summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/register-allocator.h
blob: 6bfc6c410a9c0eeeddd63f6acd4f5445a87bd566 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_REGISTER_ALLOCATOR_H_
#define V8_REGISTER_ALLOCATOR_H_

#include "src/compiler/instruction.h"
#include "src/ostreams.h"
#include "src/register-configuration.h"
#include "src/zone-containers.h"

namespace v8 {
namespace internal {
namespace compiler {

enum RegisterKind { GENERAL_REGISTERS, FP_REGISTERS };

// This class represents a single point of a InstructionOperand's lifetime. For
// each instruction there are four lifetime positions:
//
//   [[START, END], [START, END]]
//
// Where the first half position corresponds to
//
//  [GapPosition::START, GapPosition::END]
//
// and the second half position corresponds to
//
//  [Lifetime::USED_AT_START, Lifetime::USED_AT_END]
//
class LifetimePosition final {
 public:
  // Return the lifetime position that corresponds to the beginning of
  // the gap with the given index.
  static LifetimePosition GapFromInstructionIndex(int index) {
    return LifetimePosition(index * kStep);
  }
  // Return the lifetime position that corresponds to the beginning of
  // the instruction with the given index.
  static LifetimePosition InstructionFromInstructionIndex(int index) {
    return LifetimePosition(index * kStep + kHalfStep);
  }

  static bool ExistsGapPositionBetween(LifetimePosition pos1,
                                       LifetimePosition pos2) {
    if (pos1 > pos2) std::swap(pos1, pos2);
    LifetimePosition next(pos1.value_ + 1);
    if (next.IsGapPosition()) return next < pos2;
    return next.NextFullStart() < pos2;
  }

  // Returns a numeric representation of this lifetime position.
  int value() const { return value_; }

  // Returns the index of the instruction to which this lifetime position
  // corresponds.
  int ToInstructionIndex() const {
    DCHECK(IsValid());
    return value_ / kStep;
  }

  // Returns true if this lifetime position corresponds to a START value
  bool IsStart() const { return (value_ & (kHalfStep - 1)) == 0; }
  // Returns true if this lifetime position corresponds to an END value
  bool IsEnd() const { return (value_ & (kHalfStep - 1)) == 1; }
  // Returns true if this lifetime position corresponds to a gap START value
  bool IsFullStart() const { return (value_ & (kStep - 1)) == 0; }

  bool IsGapPosition() const { return (value_ & 0x2) == 0; }
  bool IsInstructionPosition() const { return !IsGapPosition(); }

  // Returns the lifetime position for the current START.
  LifetimePosition Start() const {
    DCHECK(IsValid());
    return LifetimePosition(value_ & ~(kHalfStep - 1));
  }

  // Returns the lifetime position for the current gap START.
  LifetimePosition FullStart() const {
    DCHECK(IsValid());
    return LifetimePosition(value_ & ~(kStep - 1));
  }

  // Returns the lifetime position for the current END.
  LifetimePosition End() const {
    DCHECK(IsValid());
    return LifetimePosition(Start().value_ + kHalfStep / 2);
  }

  // Returns the lifetime position for the beginning of the next START.
  LifetimePosition NextStart() const {
    DCHECK(IsValid());
    return LifetimePosition(Start().value_ + kHalfStep);
  }

  // Returns the lifetime position for the beginning of the next gap START.
  LifetimePosition NextFullStart() const {
    DCHECK(IsValid());
    return LifetimePosition(FullStart().value_ + kStep);
  }

  // Returns the lifetime position for the beginning of the previous START.
  LifetimePosition PrevStart() const {
    DCHECK(IsValid());
    DCHECK(value_ >= kHalfStep);
    return LifetimePosition(Start().value_ - kHalfStep);
  }

  // Constructs the lifetime position which does not correspond to any
  // instruction.
  LifetimePosition() : value_(-1) {}

  // Returns true if this lifetime positions corrensponds to some
  // instruction.
  bool IsValid() const { return value_ != -1; }

  bool operator<(const LifetimePosition& that) const {
    return this->value_ < that.value_;
  }

  bool operator<=(const LifetimePosition& that) const {
    return this->value_ <= that.value_;
  }

  bool operator==(const LifetimePosition& that) const {
    return this->value_ == that.value_;
  }

  bool operator!=(const LifetimePosition& that) const {
    return this->value_ != that.value_;
  }

  bool operator>(const LifetimePosition& that) const {
    return this->value_ > that.value_;
  }

  bool operator>=(const LifetimePosition& that) const {
    return this->value_ >= that.value_;
  }

  void Print() const;

  static inline LifetimePosition Invalid() { return LifetimePosition(); }

  static inline LifetimePosition MaxPosition() {
    // We have to use this kind of getter instead of static member due to
    // crash bug in GDB.
    return LifetimePosition(kMaxInt);
  }

  static inline LifetimePosition FromInt(int value) {
    return LifetimePosition(value);
  }

 private:
  static const int kHalfStep = 2;
  static const int kStep = 2 * kHalfStep;

  // Code relies on kStep and kHalfStep being a power of two.
  STATIC_ASSERT(IS_POWER_OF_TWO(kHalfStep));

  explicit LifetimePosition(int value) : value_(value) {}

  int value_;
};


std::ostream& operator<<(std::ostream& os, const LifetimePosition pos);


// Representation of the non-empty interval [start,end[.
class UseInterval final : public ZoneObject {
 public:
  UseInterval(LifetimePosition start, LifetimePosition end)
      : start_(start), end_(end), next_(nullptr) {
    DCHECK(start < end);
  }

  LifetimePosition start() const { return start_; }
  void set_start(LifetimePosition start) { start_ = start; }
  LifetimePosition end() const { return end_; }
  void set_end(LifetimePosition end) { end_ = end; }
  UseInterval* next() const { return next_; }
  void set_next(UseInterval* next) { next_ = next; }

  // Split this interval at the given position without effecting the
  // live range that owns it. The interval must contain the position.
  UseInterval* SplitAt(LifetimePosition pos, Zone* zone);

  // If this interval intersects with other return smallest position
  // that belongs to both of them.
  LifetimePosition Intersect(const UseInterval* other) const {
    if (other->start() < start_) return other->Intersect(this);
    if (other->start() < end_) return other->start();
    return LifetimePosition::Invalid();
  }

  bool Contains(LifetimePosition point) const {
    return start_ <= point && point < end_;
  }

  // Returns the index of the first gap covered by this interval.
  int FirstGapIndex() const {
    int ret = start_.ToInstructionIndex();
    if (start_.IsInstructionPosition()) {
      ++ret;
    }
    return ret;
  }

  // Returns the index of the last gap covered by this interval.
  int LastGapIndex() const {
    int ret = end_.ToInstructionIndex();
    if (end_.IsGapPosition() && end_.IsStart()) {
      --ret;
    }
    return ret;
  }

 private:
  LifetimePosition start_;
  LifetimePosition end_;
  UseInterval* next_;

  DISALLOW_COPY_AND_ASSIGN(UseInterval);
};


enum class UsePositionType : uint8_t { kAny, kRequiresRegister, kRequiresSlot };


enum class UsePositionHintType : uint8_t {
  kNone,
  kOperand,
  kUsePos,
  kPhi,
  kUnresolved
};


static const int32_t kUnassignedRegister =
    RegisterConfiguration::kMaxGeneralRegisters;

static_assert(kUnassignedRegister <= RegisterConfiguration::kMaxFPRegisters,
              "kUnassignedRegister too small");

// Representation of a use position.
class UsePosition final : public ZoneObject {
 public:
  UsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint,
              UsePositionHintType hint_type);

  InstructionOperand* operand() const { return operand_; }
  bool HasOperand() const { return operand_ != nullptr; }

  bool RegisterIsBeneficial() const {
    return RegisterBeneficialField::decode(flags_);
  }
  UsePositionType type() const { return TypeField::decode(flags_); }
  void set_type(UsePositionType type, bool register_beneficial);

  LifetimePosition pos() const { return pos_; }

  UsePosition* next() const { return next_; }
  void set_next(UsePosition* next) { next_ = next; }

  // For hinting only.
  void set_assigned_register(int register_code) {
    flags_ = AssignedRegisterField::update(flags_, register_code);
  }

  UsePositionHintType hint_type() const {
    return HintTypeField::decode(flags_);
  }
  bool HasHint() const;
  bool HintRegister(int* register_code) const;
  void ResolveHint(UsePosition* use_pos);
  bool IsResolved() const {
    return hint_type() != UsePositionHintType::kUnresolved;
  }
  static UsePositionHintType HintTypeForOperand(const InstructionOperand& op);

 private:
  typedef BitField<UsePositionType, 0, 2> TypeField;
  typedef BitField<UsePositionHintType, 2, 3> HintTypeField;
  typedef BitField<bool, 5, 1> RegisterBeneficialField;
  typedef BitField<int32_t, 6, 6> AssignedRegisterField;

  InstructionOperand* const operand_;
  void* hint_;
  UsePosition* next_;
  LifetimePosition const pos_;
  uint32_t flags_;

  DISALLOW_COPY_AND_ASSIGN(UsePosition);
};


class SpillRange;
class RegisterAllocationData;
class TopLevelLiveRange;
class LiveRangeGroup;

// Representation of SSA values' live ranges as a collection of (continuous)
// intervals over the instruction ordering.
class LiveRange : public ZoneObject {
 public:
  UseInterval* first_interval() const { return first_interval_; }
  UsePosition* first_pos() const { return first_pos_; }
  TopLevelLiveRange* TopLevel() { return top_level_; }
  const TopLevelLiveRange* TopLevel() const { return top_level_; }

  bool IsTopLevel() const;

  LiveRange* next() const { return next_; }

  int relative_id() const { return relative_id_; }

  bool IsEmpty() const { return first_interval() == nullptr; }

  InstructionOperand GetAssignedOperand() const;

  MachineRepresentation representation() const {
    return RepresentationField::decode(bits_);
  }

  int assigned_register() const { return AssignedRegisterField::decode(bits_); }
  bool HasRegisterAssigned() const {
    return assigned_register() != kUnassignedRegister;
  }
  void set_assigned_register(int reg);
  void UnsetAssignedRegister();

  bool spilled() const { return SpilledField::decode(bits_); }
  void Spill();

  RegisterKind kind() const;

  // Returns use position in this live range that follows both start
  // and last processed use position.
  UsePosition* NextUsePosition(LifetimePosition start) const;

  // Returns use position for which register is required in this live
  // range and which follows both start and last processed use position
  UsePosition* NextRegisterPosition(LifetimePosition start) const;

  // Returns the first use position requiring stack slot, or nullptr.
  UsePosition* NextSlotPosition(LifetimePosition start) const;

  // Returns use position for which register is beneficial in this live
  // range and which follows both start and last processed use position
  UsePosition* NextUsePositionRegisterIsBeneficial(
      LifetimePosition start) const;

  // Returns use position for which register is beneficial in this live
  // range and which precedes start.
  UsePosition* PreviousUsePositionRegisterIsBeneficial(
      LifetimePosition start) const;

  // Can this live range be spilled at this position.
  bool CanBeSpilled(LifetimePosition pos) const;

  // Splitting primitive used by both splitting and splintering members.
  // Performs the split, but does not link the resulting ranges.
  // The given position must follow the start of the range.
  // All uses following the given position will be moved from this
  // live range to the result live range.
  // The current range will terminate at position, while result will start from
  // position.
  UsePosition* DetachAt(LifetimePosition position, LiveRange* result,
                        Zone* zone);

  // Detaches at position, and then links the resulting ranges. Returns the
  // child, which starts at position.
  LiveRange* SplitAt(LifetimePosition position, Zone* zone);

  // Returns nullptr when no register is hinted, otherwise sets register_index.
  UsePosition* FirstHintPosition(int* register_index) const;
  UsePosition* FirstHintPosition() const {
    int register_index;
    return FirstHintPosition(&register_index);
  }

  UsePosition* current_hint_position() const {
    DCHECK(current_hint_position_ == FirstHintPosition());
    return current_hint_position_;
  }

  LifetimePosition Start() const {
    DCHECK(!IsEmpty());
    return first_interval()->start();
  }

  LifetimePosition End() const {
    DCHECK(!IsEmpty());
    return last_interval_->end();
  }

  bool ShouldBeAllocatedBefore(const LiveRange* other) const;
  bool CanCover(LifetimePosition position) const;
  bool Covers(LifetimePosition position) const;
  LifetimePosition FirstIntersection(LiveRange* other) const;

  void VerifyChildStructure() const {
    VerifyIntervals();
    VerifyPositions();
  }

  void ConvertUsesToOperand(const InstructionOperand& op,
                            const InstructionOperand& spill_op);
  void SetUseHints(int register_index);
  void UnsetUseHints() { SetUseHints(kUnassignedRegister); }

  void Print(const RegisterConfiguration* config, bool with_children) const;
  void Print(bool with_children) const;

 private:
  friend class TopLevelLiveRange;
  explicit LiveRange(int relative_id, MachineRepresentation rep,
                     TopLevelLiveRange* top_level);

  void UpdateParentForAllChildren(TopLevelLiveRange* new_top_level);

  void set_spilled(bool value) { bits_ = SpilledField::update(bits_, value); }

  UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
  void AdvanceLastProcessedMarker(UseInterval* to_start_of,
                                  LifetimePosition but_not_past) const;

  void VerifyPositions() const;
  void VerifyIntervals() const;

  typedef BitField<bool, 0, 1> SpilledField;
  typedef BitField<int32_t, 6, 6> AssignedRegisterField;
  typedef BitField<MachineRepresentation, 12, 8> RepresentationField;

  // Unique among children and splinters of the same virtual register.
  int relative_id_;
  uint32_t bits_;
  UseInterval* last_interval_;
  UseInterval* first_interval_;
  UsePosition* first_pos_;
  TopLevelLiveRange* top_level_;
  LiveRange* next_;
  // This is used as a cache, it doesn't affect correctness.
  mutable UseInterval* current_interval_;
  // This is used as a cache, it doesn't affect correctness.
  mutable UsePosition* last_processed_use_;
  // This is used as a cache, it's invalid outside of BuildLiveRanges.
  mutable UsePosition* current_hint_position_;
  // Cache the last position splintering stopped at.
  mutable UsePosition* splitting_pointer_;

  DISALLOW_COPY_AND_ASSIGN(LiveRange);
};


class LiveRangeGroup final : public ZoneObject {
 public:
  explicit LiveRangeGroup(Zone* zone) : ranges_(zone) {}
  ZoneVector<LiveRange*>& ranges() { return ranges_; }
  const ZoneVector<LiveRange*>& ranges() const { return ranges_; }

  int assigned_register() const { return assigned_register_; }
  void set_assigned_register(int reg) { assigned_register_ = reg; }

 private:
  ZoneVector<LiveRange*> ranges_;
  int assigned_register_;
  DISALLOW_COPY_AND_ASSIGN(LiveRangeGroup);
};


class TopLevelLiveRange final : public LiveRange {
 public:
  explicit TopLevelLiveRange(int vreg, MachineRepresentation rep);
  int spill_start_index() const { return spill_start_index_; }

  bool IsFixed() const { return vreg_ < 0; }

  bool is_phi() const { return IsPhiField::decode(bits_); }
  void set_is_phi(bool value) { bits_ = IsPhiField::update(bits_, value); }

  bool is_non_loop_phi() const { return IsNonLoopPhiField::decode(bits_); }
  void set_is_non_loop_phi(bool value) {
    bits_ = IsNonLoopPhiField::update(bits_, value);
  }

  bool has_slot_use() const { return HasSlotUseField::decode(bits_); }
  void set_has_slot_use(bool value) {
    bits_ = HasSlotUseField::update(bits_, value);
  }

  // Add a new interval or a new use position to this live range.
  void EnsureInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
  void AddUseInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
  void AddUsePosition(UsePosition* pos);

  // Shorten the most recently added interval by setting a new start.
  void ShortenTo(LifetimePosition start);

  // Detaches between start and end, and attributes the resulting range to
  // result.
  // The current range is pointed to as "splintered_from". No parent/child
  // relationship is established between this and result.
  void Splinter(LifetimePosition start, LifetimePosition end, Zone* zone);

  // Assuming other was splintered from this range, embeds other and its
  // children as part of the children sequence of this range.
  void Merge(TopLevelLiveRange* other, Zone* zone);

  // Spill range management.
  void SetSpillRange(SpillRange* spill_range);
  enum class SpillType { kNoSpillType, kSpillOperand, kSpillRange };
  void set_spill_type(SpillType value) {
    bits_ = SpillTypeField::update(bits_, value);
  }
  SpillType spill_type() const { return SpillTypeField::decode(bits_); }
  InstructionOperand* GetSpillOperand() const {
    DCHECK(spill_type() == SpillType::kSpillOperand);
    return spill_operand_;
  }

  SpillRange* GetAllocatedSpillRange() const {
    DCHECK(spill_type() != SpillType::kSpillOperand);
    return spill_range_;
  }

  SpillRange* GetSpillRange() const {
    DCHECK(spill_type() == SpillType::kSpillRange);
    return spill_range_;
  }
  bool HasNoSpillType() const {
    return spill_type() == SpillType::kNoSpillType;
  }
  bool HasSpillOperand() const {
    return spill_type() == SpillType::kSpillOperand;
  }
  bool HasSpillRange() const { return spill_type() == SpillType::kSpillRange; }

  AllocatedOperand GetSpillRangeOperand() const;

  void RecordSpillLocation(Zone* zone, int gap_index,
                           InstructionOperand* operand);
  void SetSpillOperand(InstructionOperand* operand);
  void SetSpillStartIndex(int start) {
    spill_start_index_ = Min(start, spill_start_index_);
  }

  void CommitSpillMoves(InstructionSequence* sequence,
                        const InstructionOperand& operand,
                        bool might_be_duplicated);

  // If all the children of this range are spilled in deferred blocks, and if
  // for any non-spilled child with a use position requiring a slot, that range
  // is contained in a deferred block, mark the range as
  // IsSpilledOnlyInDeferredBlocks, so that we avoid spilling at definition,
  // and instead let the LiveRangeConnector perform the spills within the
  // deferred blocks. If so, we insert here spills for non-spilled ranges
  // with slot use positions.
  void TreatAsSpilledInDeferredBlock(Zone* zone, int total_block_count) {
    spill_start_index_ = -1;
    spilled_in_deferred_blocks_ = true;
    spill_move_insertion_locations_ = nullptr;
    list_of_blocks_requiring_spill_operands_ =
        new (zone) BitVector(total_block_count, zone);
  }

  void CommitSpillInDeferredBlocks(RegisterAllocationData* data,
                                   const InstructionOperand& spill_operand,
                                   BitVector* necessary_spill_points);

  TopLevelLiveRange* splintered_from() const { return splintered_from_; }
  bool IsSplinter() const { return splintered_from_ != nullptr; }
  bool MayRequireSpillRange() const {
    DCHECK(!IsSplinter());
    return !HasSpillOperand() && spill_range_ == nullptr;
  }
  void UpdateSpillRangePostMerge(TopLevelLiveRange* merged);
  int vreg() const { return vreg_; }

#if DEBUG
  int debug_virt_reg() const;
#endif

  void Verify() const;
  void VerifyChildrenInOrder() const;

  int GetNextChildId() {
    return IsSplinter() ? splintered_from()->GetNextChildId()
                        : ++last_child_id_;
  }

  int GetChildCount() const { return last_child_id_ + 1; }

  bool IsSpilledOnlyInDeferredBlocks() const {
    return spilled_in_deferred_blocks_;
  }

  struct SpillMoveInsertionList;

  SpillMoveInsertionList* GetSpillMoveInsertionLocations() const {
    DCHECK(!IsSpilledOnlyInDeferredBlocks());
    return spill_move_insertion_locations_;
  }
  TopLevelLiveRange* splinter() const { return splinter_; }
  void SetSplinter(TopLevelLiveRange* splinter) {
    DCHECK_NULL(splinter_);
    DCHECK_NOT_NULL(splinter);

    splinter_ = splinter;
    splinter->relative_id_ = GetNextChildId();
    splinter->set_spill_type(spill_type());
    splinter->SetSplinteredFrom(this);
  }

  void MarkHasPreassignedSlot() { has_preassigned_slot_ = true; }
  bool has_preassigned_slot() const { return has_preassigned_slot_; }

  void AddBlockRequiringSpillOperand(RpoNumber block_id) {
    DCHECK(IsSpilledOnlyInDeferredBlocks());
    GetListOfBlocksRequiringSpillOperands()->Add(block_id.ToInt());
  }

  BitVector* GetListOfBlocksRequiringSpillOperands() const {
    DCHECK(IsSpilledOnlyInDeferredBlocks());
    return list_of_blocks_requiring_spill_operands_;
  }

 private:
  void SetSplinteredFrom(TopLevelLiveRange* splinter_parent);

  typedef BitField<bool, 1, 1> HasSlotUseField;
  typedef BitField<bool, 2, 1> IsPhiField;
  typedef BitField<bool, 3, 1> IsNonLoopPhiField;
  typedef BitField<SpillType, 4, 2> SpillTypeField;

  int vreg_;
  int last_child_id_;
  TopLevelLiveRange* splintered_from_;
  union {
    // Correct value determined by spill_type()
    InstructionOperand* spill_operand_;
    SpillRange* spill_range_;
  };

  union {
    SpillMoveInsertionList* spill_move_insertion_locations_;
    BitVector* list_of_blocks_requiring_spill_operands_;
  };

  // TODO(mtrofin): generalize spilling after definition, currently specialized
  // just for spill in a single deferred block.
  bool spilled_in_deferred_blocks_;
  int spill_start_index_;
  UsePosition* last_pos_;
  TopLevelLiveRange* splinter_;
  bool has_preassigned_slot_;

  DISALLOW_COPY_AND_ASSIGN(TopLevelLiveRange);
};


struct PrintableLiveRange {
  const RegisterConfiguration* register_configuration_;
  const LiveRange* range_;
};


std::ostream& operator<<(std::ostream& os,
                         const PrintableLiveRange& printable_range);


class SpillRange final : public ZoneObject {
 public:
  static const int kUnassignedSlot = -1;
  SpillRange(TopLevelLiveRange* range, Zone* zone);

  UseInterval* interval() const { return use_interval_; }

  bool IsEmpty() const { return live_ranges_.empty(); }
  bool TryMerge(SpillRange* other);
  bool HasSlot() const { return assigned_slot_ != kUnassignedSlot; }

  void set_assigned_slot(int index) {
    DCHECK_EQ(kUnassignedSlot, assigned_slot_);
    assigned_slot_ = index;
  }
  int assigned_slot() {
    DCHECK_NE(kUnassignedSlot, assigned_slot_);
    return assigned_slot_;
  }
  const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
    return live_ranges_;
  }
  ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
  // Spill slots can be 4, 8, or 16 bytes wide.
  int byte_width() const { return byte_width_; }
  void Print() const;

 private:
  LifetimePosition End() const { return end_position_; }
  bool IsIntersectingWith(SpillRange* other) const;
  // Merge intervals, making sure the use intervals are sorted
  void MergeDisjointIntervals(UseInterval* other);

  ZoneVector<TopLevelLiveRange*> live_ranges_;
  UseInterval* use_interval_;
  LifetimePosition end_position_;
  int assigned_slot_;
  int byte_width_;

  DISALLOW_COPY_AND_ASSIGN(SpillRange);
};


class RegisterAllocationData final : public ZoneObject {
 public:
  class PhiMapValue : public ZoneObject {
   public:
    PhiMapValue(PhiInstruction* phi, const InstructionBlock* block, Zone* zone);

    const PhiInstruction* phi() const { return phi_; }
    const InstructionBlock* block() const { return block_; }

    // For hinting.
    int assigned_register() const { return assigned_register_; }
    void set_assigned_register(int register_code) {
      DCHECK_EQ(assigned_register_, kUnassignedRegister);
      assigned_register_ = register_code;
    }
    void UnsetAssignedRegister() { assigned_register_ = kUnassignedRegister; }

    void AddOperand(InstructionOperand* operand);
    void CommitAssignment(const InstructionOperand& operand);

   private:
    PhiInstruction* const phi_;
    const InstructionBlock* const block_;
    ZoneVector<InstructionOperand*> incoming_operands_;
    int assigned_register_;
  };
  typedef ZoneMap<int, PhiMapValue*> PhiMap;

  struct DelayedReference {
    ReferenceMap* map;
    InstructionOperand* operand;
  };
  typedef ZoneVector<DelayedReference> DelayedReferences;
  typedef ZoneVector<std::pair<TopLevelLiveRange*, int>>
      RangesWithPreassignedSlots;

  RegisterAllocationData(const RegisterConfiguration* config,
                         Zone* allocation_zone, Frame* frame,
                         InstructionSequence* code,
                         const char* debug_name = nullptr);

  const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
    return live_ranges_;
  }
  ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
  const ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() const {
    return fixed_live_ranges_;
  }
  ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() {
    return fixed_live_ranges_;
  }
  ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() {
    return fixed_double_live_ranges_;
  }
  const ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() const {
    return fixed_double_live_ranges_;
  }
  ZoneVector<BitVector*>& live_in_sets() { return live_in_sets_; }
  ZoneVector<BitVector*>& live_out_sets() { return live_out_sets_; }
  ZoneVector<SpillRange*>& spill_ranges() { return spill_ranges_; }
  DelayedReferences& delayed_references() { return delayed_references_; }
  InstructionSequence* code() const { return code_; }
  // This zone is for data structures only needed during register allocation
  // phases.
  Zone* allocation_zone() const { return allocation_zone_; }
  // This zone is for InstructionOperands and moves that live beyond register
  // allocation.
  Zone* code_zone() const { return code()->zone(); }
  Frame* frame() const { return frame_; }
  const char* debug_name() const { return debug_name_; }
  const RegisterConfiguration* config() const { return config_; }

  MachineRepresentation RepresentationFor(int virtual_register);

  TopLevelLiveRange* GetOrCreateLiveRangeFor(int index);
  // Creates a new live range.
  TopLevelLiveRange* NewLiveRange(int index, MachineRepresentation rep);
  TopLevelLiveRange* NextLiveRange(MachineRepresentation rep);

  SpillRange* AssignSpillRangeToLiveRange(TopLevelLiveRange* range);
  SpillRange* CreateSpillRangeForLiveRange(TopLevelLiveRange* range);

  MoveOperands* AddGapMove(int index, Instruction::GapPosition position,
                           const InstructionOperand& from,
                           const InstructionOperand& to);

  bool IsReference(TopLevelLiveRange* top_range) const {
    return code()->IsReference(top_range->vreg());
  }

  bool ExistsUseWithoutDefinition();
  bool RangesDefinedInDeferredStayInDeferred();

  void MarkAllocated(MachineRepresentation rep, int index);

  PhiMapValue* InitializePhiMap(const InstructionBlock* block,
                                PhiInstruction* phi);
  PhiMapValue* GetPhiMapValueFor(TopLevelLiveRange* top_range);
  PhiMapValue* GetPhiMapValueFor(int virtual_register);
  bool IsBlockBoundary(LifetimePosition pos) const;

  RangesWithPreassignedSlots& preassigned_slot_ranges() {
    return preassigned_slot_ranges_;
  }

 private:
  int GetNextLiveRangeId();

  Zone* const allocation_zone_;
  Frame* const frame_;
  InstructionSequence* const code_;
  const char* const debug_name_;
  const RegisterConfiguration* const config_;
  PhiMap phi_map_;
  ZoneVector<BitVector*> live_in_sets_;
  ZoneVector<BitVector*> live_out_sets_;
  ZoneVector<TopLevelLiveRange*> live_ranges_;
  ZoneVector<TopLevelLiveRange*> fixed_live_ranges_;
  ZoneVector<TopLevelLiveRange*> fixed_double_live_ranges_;
  ZoneVector<SpillRange*> spill_ranges_;
  DelayedReferences delayed_references_;
  BitVector* assigned_registers_;
  BitVector* assigned_double_registers_;
  int virtual_register_count_;
  RangesWithPreassignedSlots preassigned_slot_ranges_;

  DISALLOW_COPY_AND_ASSIGN(RegisterAllocationData);
};


class ConstraintBuilder final : public ZoneObject {
 public:
  explicit ConstraintBuilder(RegisterAllocationData* data);

  // Phase 1 : insert moves to account for fixed register operands.
  void MeetRegisterConstraints();

  // Phase 2: deconstruct SSA by inserting moves in successors and the headers
  // of blocks containing phis.
  void ResolvePhis();

 private:
  RegisterAllocationData* data() const { return data_; }
  InstructionSequence* code() const { return data()->code(); }
  Zone* allocation_zone() const { return data()->allocation_zone(); }

  InstructionOperand* AllocateFixed(UnallocatedOperand* operand, int pos,
                                    bool is_tagged);
  void MeetRegisterConstraints(const InstructionBlock* block);
  void MeetConstraintsBefore(int index);
  void MeetConstraintsAfter(int index);
  void MeetRegisterConstraintsForLastInstructionInBlock(
      const InstructionBlock* block);
  void ResolvePhis(const InstructionBlock* block);

  RegisterAllocationData* const data_;

  DISALLOW_COPY_AND_ASSIGN(ConstraintBuilder);
};


class LiveRangeBuilder final : public ZoneObject {
 public:
  explicit LiveRangeBuilder(RegisterAllocationData* data, Zone* local_zone);

  // Phase 3: compute liveness of all virtual register.
  void BuildLiveRanges();
  static BitVector* ComputeLiveOut(const InstructionBlock* block,
                                   RegisterAllocationData* data);

 private:
  RegisterAllocationData* data() const { return data_; }
  InstructionSequence* code() const { return data()->code(); }
  Zone* allocation_zone() const { return data()->allocation_zone(); }
  Zone* code_zone() const { return code()->zone(); }
  const RegisterConfiguration* config() const { return data()->config(); }
  ZoneVector<BitVector*>& live_in_sets() const {
    return data()->live_in_sets();
  }

  // Verification.
  void Verify() const;
  bool IntervalStartsAtBlockBoundary(const UseInterval* interval) const;
  bool IntervalPredecessorsCoveredByRange(const UseInterval* interval,
                                          const TopLevelLiveRange* range) const;
  bool NextIntervalStartsInDifferentBlocks(const UseInterval* interval) const;

  // Liveness analysis support.
  void AddInitialIntervals(const InstructionBlock* block, BitVector* live_out);
  void ProcessInstructions(const InstructionBlock* block, BitVector* live);
  void ProcessPhis(const InstructionBlock* block, BitVector* live);
  void ProcessLoopHeader(const InstructionBlock* block, BitVector* live);

  static int FixedLiveRangeID(int index) { return -index - 1; }
  int FixedFPLiveRangeID(int index, MachineRepresentation rep);
  TopLevelLiveRange* FixedLiveRangeFor(int index);
  TopLevelLiveRange* FixedFPLiveRangeFor(int index, MachineRepresentation rep);

  void MapPhiHint(InstructionOperand* operand, UsePosition* use_pos);
  void ResolvePhiHint(InstructionOperand* operand, UsePosition* use_pos);

  UsePosition* NewUsePosition(LifetimePosition pos, InstructionOperand* operand,
                              void* hint, UsePositionHintType hint_type);
  UsePosition* NewUsePosition(LifetimePosition pos) {
    return NewUsePosition(pos, nullptr, nullptr, UsePositionHintType::kNone);
  }
  TopLevelLiveRange* LiveRangeFor(InstructionOperand* operand);
  // Helper methods for building intervals.
  UsePosition* Define(LifetimePosition position, InstructionOperand* operand,
                      void* hint, UsePositionHintType hint_type);
  void Define(LifetimePosition position, InstructionOperand* operand) {
    Define(position, operand, nullptr, UsePositionHintType::kNone);
  }
  UsePosition* Use(LifetimePosition block_start, LifetimePosition position,
                   InstructionOperand* operand, void* hint,
                   UsePositionHintType hint_type);
  void Use(LifetimePosition block_start, LifetimePosition position,
           InstructionOperand* operand) {
    Use(block_start, position, operand, nullptr, UsePositionHintType::kNone);
  }

  RegisterAllocationData* const data_;
  ZoneMap<InstructionOperand*, UsePosition*> phi_hints_;

  DISALLOW_COPY_AND_ASSIGN(LiveRangeBuilder);
};


class RegisterAllocator : public ZoneObject {
 public:
  RegisterAllocator(RegisterAllocationData* data, RegisterKind kind);

 protected:
  RegisterAllocationData* data() const { return data_; }
  InstructionSequence* code() const { return data()->code(); }
  RegisterKind mode() const { return mode_; }
  int num_registers() const { return num_registers_; }
  int num_allocatable_registers() const { return num_allocatable_registers_; }
  const int* allocatable_register_codes() const {
    return allocatable_register_codes_;
  }

  // TODO(mtrofin): explain why splitting in gap START is always OK.
  LifetimePosition GetSplitPositionForInstruction(const LiveRange* range,
                                                  int instruction_index);

  Zone* allocation_zone() const { return data()->allocation_zone(); }

  // Find the optimal split for ranges defined by a memory operand, e.g.
  // constants or function parameters passed on the stack.
  void SplitAndSpillRangesDefinedByMemoryOperand(bool operands_only);

  // Split the given range at the given position.
  // If range starts at or after the given position then the
  // original range is returned.
  // Otherwise returns the live range that starts at pos and contains
  // all uses from the original range that follow pos. Uses at pos will
  // still be owned by the original range after splitting.
  LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);

  bool CanProcessRange(LiveRange* range) const {
    return range != nullptr && !range->IsEmpty() && range->kind() == mode();
  }


  // Split the given range in a position from the interval [start, end].
  LiveRange* SplitBetween(LiveRange* range, LifetimePosition start,
                          LifetimePosition end);

  // Find a lifetime position in the interval [start, end] which
  // is optimal for splitting: it is either header of the outermost
  // loop covered by this interval or the latest possible position.
  LifetimePosition FindOptimalSplitPos(LifetimePosition start,
                                       LifetimePosition end);

  void Spill(LiveRange* range);

  // If we are trying to spill a range inside the loop try to
  // hoist spill position out to the point just before the loop.
  LifetimePosition FindOptimalSpillingPos(LiveRange* range,
                                          LifetimePosition pos);

  const ZoneVector<TopLevelLiveRange*>& GetFixedRegisters() const;
  const char* RegisterName(int allocation_index) const;

 private:
  RegisterAllocationData* const data_;
  const RegisterKind mode_;
  const int num_registers_;
  int num_allocatable_registers_;
  const int* allocatable_register_codes_;

 private:
  bool no_combining_;

  DISALLOW_COPY_AND_ASSIGN(RegisterAllocator);
};


class LinearScanAllocator final : public RegisterAllocator {
 public:
  LinearScanAllocator(RegisterAllocationData* data, RegisterKind kind,
                      Zone* local_zone);

  // Phase 4: compute register assignments.
  void AllocateRegisters();

 private:
  ZoneVector<LiveRange*>& unhandled_live_ranges() {
    return unhandled_live_ranges_;
  }
  ZoneVector<LiveRange*>& active_live_ranges() { return active_live_ranges_; }
  ZoneVector<LiveRange*>& inactive_live_ranges() {
    return inactive_live_ranges_;
  }

  void SetLiveRangeAssignedRegister(LiveRange* range, int reg);

  // Helper methods for updating the life range lists.
  void AddToActive(LiveRange* range);
  void AddToInactive(LiveRange* range);
  void AddToUnhandledSorted(LiveRange* range);
  void AddToUnhandledUnsorted(LiveRange* range);
  void SortUnhandled();
  bool UnhandledIsSorted();
  void ActiveToHandled(LiveRange* range);
  void ActiveToInactive(LiveRange* range);
  void InactiveToHandled(LiveRange* range);
  void InactiveToActive(LiveRange* range);

  // Helper methods for allocating registers.
  bool TryReuseSpillForPhi(TopLevelLiveRange* range);
  bool TryAllocateFreeReg(LiveRange* range);
  void AllocateBlockedReg(LiveRange* range);

  // Spill the given life range after position pos.
  void SpillAfter(LiveRange* range, LifetimePosition pos);

  // Spill the given life range after position [start] and up to position [end].
  void SpillBetween(LiveRange* range, LifetimePosition start,
                    LifetimePosition end);

  // Spill the given life range after position [start] and up to position [end].
  // Range is guaranteed to be spilled at least until position [until].
  void SpillBetweenUntil(LiveRange* range, LifetimePosition start,
                         LifetimePosition until, LifetimePosition end);

  void SplitAndSpillIntersecting(LiveRange* range);

  ZoneVector<LiveRange*> unhandled_live_ranges_;
  ZoneVector<LiveRange*> active_live_ranges_;
  ZoneVector<LiveRange*> inactive_live_ranges_;

#ifdef DEBUG
  LifetimePosition allocation_finger_;
#endif

  DISALLOW_COPY_AND_ASSIGN(LinearScanAllocator);
};


class SpillSlotLocator final : public ZoneObject {
 public:
  explicit SpillSlotLocator(RegisterAllocationData* data);

  void LocateSpillSlots();

 private:
  RegisterAllocationData* data() const { return data_; }

  RegisterAllocationData* const data_;

  DISALLOW_COPY_AND_ASSIGN(SpillSlotLocator);
};


class OperandAssigner final : public ZoneObject {
 public:
  explicit OperandAssigner(RegisterAllocationData* data);

  // Phase 5: assign spill splots.
  void AssignSpillSlots();

  // Phase 6: commit assignment.
  void CommitAssignment();

 private:
  RegisterAllocationData* data() const { return data_; }

  RegisterAllocationData* const data_;

  DISALLOW_COPY_AND_ASSIGN(OperandAssigner);
};


class ReferenceMapPopulator final : public ZoneObject {
 public:
  explicit ReferenceMapPopulator(RegisterAllocationData* data);

  // Phase 7: compute values for pointer maps.
  void PopulateReferenceMaps();

 private:
  RegisterAllocationData* data() const { return data_; }

  bool SafePointsAreInOrder() const;

  RegisterAllocationData* const data_;

  DISALLOW_COPY_AND_ASSIGN(ReferenceMapPopulator);
};


class LiveRangeBoundArray;
// Insert moves of the form
//
//          Operand(child_(k+1)) = Operand(child_k)
//
// where child_k and child_(k+1) are consecutive children of a range (so
// child_k->next() == child_(k+1)), and Operand(...) refers to the
// assigned operand, be it a register or a slot.
class LiveRangeConnector final : public ZoneObject {
 public:
  explicit LiveRangeConnector(RegisterAllocationData* data);

  // Phase 8: reconnect split ranges with moves, when the control flow
  // between the ranges is trivial (no branches).
  void ConnectRanges(Zone* local_zone);

  // Phase 9: insert moves to connect ranges across basic blocks, when the
  // control flow between them cannot be trivially resolved, such as joining
  // branches.
  void ResolveControlFlow(Zone* local_zone);

 private:
  RegisterAllocationData* data() const { return data_; }
  InstructionSequence* code() const { return data()->code(); }
  Zone* code_zone() const { return code()->zone(); }

  bool CanEagerlyResolveControlFlow(const InstructionBlock* block) const;

  int ResolveControlFlow(const InstructionBlock* block,
                         const InstructionOperand& cur_op,
                         const InstructionBlock* pred,
                         const InstructionOperand& pred_op);

  void CommitSpillsInDeferredBlocks(TopLevelLiveRange* range,
                                    LiveRangeBoundArray* array,
                                    Zone* temp_zone);

  RegisterAllocationData* const data_;

  DISALLOW_COPY_AND_ASSIGN(LiveRangeConnector);
};

}  // namespace compiler
}  // namespace internal
}  // namespace v8

#endif  // V8_REGISTER_ALLOCATOR_H_