator.Next();
           !current_obj.is_null(); current_obj = heap_iterator.Next()) {
        if (!current_obj.IsJSFunction()) continue;
        JSFunction func = JSFunction::cast(current_obj);
        SharedFunctionInfo shared = func.shared();
        if (!shared.IsSubjectToDebugging()) continue;
        if (!(func.has_feedback_vector() ||
              func.has_closure_feedback_cell_array())) {
          continue;
        }
        uint32_t count = 0;
        if (func.has_feedback_vector()) {
          count =
              static_cast<uint32_t>(func.feedback_vector().invocation_count());
        } else if (func.raw_feedback_cell().interrupt_budget() <
                   FLAG_budget_for_feedback_vector_allocation) {
          // We haven't allocated feedback vector, but executed the function
          // atleast once. We don't have precise invocation count here.
          count = 1;
        }
        counter_map->Add(shared, count);
      }

      // Also check functions on the stack to collect the count map. With lazy
      // feedback allocation we may miss counting functions if the feedback
      // vector wasn't allocated yet and the function's interrupt budget wasn't
      // updated (i.e. it didn't execute return / jump).
      for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) {
        SharedFunctionInfo shared = it.frame()->function().shared();
        if (counter_map->Get(shared) != 0) continue;
        counter_map->Add(shared, 1);
      }
      break;
    }
  }
}

// A {SFI, count} tuple is used to sort by source range (stored on
// the SFI) and call count (in the counter map).
struct SharedFunctionInfoAndCount {
  SharedFunctionInfoAndCount(SharedFunctionInfo info, uint32_t count)
      : info(info),
        count(count),
        start(StartPosition(info)),
        end(info.EndPosition()) {}

  // Sort by:
  // - start, ascending.
  // - end, descending.
  // - count, ascending.
  bool operator<(const SharedFunctionInfoAndCount& that) const {
    if (this->start != that.start) return this->start < that.start;
    if (this->end != that.end) return this->end > that.end;
    return this->count < that.count;
  }

  SharedFunctionInfo info;
  uint32_t count;
  int start;
  int end;
};

}  // anonymous namespace

std::unique_ptr<Coverage> Coverage::CollectPrecise(Isolate* isolate) {
  DCHECK(!isolate->is_best_effort_code_coverage());
  std::unique_ptr<Coverage> result =
      Collect(isolate, isolate->code_coverage_mode());
  if (!isolate->is_collecting_type_profile() &&
      (isolate->is_precise_binary_code_coverage() ||
       isolate->is_block_binary_code_coverage())) {
    // We do not have to hold onto feedback vectors for invocations we already
    // reported. So we can reset the list.
    isolate->SetFeedbackVectorsForProfilingTools(*ArrayList::New(isolate, 0));
  }
  return result;
}

std::unique_ptr<Coverage> Coverage::CollectBestEffort(Isolate* isolate) {
  return Collect(isolate, v8::debug::CoverageMode::kBestEffort);
}

std::unique_ptr<Coverage> Coverage::Collect(
    Isolate* isolate, v8::debug::CoverageMode collectionMode) {
  // Collect call counts for all functions.
  SharedToCounterMap counter_map;
  CollectAndMaybeResetCounts(isolate, &counter_map, collectionMode);

  // Iterate shared function infos of every script and build a mapping
  // between source ranges and invocation counts.
  std::unique_ptr<Coverage> result(new Coverage());
  Script::Iterator scripts(isolate);
  for (Script script = scripts.Next(); !script.is_null();
       script = scripts.Next()) {
    if (!script.IsUserJavaScript()) continue;

    // Create and add new script data.
    Handle<Script> script_handle(script, isolate);
    result->emplace_back(script_handle);
    std::vector<CoverageFunction>* functions = &result->back().functions;

    std::vector<SharedFunctionInfoAndCount> sorted;

    {
      // Sort functions by start position, from outer to inner functions.
      SharedFunctionInfo::ScriptIterator infos(isolate, *script_handle);
      for (SharedFunctionInfo info = infos.Next(); !info.is_null();
           info = infos.Next()) {
        sorted.emplace_back(info, counter_map.Get(info));
      }
      std::sort(sorted.begin(), sorted.end());
    }

    // Stack to track nested functions, referring function by index.
    std::vector<size_t> nesting;

    // Use sorted list to reconstruct function nesting.
    for (const SharedFunctionInfoAndCount& v : sorted) {
      SharedFunctionInfo info = v.info;
      int start = v.start;
      int end = v.end;
      uint32_t count = v.count;

      // Find the correct outer function based on start position.
      //
      // This is not robust when considering two functions with identical source
      // ranges. In this case, it is unclear which function is the inner / outer
      // function. Above, we ensure that such functions are sorted in ascending
      // `count` order, so at least our `parent_is_covered` optimization below
      // should be fine.
      // TODO(jgruber): Consider removing the optimization.
      while (!nesting.empty() && functions->at(nesting.back()).end <= start) {
        nesting.pop_back();
      }

      if (count != 0) {
        switch (collectionMode) {
          case v8::debug::CoverageMode::kBlockCount:
          case v8::debug::CoverageMode::kPreciseCount:
            break;
          case v8::debug::CoverageMode::kBlockBinary:
          case v8::debug::CoverageMode::kPreciseBinary:
            count = info.has_reported_binary_coverage() ? 0 : 1;
            info.set_has_reported_binary_coverage(true);
            break;
          case v8::debug::CoverageMode::kBestEffort:
            count = 1;
            break;
        }
      }

      Handle<String> name(info.DebugName(), isolate);
      CoverageFunction function(start, end, count, name);

      if (IsBlockMode(collectionMode) && info.HasCoverageInfo()) {
        CollectBlockCoverage(&function, info, collectionMode);
      }

      // Only include a function range if itself or its parent function is
      // covered, or if it contains non-trivial block coverage.
      bool is_covered = (count != 0);
      bool parent_is_covered =
          (!nesting.empty() && functions->at(nesting.back()).count != 0);
      bool has_block_coverage = !function.blocks.empty();
      bool function_is_relevant =
          (is_covered || parent_is_covered || has_block_coverage);

      // It must also have a non-empty source range (otherwise it is not
      // interesting to report).
      bool has_nonempty_source_range = function.HasNonEmptySourceRange();

      if (has_nonempty_source_range && function_is_relevant) {
        nesting.push_back(functions->size());
        functions->emplace_back(function);
      }

      if (FLAG_trace_block_coverage) {
        PrintBlockCoverage(&function, info, has_nonempty_source_range,
                           function_is_relevant);
      }
    }

    // Remove entries for scripts that have no coverage.
    if (functions->empty()) result->pop_back();
  }
  return result;
}

void Coverage::SelectMode(Isolate* isolate, debug::CoverageMode mode) {
  if (mode != isolate->code_coverage_mode()) {
    // Changing the coverage mode can change the bytecode that would be
    // generated for a function, which can interfere with lazy source positions,
    // so just force source position collection whenever there's such a change.
    isolate->CollectSourcePositionsForAllBytecodeArrays();
  }

  switch (mode) {
    case debug::CoverageMode::kBestEffort:
      // Note that DevTools switches back to best-effort coverage once the
      // recording is stopped. Since we delete coverage infos at that point, any
      // following coverage recording (without reloads) will be at function
      // granularity.
      isolate->debug()->RemoveAllCoverageInfos();
      if (!isolate->is_collecting_type_profile()) {
        isolate->SetFeedbackVectorsForProfilingTools(
            ReadOnlyRoots(isolate).undefined_value());
      }
      break;
    case debug::CoverageMode::kBlockBinary:
    case debug::CoverageMode::kBlockCount:
    case debug::CoverageMode::kPreciseBinary:
    case debug::CoverageMode::kPreciseCount: {
      HandleScope scope(isolate);

      // Remove all optimized function. Optimized and inlined functions do not
      // increment invocation count.
      Deoptimizer::DeoptimizeAll(isolate);

      std::vector<Handle<JSFunction>> funcs_needing_feedback_vector;
      {
        HeapObjectIterator heap_iterator(isolate->heap());
        for (HeapObject o = heap_iterator.Next(); !o.is_null();
             o = heap_iterator.Next()) {
          if (o.IsJSFunction()) {
            JSFunction func = JSFunction::cast(o);
            if (func.has_closure_feedback_cell_array()) {
              funcs_needing_feedback_vector.push_back(
                  Handle<JSFunction>(func, isolate));
            }
          } else if (IsBinaryMode(mode) && o.IsSharedFunctionInfo()) {
            // If collecting binary coverage, reset
            // SFI::has_reported_binary_coverage to avoid optimizing / inlining
            // functions before they have reported coverage.
            SharedFunctionInfo shared = SharedFunctionInfo::cast(o);
            shared.set_has_reported_binary_coverage(false);
          } else if (o.IsFeedbackVector()) {
            // In any case, clear any collected invocation counts.
            FeedbackVector::cast(o).clear_invocation_count();
          }
        }
      }

      for (Handle<JSFunction> func : funcs_needing_feedback_vector) {
        JSFunction::EnsureFeedbackVector(func);
      }

      // Root all feedback vectors to avoid early collection.
      isolate->MaybeInitializeVectorListFromHeap();

      break;
    }
  }
  isolate->set_code_coverage_mode(mode);
}

}  // namespace internal
}  // namespace v8