summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/types.cc
blob: 018c54c3d57ce8f486e00db448951e31daf16bb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <iomanip>

#include "src/compiler/types.h"

#include "src/handles/handles-inl.h"
#include "src/objects/instance-type.h"
#include "src/objects/objects-inl.h"
#include "src/utils/ostreams.h"

namespace v8 {
namespace internal {
namespace compiler {

// -----------------------------------------------------------------------------
// Range-related helper functions.

bool RangeType::Limits::IsEmpty() { return this->min > this->max; }

RangeType::Limits RangeType::Limits::Intersect(Limits lhs, Limits rhs) {
  DisallowHeapAllocation no_allocation;
  Limits result(lhs);
  if (lhs.min < rhs.min) result.min = rhs.min;
  if (lhs.max > rhs.max) result.max = rhs.max;
  return result;
}

RangeType::Limits RangeType::Limits::Union(Limits lhs, Limits rhs) {
  DisallowHeapAllocation no_allocation;
  if (lhs.IsEmpty()) return rhs;
  if (rhs.IsEmpty()) return lhs;
  Limits result(lhs);
  if (lhs.min > rhs.min) result.min = rhs.min;
  if (lhs.max < rhs.max) result.max = rhs.max;
  return result;
}

bool Type::Overlap(const RangeType* lhs, const RangeType* rhs) {
  DisallowHeapAllocation no_allocation;
  return !RangeType::Limits::Intersect(RangeType::Limits(lhs),
                                       RangeType::Limits(rhs))
              .IsEmpty();
}

bool Type::Contains(const RangeType* lhs, const RangeType* rhs) {
  DisallowHeapAllocation no_allocation;
  return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max();
}

// -----------------------------------------------------------------------------
// Min and Max computation.

double Type::Min() const {
  DCHECK(this->Is(Number()));
  DCHECK(!this->Is(NaN()));
  if (this->IsBitset()) return BitsetType::Min(this->AsBitset());
  if (this->IsUnion()) {
    double min = +V8_INFINITY;
    for (int i = 1, n = AsUnion()->Length(); i < n; ++i) {
      min = std::min(min, AsUnion()->Get(i).Min());
    }
    Type bitset = AsUnion()->Get(0);
    if (!bitset.Is(NaN())) min = std::min(min, bitset.Min());
    return min;
  }
  if (this->IsRange()) return this->AsRange()->Min();
  DCHECK(this->IsOtherNumberConstant());
  return this->AsOtherNumberConstant()->Value();
}

double Type::Max() const {
  DCHECK(this->Is(Number()));
  DCHECK(!this->Is(NaN()));
  if (this->IsBitset()) return BitsetType::Max(this->AsBitset());
  if (this->IsUnion()) {
    double max = -V8_INFINITY;
    for (int i = 1, n = this->AsUnion()->Length(); i < n; ++i) {
      max = std::max(max, this->AsUnion()->Get(i).Max());
    }
    Type bitset = this->AsUnion()->Get(0);
    if (!bitset.Is(NaN())) max = std::max(max, bitset.Max());
    return max;
  }
  if (this->IsRange()) return this->AsRange()->Max();
  DCHECK(this->IsOtherNumberConstant());
  return this->AsOtherNumberConstant()->Value();
}

// -----------------------------------------------------------------------------
// Glb and lub computation.

// The largest bitset subsumed by this type.
Type::bitset Type::BitsetGlb() const {
  DisallowHeapAllocation no_allocation;
  // Fast case.
  if (IsBitset()) {
    return AsBitset();
  } else if (IsUnion()) {
    SLOW_DCHECK(AsUnion()->Wellformed());
    return AsUnion()->Get(0).BitsetGlb() |
           AsUnion()->Get(1).BitsetGlb();  // Shortcut.
  } else if (IsRange()) {
    bitset glb = BitsetType::Glb(AsRange()->Min(), AsRange()->Max());
    return glb;
  } else {
    return BitsetType::kNone;
  }
}

// The smallest bitset subsuming this type, possibly not a proper one.
Type::bitset Type::BitsetLub() const {
  DisallowHeapAllocation no_allocation;
  if (IsBitset()) return AsBitset();
  if (IsUnion()) {
    // Take the representation from the first element, which is always
    // a bitset.
    int bitset = AsUnion()->Get(0).BitsetLub();
    for (int i = 0, n = AsUnion()->Length(); i < n; ++i) {
      // Other elements only contribute their semantic part.
      bitset |= AsUnion()->Get(i).BitsetLub();
    }
    return bitset;
  }
  if (IsHeapConstant()) return AsHeapConstant()->Lub();
  if (IsOtherNumberConstant()) {
    return AsOtherNumberConstant()->Lub();
  }
  if (IsRange()) return AsRange()->Lub();
  if (IsTuple()) return BitsetType::kOtherInternal;
  UNREACHABLE();
}

// TODO(neis): Once the broker mode kDisabled is gone, change the input type to
// MapRef and get rid of the HeapObjectType class.
template <typename MapRefLike>
Type::bitset BitsetType::Lub(const MapRefLike& map) {
  switch (map.instance_type()) {
    case CONS_STRING_TYPE:
    case CONS_ONE_BYTE_STRING_TYPE:
    case THIN_STRING_TYPE:
    case THIN_ONE_BYTE_STRING_TYPE:
    case SLICED_STRING_TYPE:
    case SLICED_ONE_BYTE_STRING_TYPE:
    case EXTERNAL_STRING_TYPE:
    case EXTERNAL_ONE_BYTE_STRING_TYPE:
    case UNCACHED_EXTERNAL_STRING_TYPE:
    case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE:
    case STRING_TYPE:
    case ONE_BYTE_STRING_TYPE:
      return kString;
    case EXTERNAL_INTERNALIZED_STRING_TYPE:
    case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
    case UNCACHED_EXTERNAL_INTERNALIZED_STRING_TYPE:
    case UNCACHED_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
    case INTERNALIZED_STRING_TYPE:
    case ONE_BYTE_INTERNALIZED_STRING_TYPE:
      return kInternalizedString;
    case SYMBOL_TYPE:
      return kSymbol;
    case BIGINT_TYPE:
      return kBigInt;
    case ODDBALL_TYPE:
      switch (map.oddball_type()) {
        case OddballType::kNone:
          break;
        case OddballType::kHole:
          return kHole;
        case OddballType::kBoolean:
          return kBoolean;
        case OddballType::kNull:
          return kNull;
        case OddballType::kUndefined:
          return kUndefined;
        case OddballType::kUninitialized:
        case OddballType::kOther:
          // TODO(neis): We should add a kOtherOddball type.
          return kOtherInternal;
      }
      UNREACHABLE();
    case HEAP_NUMBER_TYPE:
      return kNumber;
    case JS_OBJECT_TYPE:
    case JS_ARGUMENTS_TYPE:
    case JS_ERROR_TYPE:
    case JS_GLOBAL_OBJECT_TYPE:
    case JS_GLOBAL_PROXY_TYPE:
    case JS_API_OBJECT_TYPE:
    case JS_SPECIAL_API_OBJECT_TYPE:
      if (map.is_undetectable()) {
        // Currently we assume that every undetectable receiver is also
        // callable, which is what we need to support document.all.  We
        // could add another Type bit to support other use cases in the
        // future if necessary.
        DCHECK(map.is_callable());
        return kOtherUndetectable;
      }
      if (map.is_callable()) {
        return kOtherCallable;
      }
      return kOtherObject;
    case JS_ARRAY_TYPE:
      return kArray;
    case JS_PRIMITIVE_WRAPPER_TYPE:
    case JS_MESSAGE_OBJECT_TYPE:
    case JS_DATE_TYPE:
#ifdef V8_INTL_SUPPORT
    case JS_INTL_V8_BREAK_ITERATOR_TYPE:
    case JS_INTL_COLLATOR_TYPE:
    case JS_INTL_DATE_TIME_FORMAT_TYPE:
    case JS_INTL_LIST_FORMAT_TYPE:
    case JS_INTL_LOCALE_TYPE:
    case JS_INTL_NUMBER_FORMAT_TYPE:
    case JS_INTL_PLURAL_RULES_TYPE:
    case JS_INTL_RELATIVE_TIME_FORMAT_TYPE:
    case JS_INTL_SEGMENT_ITERATOR_TYPE:
    case JS_INTL_SEGMENTER_TYPE:
#endif  // V8_INTL_SUPPORT
    case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
    case JS_GENERATOR_OBJECT_TYPE:
    case JS_ASYNC_FUNCTION_OBJECT_TYPE:
    case JS_ASYNC_GENERATOR_OBJECT_TYPE:
    case JS_MODULE_NAMESPACE_TYPE:
    case JS_ARRAY_BUFFER_TYPE:
    case JS_ARRAY_ITERATOR_TYPE:
    case JS_REGEXP_TYPE:  // TODO(rossberg): there should be a RegExp type.
    case JS_REGEXP_STRING_ITERATOR_TYPE:
    case JS_TYPED_ARRAY_TYPE:
    case JS_DATA_VIEW_TYPE:
    case JS_SET_TYPE:
    case JS_MAP_TYPE:
    case JS_SET_KEY_VALUE_ITERATOR_TYPE:
    case JS_SET_VALUE_ITERATOR_TYPE:
    case JS_MAP_KEY_ITERATOR_TYPE:
    case JS_MAP_KEY_VALUE_ITERATOR_TYPE:
    case JS_MAP_VALUE_ITERATOR_TYPE:
    case JS_STRING_ITERATOR_TYPE:
    case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE:
    case JS_FINALIZATION_GROUP_TYPE:
    case JS_FINALIZATION_GROUP_CLEANUP_ITERATOR_TYPE:
    case JS_WEAK_MAP_TYPE:
    case JS_WEAK_REF_TYPE:
    case JS_WEAK_SET_TYPE:
    case JS_PROMISE_TYPE:
    case WASM_EXCEPTION_TYPE:
    case WASM_GLOBAL_TYPE:
    case WASM_INSTANCE_TYPE:
    case WASM_MEMORY_TYPE:
    case WASM_MODULE_TYPE:
    case WASM_TABLE_TYPE:
    case WEAK_CELL_TYPE:
      DCHECK(!map.is_callable());
      DCHECK(!map.is_undetectable());
      return kOtherObject;
    case JS_BOUND_FUNCTION_TYPE:
      DCHECK(!map.is_undetectable());
      return kBoundFunction;
    case JS_FUNCTION_TYPE:
      DCHECK(!map.is_undetectable());
      return kFunction;
    case JS_PROXY_TYPE:
      DCHECK(!map.is_undetectable());
      if (map.is_callable()) return kCallableProxy;
      return kOtherProxy;
    case MAP_TYPE:
    case ALLOCATION_SITE_TYPE:
    case ACCESSOR_INFO_TYPE:
    case SHARED_FUNCTION_INFO_TYPE:
    case FUNCTION_TEMPLATE_INFO_TYPE:
    case FUNCTION_TEMPLATE_RARE_DATA_TYPE:
    case ACCESSOR_PAIR_TYPE:
    case EMBEDDER_DATA_ARRAY_TYPE:
    case FIXED_ARRAY_TYPE:
    case HASH_TABLE_TYPE:
    case ORDERED_HASH_MAP_TYPE:
    case ORDERED_HASH_SET_TYPE:
    case ORDERED_NAME_DICTIONARY_TYPE:
    case NAME_DICTIONARY_TYPE:
    case GLOBAL_DICTIONARY_TYPE:
    case NUMBER_DICTIONARY_TYPE:
    case SIMPLE_NUMBER_DICTIONARY_TYPE:
    case STRING_TABLE_TYPE:
    case EPHEMERON_HASH_TABLE_TYPE:
    case WEAK_FIXED_ARRAY_TYPE:
    case WEAK_ARRAY_LIST_TYPE:
    case FIXED_DOUBLE_ARRAY_TYPE:
    case FEEDBACK_METADATA_TYPE:
    case BYTE_ARRAY_TYPE:
    case BYTECODE_ARRAY_TYPE:
    case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
    case ARRAY_BOILERPLATE_DESCRIPTION_TYPE:
    case DESCRIPTOR_ARRAY_TYPE:
    case TRANSITION_ARRAY_TYPE:
    case FEEDBACK_CELL_TYPE:
    case CLOSURE_FEEDBACK_CELL_ARRAY_TYPE:
    case FEEDBACK_VECTOR_TYPE:
    case PROPERTY_ARRAY_TYPE:
    case FOREIGN_TYPE:
    case SCOPE_INFO_TYPE:
    case SCRIPT_CONTEXT_TABLE_TYPE:
    case AWAIT_CONTEXT_TYPE:
    case BLOCK_CONTEXT_TYPE:
    case CATCH_CONTEXT_TYPE:
    case DEBUG_EVALUATE_CONTEXT_TYPE:
    case EVAL_CONTEXT_TYPE:
    case FUNCTION_CONTEXT_TYPE:
    case MODULE_CONTEXT_TYPE:
    case NATIVE_CONTEXT_TYPE:
    case SCRIPT_CONTEXT_TYPE:
    case WITH_CONTEXT_TYPE:
    case SCRIPT_TYPE:
    case CODE_TYPE:
    case PROPERTY_CELL_TYPE:
    case SOURCE_TEXT_MODULE_TYPE:
    case SOURCE_TEXT_MODULE_INFO_ENTRY_TYPE:
    case SYNTHETIC_MODULE_TYPE:
    case CELL_TYPE:
    case PREPARSE_DATA_TYPE:
    case UNCOMPILED_DATA_WITHOUT_PREPARSE_DATA_TYPE:
    case UNCOMPILED_DATA_WITH_PREPARSE_DATA_TYPE:
      return kOtherInternal;

    // Remaining instance types are unsupported for now. If any of them do
    // require bit set types, they should get kOtherInternal.
    case FREE_SPACE_TYPE:
    case FILLER_TYPE:
    case ACCESS_CHECK_INFO_TYPE:
    case ASM_WASM_DATA_TYPE:
    case CALL_HANDLER_INFO_TYPE:
    case INTERCEPTOR_INFO_TYPE:
    case OBJECT_TEMPLATE_INFO_TYPE:
    case ALLOCATION_MEMENTO_TYPE:
    case ALIASED_ARGUMENTS_ENTRY_TYPE:
    case PROMISE_CAPABILITY_TYPE:
    case PROMISE_REACTION_TYPE:
    case CLASS_POSITIONS_TYPE:
    case DEBUG_INFO_TYPE:
    case STACK_FRAME_INFO_TYPE:
    case STACK_TRACE_FRAME_TYPE:
    case SMALL_ORDERED_HASH_MAP_TYPE:
    case SMALL_ORDERED_HASH_SET_TYPE:
    case SMALL_ORDERED_NAME_DICTIONARY_TYPE:
    case PROTOTYPE_INFO_TYPE:
    case INTERPRETER_DATA_TYPE:
    case TEMPLATE_OBJECT_DESCRIPTION_TYPE:
    case TUPLE2_TYPE:
    case TUPLE3_TYPE:
    case ENUM_CACHE_TYPE:
    case SOURCE_POSITION_TABLE_WITH_FRAME_CACHE_TYPE:
    case WASM_CAPI_FUNCTION_DATA_TYPE:
    case WASM_INDIRECT_FUNCTION_TABLE_TYPE:
    case WASM_DEBUG_INFO_TYPE:
    case WASM_EXCEPTION_TAG_TYPE:
    case WASM_EXPORTED_FUNCTION_DATA_TYPE:
    case WASM_JS_FUNCTION_DATA_TYPE:
    case LOAD_HANDLER_TYPE:
    case STORE_HANDLER_TYPE:
    case ASYNC_GENERATOR_REQUEST_TYPE:
    case CODE_DATA_CONTAINER_TYPE:
    case CALLBACK_TASK_TYPE:
    case CALLABLE_TASK_TYPE:
    case PROMISE_FULFILL_REACTION_JOB_TASK_TYPE:
    case PROMISE_REJECT_REACTION_JOB_TASK_TYPE:
    case PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE:
#define MAKE_TORQUE_CLASS_TYPE(V) case V:
      TORQUE_DEFINED_INSTANCE_TYPES(MAKE_TORQUE_CLASS_TYPE)
#undef MAKE_TORQUE_CLASS_TYPE
      UNREACHABLE();
  }
  UNREACHABLE();
}

// Explicit instantiation.
template Type::bitset BitsetType::Lub<MapRef>(const MapRef& map);

Type::bitset BitsetType::Lub(double value) {
  DisallowHeapAllocation no_allocation;
  if (IsMinusZero(value)) return kMinusZero;
  if (std::isnan(value)) return kNaN;
  if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value);
  return kOtherNumber;
}

// Minimum values of plain numeric bitsets.
const BitsetType::Boundary BitsetType::BoundariesArray[] = {
    {kOtherNumber, kPlainNumber, -V8_INFINITY},
    {kOtherSigned32, kNegative32, kMinInt},
    {kNegative31, kNegative31, -0x40000000},
    {kUnsigned30, kUnsigned30, 0},
    {kOtherUnsigned31, kUnsigned31, 0x40000000},
    {kOtherUnsigned32, kUnsigned32, 0x80000000},
    {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}};

const BitsetType::Boundary* BitsetType::Boundaries() { return BoundariesArray; }

size_t BitsetType::BoundariesSize() {
  // Windows doesn't like arraysize here.
  // return arraysize(BoundariesArray);
  return 7;
}

Type::bitset BitsetType::ExpandInternals(Type::bitset bits) {
  DCHECK_IMPLIES(bits & kOtherString, (bits & kString) == kString);
  DisallowHeapAllocation no_allocation;
  if (!(bits & kPlainNumber)) return bits;  // Shortcut.
  const Boundary* boundaries = Boundaries();
  for (size_t i = 0; i < BoundariesSize(); ++i) {
    DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external));
    if (bits & boundaries[i].internal) bits |= boundaries[i].external;
  }
  return bits;
}

Type::bitset BitsetType::Lub(double min, double max) {
  DisallowHeapAllocation no_allocation;
  int lub = kNone;
  const Boundary* mins = Boundaries();

  for (size_t i = 1; i < BoundariesSize(); ++i) {
    if (min < mins[i].min) {
      lub |= mins[i - 1].internal;
      if (max < mins[i].min) return lub;
    }
  }
  return lub | mins[BoundariesSize() - 1].internal;
}

Type::bitset BitsetType::NumberBits(bitset bits) { return bits & kPlainNumber; }

Type::bitset BitsetType::Glb(double min, double max) {
  DisallowHeapAllocation no_allocation;
  int glb = kNone;
  const Boundary* mins = Boundaries();

  // If the range does not touch 0, the bound is empty.
  if (max < -1 || min > 0) return glb;

  for (size_t i = 1; i + 1 < BoundariesSize(); ++i) {
    if (min <= mins[i].min) {
      if (max + 1 < mins[i + 1].min) break;
      glb |= mins[i].external;
    }
  }
  // OtherNumber also contains float numbers, so it can never be
  // in the greatest lower bound.
  return glb & ~(kOtherNumber);
}

double BitsetType::Min(bitset bits) {
  DisallowHeapAllocation no_allocation;
  DCHECK(Is(bits, kNumber));
  DCHECK(!Is(bits, kNaN));
  const Boundary* mins = Boundaries();
  bool mz = bits & kMinusZero;
  for (size_t i = 0; i < BoundariesSize(); ++i) {
    if (Is(mins[i].internal, bits)) {
      return mz ? std::min(0.0, mins[i].min) : mins[i].min;
    }
  }
  DCHECK(mz);
  return 0;
}

double BitsetType::Max(bitset bits) {
  DisallowHeapAllocation no_allocation;
  DCHECK(Is(bits, kNumber));
  DCHECK(!Is(bits, kNaN));
  const Boundary* mins = Boundaries();
  bool mz = bits & kMinusZero;
  if (BitsetType::Is(mins[BoundariesSize() - 1].internal, bits)) {
    return +V8_INFINITY;
  }
  for (size_t i = BoundariesSize() - 1; i-- > 0;) {
    if (Is(mins[i].internal, bits)) {
      return mz ? std::max(0.0, mins[i + 1].min - 1) : mins[i + 1].min - 1;
    }
  }
  DCHECK(mz);
  return 0;
}

// static
bool OtherNumberConstantType::IsOtherNumberConstant(double value) {
  // Not an integer, not NaN, and not -0.
  return !std::isnan(value) && !RangeType::IsInteger(value) &&
         !IsMinusZero(value);
}

HeapConstantType::HeapConstantType(BitsetType::bitset bitset,
                                   const HeapObjectRef& heap_ref)
    : TypeBase(kHeapConstant), bitset_(bitset), heap_ref_(heap_ref) {}

Handle<HeapObject> HeapConstantType::Value() const {
  return heap_ref_.object();
}

// -----------------------------------------------------------------------------
// Predicates.

bool Type::SimplyEquals(Type that) const {
  DisallowHeapAllocation no_allocation;
  if (this->IsHeapConstant()) {
    return that.IsHeapConstant() &&
           this->AsHeapConstant()->Value().address() ==
               that.AsHeapConstant()->Value().address();
  }
  if (this->IsOtherNumberConstant()) {
    return that.IsOtherNumberConstant() &&
           this->AsOtherNumberConstant()->Value() ==
               that.AsOtherNumberConstant()->Value();
  }
  if (this->IsRange()) {
    if (that.IsHeapConstant() || that.IsOtherNumberConstant()) return false;
  }
  if (this->IsTuple()) {
    if (!that.IsTuple()) return false;
    const TupleType* this_tuple = this->AsTuple();
    const TupleType* that_tuple = that.AsTuple();
    if (this_tuple->Arity() != that_tuple->Arity()) {
      return false;
    }
    for (int i = 0, n = this_tuple->Arity(); i < n; ++i) {
      if (!this_tuple->Element(i).Equals(that_tuple->Element(i))) return false;
    }
    return true;
  }
  UNREACHABLE();
}

// Check if [this] <= [that].
bool Type::SlowIs(Type that) const {
  DisallowHeapAllocation no_allocation;

  // Fast bitset cases
  if (that.IsBitset()) {
    return BitsetType::Is(this->BitsetLub(), that.AsBitset());
  }

  if (this->IsBitset()) {
    return BitsetType::Is(this->AsBitset(), that.BitsetGlb());
  }

  // (T1 \/ ... \/ Tn) <= T  if  (T1 <= T) /\ ... /\ (Tn <= T)
  if (this->IsUnion()) {
    for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
      if (!this->AsUnion()->Get(i).Is(that)) return false;
    }
    return true;
  }

  // T <= (T1 \/ ... \/ Tn)  if  (T <= T1) \/ ... \/ (T <= Tn)
  if (that.IsUnion()) {
    for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) {
      if (this->Is(that.AsUnion()->Get(i))) return true;
      if (i > 1 && this->IsRange()) return false;  // Shortcut.
    }
    return false;
  }

  if (that.IsRange()) {
    return (this->IsRange() && Contains(that.AsRange(), this->AsRange()));
  }
  if (this->IsRange()) return false;

  return this->SimplyEquals(that);
}

// Check if [this] and [that] overlap.
bool Type::Maybe(Type that) const {
  DisallowHeapAllocation no_allocation;

  if (BitsetType::IsNone(this->BitsetLub() & that.BitsetLub())) return false;

  // (T1 \/ ... \/ Tn) overlaps T  if  (T1 overlaps T) \/ ... \/ (Tn overlaps T)
  if (this->IsUnion()) {
    for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
      if (this->AsUnion()->Get(i).Maybe(that)) return true;
    }
    return false;
  }

  // T overlaps (T1 \/ ... \/ Tn)  if  (T overlaps T1) \/ ... \/ (T overlaps Tn)
  if (that.IsUnion()) {
    for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) {
      if (this->Maybe(that.AsUnion()->Get(i))) return true;
    }
    return false;
  }

  if (this->IsBitset() && that.IsBitset()) return true;

  if (this->IsRange()) {
    if (that.IsRange()) {
      return Overlap(this->AsRange(), that.AsRange());
    }
    if (that.IsBitset()) {
      bitset number_bits = BitsetType::NumberBits(that.AsBitset());
      if (number_bits == BitsetType::kNone) {
        return false;
      }
      double min = std::max(BitsetType::Min(number_bits), this->Min());
      double max = std::min(BitsetType::Max(number_bits), this->Max());
      return min <= max;
    }
  }
  if (that.IsRange()) {
    return that.Maybe(*this);  // This case is handled above.
  }

  if (this->IsBitset() || that.IsBitset()) return true;

  return this->SimplyEquals(that);
}

// Return the range in [this], or [nullptr].
Type Type::GetRange() const {
  DisallowHeapAllocation no_allocation;
  if (this->IsRange()) return *this;
  if (this->IsUnion() && this->AsUnion()->Get(1).IsRange()) {
    return this->AsUnion()->Get(1);
  }
  return nullptr;
}

bool UnionType::Wellformed() const {
  DisallowHeapAllocation no_allocation;
  // This checks the invariants of the union representation:
  // 1. There are at least two elements.
  // 2. The first element is a bitset, no other element is a bitset.
  // 3. At most one element is a range, and it must be the second one.
  // 4. No element is itself a union.
  // 5. No element (except the bitset) is a subtype of any other.
  // 6. If there is a range, then the bitset type does not contain
  //    plain number bits.
  DCHECK_LE(2, this->Length());      // (1)
  DCHECK(this->Get(0).IsBitset());   // (2a)

  for (int i = 0; i < this->Length(); ++i) {
    if (i != 0) DCHECK(!this->Get(i).IsBitset());  // (2b)
    if (i != 1) DCHECK(!this->Get(i).IsRange());   // (3)
    DCHECK(!this->Get(i).IsUnion());               // (4)
    for (int j = 0; j < this->Length(); ++j) {
      if (i != j && i != 0) DCHECK(!this->Get(i).Is(this->Get(j)));  // (5)
    }
  }
  DCHECK(!this->Get(1).IsRange() ||
         (BitsetType::NumberBits(this->Get(0).AsBitset()) ==
          BitsetType::kNone));  // (6)
  return true;
}

// -----------------------------------------------------------------------------
// Union and intersection

Type Type::Intersect(Type type1, Type type2, Zone* zone) {
  // Fast case: bit sets.
  if (type1.IsBitset() && type2.IsBitset()) {
    return NewBitset(type1.AsBitset() & type2.AsBitset());
  }

  // Fast case: top or bottom types.
  if (type1.IsNone() || type2.IsAny()) return type1;  // Shortcut.
  if (type2.IsNone() || type1.IsAny()) return type2;  // Shortcut.

  // Semi-fast case.
  if (type1.Is(type2)) return type1;
  if (type2.Is(type1)) return type2;

  // Slow case: create union.

  // Semantic subtyping check - this is needed for consistency with the
  // semi-fast case above.
  if (type1.Is(type2)) {
    type2 = Any();
  } else if (type2.Is(type1)) {
    type1 = Any();
  }

  bitset bits = type1.BitsetGlb() & type2.BitsetGlb();
  int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1;
  int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1;
  int size;
  if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any();
  if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any();
  UnionType* result = UnionType::New(size, zone);
  size = 0;

  // Deal with bitsets.
  result->Set(size++, NewBitset(bits));

  RangeType::Limits lims = RangeType::Limits::Empty();
  size = IntersectAux(type1, type2, result, size, &lims, zone);

  // If the range is not empty, then insert it into the union and
  // remove the number bits from the bitset.
  if (!lims.IsEmpty()) {
    size = UpdateRange(Type::Range(lims, zone), result, size, zone);

    // Remove the number bits.
    bitset number_bits = BitsetType::NumberBits(bits);
    bits &= ~number_bits;
    result->Set(0, NewBitset(bits));
  }
  return NormalizeUnion(result, size, zone);
}

int Type::UpdateRange(Type range, UnionType* result, int size, Zone* zone) {
  if (size == 1) {
    result->Set(size++, range);
  } else {
    // Make space for the range.
    result->Set(size++, result->Get(1));
    result->Set(1, range);
  }

  // Remove any components that just got subsumed.
  for (int i = 2; i < size;) {
    if (result->Get(i).Is(range)) {
      result->Set(i, result->Get(--size));
    } else {
      ++i;
    }
  }
  return size;
}

RangeType::Limits Type::ToLimits(bitset bits, Zone* zone) {
  bitset number_bits = BitsetType::NumberBits(bits);

  if (number_bits == BitsetType::kNone) {
    return RangeType::Limits::Empty();
  }

  return RangeType::Limits(BitsetType::Min(number_bits),
                           BitsetType::Max(number_bits));
}

RangeType::Limits Type::IntersectRangeAndBitset(Type range, Type bitset,
                                                Zone* zone) {
  RangeType::Limits range_lims(range.AsRange());
  RangeType::Limits bitset_lims = ToLimits(bitset.AsBitset(), zone);
  return RangeType::Limits::Intersect(range_lims, bitset_lims);
}

int Type::IntersectAux(Type lhs, Type rhs, UnionType* result, int size,
                       RangeType::Limits* lims, Zone* zone) {
  if (lhs.IsUnion()) {
    for (int i = 0, n = lhs.AsUnion()->Length(); i < n; ++i) {
      size = IntersectAux(lhs.AsUnion()->Get(i), rhs, result, size, lims, zone);
    }
    return size;
  }
  if (rhs.IsUnion()) {
    for (int i = 0, n = rhs.AsUnion()->Length(); i < n; ++i) {
      size = IntersectAux(lhs, rhs.AsUnion()->Get(i), result, size, lims, zone);
    }
    return size;
  }

  if (BitsetType::IsNone(lhs.BitsetLub() & rhs.BitsetLub())) return size;

  if (lhs.IsRange()) {
    if (rhs.IsBitset()) {
      RangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone);

      if (!lim.IsEmpty()) {
        *lims = RangeType::Limits::Union(lim, *lims);
      }
      return size;
    }
    if (rhs.IsRange()) {
      RangeType::Limits lim = RangeType::Limits::Intersect(
          RangeType::Limits(lhs.AsRange()), RangeType::Limits(rhs.AsRange()));
      if (!lim.IsEmpty()) {
        *lims = RangeType::Limits::Union(lim, *lims);
      }
    }
    return size;
  }
  if (rhs.IsRange()) {
    // This case is handled symmetrically above.
    return IntersectAux(rhs, lhs, result, size, lims, zone);
  }
  if (lhs.IsBitset() || rhs.IsBitset()) {
    return AddToUnion(lhs.IsBitset() ? rhs : lhs, result, size, zone);
  }
  if (lhs.SimplyEquals(rhs)) {
    return AddToUnion(lhs, result, size, zone);
  }
  return size;
}

// Make sure that we produce a well-formed range and bitset:
// If the range is non-empty, the number bits in the bitset should be
// clear. Moreover, if we have a canonical range (such as Signed32),
// we want to produce a bitset rather than a range.
Type Type::NormalizeRangeAndBitset(Type range, bitset* bits, Zone* zone) {
  // Fast path: If the bitset does not mention numbers, we can just keep the
  // range.
  bitset number_bits = BitsetType::NumberBits(*bits);
  if (number_bits == 0) {
    return range;
  }

  // If the range is semantically contained within the bitset, return None and
  // leave the bitset untouched.
  bitset range_lub = range.BitsetLub();
  if (BitsetType::Is(range_lub, *bits)) {
    return None();
  }

  // Slow path: reconcile the bitset range and the range.
  double bitset_min = BitsetType::Min(number_bits);
  double bitset_max = BitsetType::Max(number_bits);

  double range_min = range.Min();
  double range_max = range.Max();

  // Remove the number bits from the bitset, they would just confuse us now.
  // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which
  // case we already returned after the subtype check above.
  *bits &= ~number_bits;

  if (range_min <= bitset_min && range_max >= bitset_max) {
    // Bitset is contained within the range, just return the range.
    return range;
  }

  if (bitset_min < range_min) {
    range_min = bitset_min;
  }
  if (bitset_max > range_max) {
    range_max = bitset_max;
  }
  return Type::Range(range_min, range_max, zone);
}

Type Type::NewConstant(double value, Zone* zone) {
  if (RangeType::IsInteger(value)) {
    return Range(value, value, zone);
  } else if (IsMinusZero(value)) {
    return Type::MinusZero();
  } else if (std::isnan(value)) {
    return Type::NaN();
  }

  DCHECK(OtherNumberConstantType::IsOtherNumberConstant(value));
  return OtherNumberConstant(value, zone);
}

Type Type::NewConstant(JSHeapBroker* broker, Handle<i::Object> value,
                       Zone* zone) {
  ObjectRef ref(broker, value);
  if (ref.IsSmi()) {
    return NewConstant(static_cast<double>(ref.AsSmi()), zone);
  }
  if (ref.IsHeapNumber()) {
    return NewConstant(ref.AsHeapNumber().value(), zone);
  }
  if (ref.IsString() && !ref.IsInternalizedString()) {
    return Type::String();
  }
  return HeapConstant(ref.AsHeapObject(), zone);
}

Type Type::Union(Type type1, Type type2, Zone* zone) {
  // Fast case: bit sets.
  if (type1.IsBitset() && type2.IsBitset()) {
    return NewBitset(type1.AsBitset() | type2.AsBitset());
  }

  // Fast case: top or bottom types.
  if (type1.IsAny() || type2.IsNone()) return type1;
  if (type2.IsAny() || type1.IsNone()) return type2;

  // Semi-fast case.
  if (type1.Is(type2)) return type2;
  if (type2.Is(type1)) return type1;

  // Slow case: create union.
  int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1;
  int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1;
  int size;
  if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any();
  if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any();
  UnionType* result = UnionType::New(size, zone);
  size = 0;

  // Compute the new bitset.
  bitset new_bitset = type1.BitsetGlb() | type2.BitsetGlb();

  // Deal with ranges.
  Type range = None();
  Type range1 = type1.GetRange();
  Type range2 = type2.GetRange();
  if (range1 != nullptr && range2 != nullptr) {
    RangeType::Limits lims =
        RangeType::Limits::Union(RangeType::Limits(range1.AsRange()),
                                 RangeType::Limits(range2.AsRange()));
    Type union_range = Type::Range(lims, zone);
    range = NormalizeRangeAndBitset(union_range, &new_bitset, zone);
  } else if (range1 != nullptr) {
    range = NormalizeRangeAndBitset(range1, &new_bitset, zone);
  } else if (range2 != nullptr) {
    range = NormalizeRangeAndBitset(range2, &new_bitset, zone);
  }
  Type bits = NewBitset(new_bitset);
  result->Set(size++, bits);
  if (!range.IsNone()) result->Set(size++, range);

  size = AddToUnion(type1, result, size, zone);
  size = AddToUnion(type2, result, size, zone);
  return NormalizeUnion(result, size, zone);
}

// Add [type] to [result] unless [type] is bitset, range, or already subsumed.
// Return new size of [result].
int Type::AddToUnion(Type type, UnionType* result, int size, Zone* zone) {
  if (type.IsBitset() || type.IsRange()) return size;
  if (type.IsUnion()) {
    for (int i = 0, n = type.AsUnion()->Length(); i < n; ++i) {
      size = AddToUnion(type.AsUnion()->Get(i), result, size, zone);
    }
    return size;
  }
  for (int i = 0; i < size; ++i) {
    if (type.Is(result->Get(i))) return size;
  }
  result->Set(size++, type);
  return size;
}

Type Type::NormalizeUnion(UnionType* unioned, int size, Zone* zone) {
  DCHECK_LE(1, size);
  DCHECK(unioned->Get(0).IsBitset());
  // If the union has just one element, return it.
  if (size == 1) {
    return unioned->Get(0);
  }
  bitset bits = unioned->Get(0).AsBitset();
  // If the union only consists of a range, we can get rid of the union.
  if (size == 2 && bits == BitsetType::kNone) {
    if (unioned->Get(1).IsRange()) {
      return Type::Range(unioned->Get(1).AsRange()->Min(),
                         unioned->Get(1).AsRange()->Max(), zone);
    }
  }
  unioned->Shrink(size);
  SLOW_DCHECK(unioned->Wellformed());
  return Type(unioned);
}

int Type::NumConstants() const {
  DisallowHeapAllocation no_allocation;
  if (this->IsHeapConstant() || this->IsOtherNumberConstant()) {
    return 1;
  } else if (this->IsUnion()) {
    int result = 0;
    for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
      if (this->AsUnion()->Get(i).IsHeapConstant()) ++result;
    }
    return result;
  } else {
    return 0;
  }
}

// -----------------------------------------------------------------------------
// Printing.

const char* BitsetType::Name(bitset bits) {
  switch (bits) {
#define RETURN_NAMED_TYPE(type, value) \
  case k##type:                        \
    return #type;
    PROPER_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
    INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
#undef RETURN_NAMED_TYPE

    default:
      return nullptr;
  }
}

void BitsetType::Print(std::ostream& os,  // NOLINT
                       bitset bits) {
  DisallowHeapAllocation no_allocation;
  const char* name = Name(bits);
  if (name != nullptr) {
    os << name;
    return;
  }

  // clang-format off
  static const bitset named_bitsets[] = {
#define BITSET_CONSTANT(type, value) k##type,
    INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT)
    PROPER_BITSET_TYPE_LIST(BITSET_CONSTANT)
#undef BITSET_CONSTANT
  };
  // clang-format on

  bool is_first = true;
  os << "(";
  for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) {
    bitset subset = named_bitsets[i];
    if ((bits & subset) == subset) {
      if (!is_first) os << " | ";
      is_first = false;
      os << Name(subset);
      bits -= subset;
    }
  }
  DCHECK_EQ(0, bits);
  os << ")";
}

void Type::PrintTo(std::ostream& os) const {
  DisallowHeapAllocation no_allocation;
  if (this->IsBitset()) {
    BitsetType::Print(os, this->AsBitset());
  } else if (this->IsHeapConstant()) {
    os << "HeapConstant(" << Brief(*this->AsHeapConstant()->Value()) << ")";
  } else if (this->IsOtherNumberConstant()) {
    os << "OtherNumberConstant(" << this->AsOtherNumberConstant()->Value()
       << ")";
  } else if (this->IsRange()) {
    std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
    std::streamsize saved_precision = os.precision(0);
    os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
       << ")";
    os.flags(saved_flags);
    os.precision(saved_precision);
  } else if (this->IsUnion()) {
    os << "(";
    for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
      Type type_i = this->AsUnion()->Get(i);
      if (i > 0) os << " | ";
      os << type_i;
    }
    os << ")";
  } else if (this->IsTuple()) {
    os << "<";
    for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) {
      Type type_i = this->AsTuple()->Element(i);
      if (i > 0) os << ", ";
      os << type_i;
    }
    os << ">";
  } else {
    UNREACHABLE();
  }
}

#ifdef DEBUG
void Type::Print() const {
  StdoutStream os;
  PrintTo(os);
  os << std::endl;
}
void BitsetType::Print(bitset bits) {
  StdoutStream os;
  Print(os, bits);
  os << std::endl;
}
#endif

BitsetType::bitset BitsetType::SignedSmall() {
  return SmiValuesAre31Bits() ? kSigned31 : kSigned32;
}

BitsetType::bitset BitsetType::UnsignedSmall() {
  return SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31;
}

// static
Type Type::Tuple(Type first, Type second, Type third, Zone* zone) {
  TupleType* tuple = TupleType::New(3, zone);
  tuple->InitElement(0, first);
  tuple->InitElement(1, second);
  tuple->InitElement(2, third);
  return FromTypeBase(tuple);
}

// static
Type Type::OtherNumberConstant(double value, Zone* zone) {
  return FromTypeBase(OtherNumberConstantType::New(value, zone));
}

// static
Type Type::HeapConstant(JSHeapBroker* broker, Handle<i::Object> value,
                        Zone* zone) {
  return FromTypeBase(
      HeapConstantType::New(HeapObjectRef(broker, value), zone));
}

// static
Type Type::HeapConstant(const HeapObjectRef& value, Zone* zone) {
  return HeapConstantType::New(value, zone);
}

// static
Type Type::Range(double min, double max, Zone* zone) {
  return FromTypeBase(RangeType::New(min, max, zone));
}

// static
Type Type::Range(RangeType::Limits lims, Zone* zone) {
  return FromTypeBase(RangeType::New(lims, zone));
}

// static
Type Type::Union(int length, Zone* zone) {
  return FromTypeBase(UnionType::New(length, zone));
}

const HeapConstantType* Type::AsHeapConstant() const {
  DCHECK(IsKind(TypeBase::kHeapConstant));
  return static_cast<const HeapConstantType*>(ToTypeBase());
}

const OtherNumberConstantType* Type::AsOtherNumberConstant() const {
  DCHECK(IsKind(TypeBase::kOtherNumberConstant));
  return static_cast<const OtherNumberConstantType*>(ToTypeBase());
}

const RangeType* Type::AsRange() const {
  DCHECK(IsKind(TypeBase::kRange));
  return static_cast<const RangeType*>(ToTypeBase());
}

const TupleType* Type::AsTuple() const {
  DCHECK(IsKind(TypeBase::kTuple));
  return static_cast<const TupleType*>(ToTypeBase());
}

const UnionType* Type::AsUnion() const {
  DCHECK(IsKind(TypeBase::kUnion));
  return static_cast<const UnionType*>(ToTypeBase());
}

std::ostream& operator<<(std::ostream& os, Type type) {
  type.PrintTo(os);
  return os;
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8