summaryrefslogtreecommitdiff
path: root/deps/v8/src/conversions.h
blob: 5afd4e1f2c2d77b84c005c62191a101827b2e101 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_CONVERSIONS_H_
#define V8_CONVERSIONS_H_

#include <limits>

#include "src/base/logging.h"
#include "src/handles.h"
#include "src/objects.h"
#include "src/utils.h"

namespace v8 {
namespace internal {

class UnicodeCache;

// Maximum number of significant digits in decimal representation.
// The longest possible double in decimal representation is
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
// (768 digits). If we parse a number whose first digits are equal to a
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
// must be rounded to the bigger one unless the tail consists of zeros, so
// we don't need to preserve all the digits.
const int kMaxSignificantDigits = 772;


inline bool isDigit(int x, int radix) {
  return (x >= '0' && x <= '9' && x < '0' + radix)
      || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
      || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
}


inline bool isBinaryDigit(int x) {
  return x == '0' || x == '1';
}


// The fast double-to-(unsigned-)int conversion routine does not guarantee
// rounding towards zero.
// If x is NaN, the result is INT_MIN.  Otherwise the result is the argument x,
// clamped to [INT_MIN, INT_MAX] and then rounded to an integer.
inline int FastD2IChecked(double x) {
  if (!(x >= INT_MIN)) return INT_MIN;  // Negation to catch NaNs.
  if (x > INT_MAX) return INT_MAX;
  return static_cast<int>(x);
}


// The fast double-to-(unsigned-)int conversion routine does not guarantee
// rounding towards zero.
// The result is unspecified if x is infinite or NaN, or if the rounded
// integer value is outside the range of type int.
inline int FastD2I(double x) {
  return static_cast<int32_t>(x);
}

inline unsigned int FastD2UI(double x);


inline double FastI2D(int x) {
  // There is no rounding involved in converting an integer to a
  // double, so this code should compile to a few instructions without
  // any FPU pipeline stalls.
  return static_cast<double>(x);
}


inline double FastUI2D(unsigned x) {
  // There is no rounding involved in converting an unsigned integer to a
  // double, so this code should compile to a few instructions without
  // any FPU pipeline stalls.
  return static_cast<double>(x);
}


// This function should match the exact semantics of ECMA-262 20.2.2.17.
inline float DoubleToFloat32(double x);


// This function should match the exact semantics of ECMA-262 9.4.
inline double DoubleToInteger(double x);


// This function should match the exact semantics of ECMA-262 9.5.
inline int32_t DoubleToInt32(double x);


// This function should match the exact semantics of ECMA-262 9.6.
inline uint32_t DoubleToUint32(double x) {
  return static_cast<uint32_t>(DoubleToInt32(x));
}


// Enumeration for allowing octals and ignoring junk when converting
// strings to numbers.
enum ConversionFlags {
  NO_FLAGS = 0,
  ALLOW_HEX = 1,
  ALLOW_OCTAL = 2,
  ALLOW_IMPLICIT_OCTAL = 4,
  ALLOW_BINARY = 8,
  ALLOW_TRAILING_JUNK = 16
};


// Converts a string into a double value according to ECMA-262 9.3.1
double StringToDouble(UnicodeCache* unicode_cache,
                      Vector<const uint8_t> str,
                      int flags,
                      double empty_string_val = 0);
double StringToDouble(UnicodeCache* unicode_cache,
                      Vector<const uc16> str,
                      int flags,
                      double empty_string_val = 0);
// This version expects a zero-terminated character array.
double StringToDouble(UnicodeCache* unicode_cache,
                      const char* str,
                      int flags,
                      double empty_string_val = 0);

// Converts a string into an integer.
double StringToInt(UnicodeCache* unicode_cache,
                   Vector<const uint8_t> vector,
                   int radix);


double StringToInt(UnicodeCache* unicode_cache,
                   Vector<const uc16> vector,
                   int radix);

const int kDoubleToCStringMinBufferSize = 100;

// Converts a double to a string value according to ECMA-262 9.8.1.
// The buffer should be large enough for any floating point number.
// 100 characters is enough.
const char* DoubleToCString(double value, Vector<char> buffer);

// Convert an int to a null-terminated string. The returned string is
// located inside the buffer, but not necessarily at the start.
const char* IntToCString(int n, Vector<char> buffer);

// Additional number to string conversions for the number type.
// The caller is responsible for calling free on the returned pointer.
char* DoubleToFixedCString(double value, int f);
char* DoubleToExponentialCString(double value, int f);
char* DoubleToPrecisionCString(double value, int f);
char* DoubleToRadixCString(double value, int radix);


static inline bool IsMinusZero(double value) {
  static const DoubleRepresentation minus_zero(-0.0);
  return DoubleRepresentation(value) == minus_zero;
}


static inline bool IsSmiDouble(double value) {
  return !IsMinusZero(value) && value >= Smi::kMinValue &&
         value <= Smi::kMaxValue && value == FastI2D(FastD2I(value));
}


// Integer32 is an integer that can be represented as a signed 32-bit
// integer. It has to be in the range [-2^31, 2^31 - 1].
// We also have to check for negative 0 as it is not an Integer32.
static inline bool IsInt32Double(double value) {
  return !IsMinusZero(value) &&
         value >= kMinInt &&
         value <= kMaxInt &&
         value == FastI2D(FastD2I(value));
}


// UInteger32 is an integer that can be represented as an unsigned 32-bit
// integer. It has to be in the range [0, 2^32 - 1].
// We also have to check for negative 0 as it is not a UInteger32.
static inline bool IsUint32Double(double value) {
  return !IsMinusZero(value) &&
         value >= 0 &&
         value <= kMaxUInt32 &&
         value == FastUI2D(FastD2UI(value));
}


// Convert from Number object to C integer.
inline int32_t NumberToInt32(Object* number) {
  if (number->IsSmi()) return Smi::cast(number)->value();
  return DoubleToInt32(number->Number());
}


inline uint32_t NumberToUint32(Object* number) {
  if (number->IsSmi()) return Smi::cast(number)->value();
  return DoubleToUint32(number->Number());
}


double StringToDouble(UnicodeCache* unicode_cache, Handle<String> string,
                      int flags, double empty_string_val = 0.0);


inline bool TryNumberToSize(Isolate* isolate,
                            Object* number, size_t* result) {
  SealHandleScope shs(isolate);
  if (number->IsSmi()) {
    int value = Smi::cast(number)->value();
    DCHECK(static_cast<unsigned>(Smi::kMaxValue)
           <= std::numeric_limits<size_t>::max());
    if (value >= 0) {
      *result = static_cast<size_t>(value);
      return true;
    }
    return false;
  } else {
    DCHECK(number->IsHeapNumber());
    double value = HeapNumber::cast(number)->value();
    if (value >= 0 &&
        value <= std::numeric_limits<size_t>::max()) {
      *result = static_cast<size_t>(value);
      return true;
    } else {
      return false;
    }
  }
}

// Converts a number into size_t.
inline size_t NumberToSize(Isolate* isolate,
                           Object* number) {
  size_t result = 0;
  bool is_valid = TryNumberToSize(isolate, number, &result);
  CHECK(is_valid);
  return result;
}

} }  // namespace v8::internal

#endif  // V8_CONVERSIONS_H_