summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/register-allocator.cc
blob: 101a10ae5b55ad4981d8c464df117d2c9d5ccae6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/base/adapters.h"
#include "src/compiler/linkage.h"
#include "src/compiler/register-allocator.h"
#include "src/string-stream.h"

namespace v8 {
namespace internal {
namespace compiler {

#define TRACE(...)                             \
  do {                                         \
    if (FLAG_trace_alloc) PrintF(__VA_ARGS__); \
  } while (false)


namespace {

void RemoveElement(ZoneVector<LiveRange*>* v, LiveRange* range) {
  auto it = std::find(v->begin(), v->end(), range);
  DCHECK(it != v->end());
  v->erase(it);
}


int GetRegisterCount(const RegisterConfiguration* cfg, RegisterKind kind) {
  return kind == DOUBLE_REGISTERS ? cfg->num_aliased_double_registers()
                                  : cfg->num_general_registers();
}


const InstructionBlock* GetContainingLoop(const InstructionSequence* sequence,
                                          const InstructionBlock* block) {
  auto index = block->loop_header();
  if (!index.IsValid()) return nullptr;
  return sequence->InstructionBlockAt(index);
}


const InstructionBlock* GetInstructionBlock(const InstructionSequence* code,
                                            LifetimePosition pos) {
  return code->GetInstructionBlock(pos.ToInstructionIndex());
}


Instruction* GetLastInstruction(InstructionSequence* code,
                                const InstructionBlock* block) {
  return code->InstructionAt(block->last_instruction_index());
}


bool IsOutputRegisterOf(Instruction* instr, int index) {
  for (size_t i = 0; i < instr->OutputCount(); i++) {
    auto output = instr->OutputAt(i);
    if (output->IsRegister() &&
        RegisterOperand::cast(output)->index() == index) {
      return true;
    }
  }
  return false;
}


bool IsOutputDoubleRegisterOf(Instruction* instr, int index) {
  for (size_t i = 0; i < instr->OutputCount(); i++) {
    auto output = instr->OutputAt(i);
    if (output->IsDoubleRegister() &&
        DoubleRegisterOperand::cast(output)->index() == index) {
      return true;
    }
  }
  return false;
}


// TODO(dcarney): fix frame to allow frame accesses to half size location.
int GetByteWidth(MachineType machine_type) {
  DCHECK_EQ(RepresentationOf(machine_type), machine_type);
  switch (machine_type) {
    case kRepBit:
    case kRepWord8:
    case kRepWord16:
    case kRepWord32:
    case kRepTagged:
      return kPointerSize;
    case kRepFloat32:
    case kRepWord64:
    case kRepFloat64:
      return 8;
    default:
      UNREACHABLE();
      return 0;
  }
}

}  // namespace


UsePosition::UsePosition(LifetimePosition pos, InstructionOperand* operand,
                         void* hint, UsePositionHintType hint_type)
    : operand_(operand), hint_(hint), next_(nullptr), pos_(pos), flags_(0) {
  DCHECK_IMPLIES(hint == nullptr, hint_type == UsePositionHintType::kNone);
  bool register_beneficial = true;
  UsePositionType type = UsePositionType::kAny;
  if (operand_ != nullptr && operand_->IsUnallocated()) {
    const UnallocatedOperand* unalloc = UnallocatedOperand::cast(operand_);
    if (unalloc->HasRegisterPolicy()) {
      type = UsePositionType::kRequiresRegister;
    } else if (unalloc->HasSlotPolicy()) {
      type = UsePositionType::kRequiresSlot;
      register_beneficial = false;
    } else {
      register_beneficial = !unalloc->HasAnyPolicy();
    }
  }
  flags_ = TypeField::encode(type) | HintTypeField::encode(hint_type) |
           RegisterBeneficialField::encode(register_beneficial) |
           AssignedRegisterField::encode(kUnassignedRegister);
  DCHECK(pos_.IsValid());
}


bool UsePosition::HasHint() const {
  int hint_register;
  return HintRegister(&hint_register);
}


bool UsePosition::HintRegister(int* register_index) const {
  if (hint_ == nullptr) return false;
  switch (HintTypeField::decode(flags_)) {
    case UsePositionHintType::kNone:
    case UsePositionHintType::kUnresolved:
      return false;
    case UsePositionHintType::kUsePos: {
      auto use_pos = reinterpret_cast<UsePosition*>(hint_);
      int assigned_register = AssignedRegisterField::decode(use_pos->flags_);
      if (assigned_register == kUnassignedRegister) return false;
      *register_index = assigned_register;
      return true;
    }
    case UsePositionHintType::kOperand: {
      auto operand = reinterpret_cast<InstructionOperand*>(hint_);
      int assigned_register = AllocatedOperand::cast(operand)->index();
      *register_index = assigned_register;
      return true;
    }
    case UsePositionHintType::kPhi: {
      auto phi = reinterpret_cast<RegisterAllocationData::PhiMapValue*>(hint_);
      int assigned_register = phi->assigned_register();
      if (assigned_register == kUnassignedRegister) return false;
      *register_index = assigned_register;
      return true;
    }
  }
  UNREACHABLE();
  return false;
}


UsePositionHintType UsePosition::HintTypeForOperand(
    const InstructionOperand& op) {
  switch (op.kind()) {
    case InstructionOperand::CONSTANT:
    case InstructionOperand::IMMEDIATE:
      return UsePositionHintType::kNone;
    case InstructionOperand::UNALLOCATED:
      return UsePositionHintType::kUnresolved;
    case InstructionOperand::ALLOCATED:
      switch (AllocatedOperand::cast(op).allocated_kind()) {
        case AllocatedOperand::REGISTER:
        case AllocatedOperand::DOUBLE_REGISTER:
          return UsePositionHintType::kOperand;
        case AllocatedOperand::STACK_SLOT:
        case AllocatedOperand::DOUBLE_STACK_SLOT:
          return UsePositionHintType::kNone;
      }
    case InstructionOperand::INVALID:
      break;
  }
  UNREACHABLE();
  return UsePositionHintType::kNone;
}


void UsePosition::ResolveHint(UsePosition* use_pos) {
  DCHECK_NOT_NULL(use_pos);
  if (HintTypeField::decode(flags_) != UsePositionHintType::kUnresolved) return;
  hint_ = use_pos;
  flags_ = HintTypeField::update(flags_, UsePositionHintType::kUsePos);
}


void UsePosition::set_type(UsePositionType type, bool register_beneficial) {
  DCHECK_IMPLIES(type == UsePositionType::kRequiresSlot, !register_beneficial);
  DCHECK_EQ(kUnassignedRegister, AssignedRegisterField::decode(flags_));
  flags_ = TypeField::encode(type) |
           RegisterBeneficialField::encode(register_beneficial) |
           HintTypeField::encode(HintTypeField::decode(flags_)) |
           AssignedRegisterField::encode(kUnassignedRegister);
}


UseInterval* UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
  DCHECK(Contains(pos) && pos != start());
  auto after = new (zone) UseInterval(pos, end_);
  after->next_ = next_;
  next_ = nullptr;
  end_ = pos;
  return after;
}


std::ostream& operator<<(std::ostream& os, const LifetimePosition pos) {
  os << '@' << pos.ToInstructionIndex();
  if (pos.IsGapPosition()) {
    os << 'g';
  } else {
    os << 'i';
  }
  if (pos.IsStart()) {
    os << 's';
  } else {
    os << 'e';
  }
  return os;
}


struct LiveRange::SpillAtDefinitionList : ZoneObject {
  SpillAtDefinitionList(int gap_index, InstructionOperand* operand,
                        SpillAtDefinitionList* next)
      : gap_index(gap_index), operand(operand), next(next) {}
  const int gap_index;
  InstructionOperand* const operand;
  SpillAtDefinitionList* const next;
};


const float LiveRange::kInvalidWeight = -1;
const float LiveRange::kMaxWeight = std::numeric_limits<float>::max();


LiveRange::LiveRange(int id, MachineType machine_type)
    : id_(id),
      spill_start_index_(kMaxInt),
      bits_(0),
      last_interval_(nullptr),
      first_interval_(nullptr),
      first_pos_(nullptr),
      parent_(nullptr),
      next_(nullptr),
      spill_operand_(nullptr),
      spills_at_definition_(nullptr),
      current_interval_(nullptr),
      last_processed_use_(nullptr),
      current_hint_position_(nullptr),
      size_(kInvalidSize),
      weight_(kInvalidWeight),
      spilled_in_deferred_block_(false) {
  DCHECK(AllocatedOperand::IsSupportedMachineType(machine_type));
  bits_ = SpillTypeField::encode(SpillType::kNoSpillType) |
          AssignedRegisterField::encode(kUnassignedRegister) |
          MachineTypeField::encode(machine_type);
}


void LiveRange::Verify() const {
  // Walk the positions, verifying that each is in an interval.
  auto interval = first_interval_;
  for (auto pos = first_pos_; pos != nullptr; pos = pos->next()) {
    CHECK(Start() <= pos->pos());
    CHECK(pos->pos() <= End());
    CHECK(interval != nullptr);
    while (!interval->Contains(pos->pos()) && interval->end() != pos->pos()) {
      interval = interval->next();
      CHECK(interval != nullptr);
    }
  }
}


void LiveRange::set_assigned_register(int reg) {
  DCHECK(!HasRegisterAssigned() && !spilled());
  bits_ = AssignedRegisterField::update(bits_, reg);
}


void LiveRange::UnsetAssignedRegister() {
  DCHECK(HasRegisterAssigned() && !spilled());
  bits_ = AssignedRegisterField::update(bits_, kUnassignedRegister);
}


void LiveRange::Spill() {
  DCHECK(!spilled());
  DCHECK(!TopLevel()->HasNoSpillType());
  set_spilled(true);
  bits_ = AssignedRegisterField::update(bits_, kUnassignedRegister);
}


RegisterKind LiveRange::kind() const {
  switch (RepresentationOf(machine_type())) {
    case kRepFloat32:
    case kRepFloat64:
      return DOUBLE_REGISTERS;
    default:
      break;
  }
  return GENERAL_REGISTERS;
}


void LiveRange::SpillAtDefinition(Zone* zone, int gap_index,
                                  InstructionOperand* operand) {
  DCHECK(HasNoSpillType());
  spills_at_definition_ = new (zone)
      SpillAtDefinitionList(gap_index, operand, spills_at_definition_);
}


bool LiveRange::TryCommitSpillInDeferredBlock(
    InstructionSequence* code, const InstructionOperand& spill_operand) {
  DCHECK(!IsChild());

  if (!FLAG_turbo_preprocess_ranges || IsEmpty() || HasNoSpillType() ||
      spill_operand.IsConstant() || spill_operand.IsImmediate()) {
    return false;
  }

  int count = 0;
  for (const LiveRange* child = this; child != nullptr; child = child->next()) {
    int first_instr = child->Start().ToInstructionIndex();

    // If the range starts at instruction end, the first instruction index is
    // the next one.
    if (!child->Start().IsGapPosition() && !child->Start().IsStart()) {
      ++first_instr;
    }

    // We only look at where the range starts. It doesn't matter where it ends:
    // if it ends past this block, then either there is a phi there already,
    // or ResolveControlFlow will adapt the last instruction gap of this block
    // as if there were a phi. In either case, data flow will be correct.
    const InstructionBlock* block = code->GetInstructionBlock(first_instr);

    // If we have slot uses in a subrange, bail out, because we need the value
    // on the stack before that use.
    bool has_slot_use = child->NextSlotPosition(child->Start()) != nullptr;
    if (!block->IsDeferred()) {
      if (child->spilled() || has_slot_use) {
        TRACE(
            "Live Range %d must be spilled at definition: found a "
            "slot-requiring non-deferred child range %d.\n",
            TopLevel()->id(), child->id());
        return false;
      }
    } else {
      if (child->spilled() || has_slot_use) ++count;
    }
  }
  if (count == 0) return false;

  spill_start_index_ = -1;
  spilled_in_deferred_block_ = true;

  TRACE("Live Range %d will be spilled only in deferred blocks.\n", id());
  // If we have ranges that aren't spilled but require the operand on the stack,
  // make sure we insert the spill.
  for (const LiveRange* child = this; child != nullptr; child = child->next()) {
    if (!child->spilled() &&
        child->NextSlotPosition(child->Start()) != nullptr) {
      auto instr = code->InstructionAt(child->Start().ToInstructionIndex());
      // Insert spill at the end to let live range connections happen at START.
      auto move =
          instr->GetOrCreateParallelMove(Instruction::END, code->zone());
      InstructionOperand assigned = child->GetAssignedOperand();
      if (TopLevel()->has_slot_use()) {
        bool found = false;
        for (auto move_op : *move) {
          if (move_op->IsEliminated()) continue;
          if (move_op->source().Equals(assigned) &&
              move_op->destination().Equals(spill_operand)) {
            found = true;
            break;
          }
        }
        if (found) continue;
      }

      move->AddMove(assigned, spill_operand);
    }
  }

  return true;
}


void LiveRange::CommitSpillsAtDefinition(InstructionSequence* sequence,
                                         const InstructionOperand& op,
                                         bool might_be_duplicated) {
  DCHECK_IMPLIES(op.IsConstant(), spills_at_definition_ == nullptr);
  DCHECK(!IsChild());
  auto zone = sequence->zone();

  for (auto to_spill = spills_at_definition_; to_spill != nullptr;
       to_spill = to_spill->next) {
    auto instr = sequence->InstructionAt(to_spill->gap_index);
    auto move = instr->GetOrCreateParallelMove(Instruction::START, zone);
    // Skip insertion if it's possible that the move exists already as a
    // constraint move from a fixed output register to a slot.
    if (might_be_duplicated) {
      bool found = false;
      for (auto move_op : *move) {
        if (move_op->IsEliminated()) continue;
        if (move_op->source().Equals(*to_spill->operand) &&
            move_op->destination().Equals(op)) {
          found = true;
          break;
        }
      }
      if (found) continue;
    }
    move->AddMove(*to_spill->operand, op);
  }
}


UsePosition* LiveRange::FirstHintPosition(int* register_index) const {
  for (auto pos = first_pos_; pos != nullptr; pos = pos->next()) {
    if (pos->HintRegister(register_index)) return pos;
  }
  return nullptr;
}


void LiveRange::SetSpillOperand(InstructionOperand* operand) {
  DCHECK(HasNoSpillType());
  DCHECK(!operand->IsUnallocated() && !operand->IsImmediate());
  set_spill_type(SpillType::kSpillOperand);
  spill_operand_ = operand;
}


void LiveRange::SetSpillRange(SpillRange* spill_range) {
  DCHECK(HasNoSpillType() || HasSpillRange());
  DCHECK(spill_range);
  set_spill_type(SpillType::kSpillRange);
  spill_range_ = spill_range;
}


UsePosition* LiveRange::NextUsePosition(LifetimePosition start) const {
  UsePosition* use_pos = last_processed_use_;
  if (use_pos == nullptr || use_pos->pos() > start) {
    use_pos = first_pos();
  }
  while (use_pos != nullptr && use_pos->pos() < start) {
    use_pos = use_pos->next();
  }
  last_processed_use_ = use_pos;
  return use_pos;
}


UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
    LifetimePosition start) const {
  UsePosition* pos = NextUsePosition(start);
  while (pos != nullptr && !pos->RegisterIsBeneficial()) {
    pos = pos->next();
  }
  return pos;
}


UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
    LifetimePosition start) const {
  auto pos = first_pos();
  UsePosition* prev = nullptr;
  while (pos != nullptr && pos->pos() < start) {
    if (pos->RegisterIsBeneficial()) prev = pos;
    pos = pos->next();
  }
  return prev;
}


UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) const {
  UsePosition* pos = NextUsePosition(start);
  while (pos != nullptr && pos->type() != UsePositionType::kRequiresRegister) {
    pos = pos->next();
  }
  return pos;
}


UsePosition* LiveRange::NextSlotPosition(LifetimePosition start) const {
  for (UsePosition* pos = NextUsePosition(start); pos != nullptr;
       pos = pos->next()) {
    if (pos->type() != UsePositionType::kRequiresSlot) continue;
    return pos;
  }
  return nullptr;
}


bool LiveRange::CanBeSpilled(LifetimePosition pos) const {
  // We cannot spill a live range that has a use requiring a register
  // at the current or the immediate next position.
  auto use_pos = NextRegisterPosition(pos);
  if (use_pos == nullptr) return true;
  return use_pos->pos() > pos.NextStart().End();
}


InstructionOperand LiveRange::GetAssignedOperand() const {
  if (HasRegisterAssigned()) {
    DCHECK(!spilled());
    switch (kind()) {
      case GENERAL_REGISTERS:
        return RegisterOperand(machine_type(), assigned_register());
      case DOUBLE_REGISTERS:
        return DoubleRegisterOperand(machine_type(), assigned_register());
    }
  }
  DCHECK(spilled());
  DCHECK(!HasRegisterAssigned());
  if (TopLevel()->HasSpillOperand()) {
    auto op = TopLevel()->GetSpillOperand();
    DCHECK(!op->IsUnallocated());
    return *op;
  }
  return TopLevel()->GetSpillRangeOperand();
}


AllocatedOperand LiveRange::GetSpillRangeOperand() const {
  auto spill_range = GetSpillRange();
  int index = spill_range->assigned_slot();
  switch (kind()) {
    case GENERAL_REGISTERS:
      return StackSlotOperand(machine_type(), index);
    case DOUBLE_REGISTERS:
      return DoubleStackSlotOperand(machine_type(), index);
  }
  UNREACHABLE();
  return StackSlotOperand(kMachNone, 0);
}


UseInterval* LiveRange::FirstSearchIntervalForPosition(
    LifetimePosition position) const {
  if (current_interval_ == nullptr) return first_interval_;
  if (current_interval_->start() > position) {
    current_interval_ = nullptr;
    return first_interval_;
  }
  return current_interval_;
}


void LiveRange::AdvanceLastProcessedMarker(
    UseInterval* to_start_of, LifetimePosition but_not_past) const {
  if (to_start_of == nullptr) return;
  if (to_start_of->start() > but_not_past) return;
  auto start = current_interval_ == nullptr ? LifetimePosition::Invalid()
                                            : current_interval_->start();
  if (to_start_of->start() > start) {
    current_interval_ = to_start_of;
  }
}


void LiveRange::SplitAt(LifetimePosition position, LiveRange* result,
                        Zone* zone) {
  DCHECK(Start() < position);
  DCHECK(result->IsEmpty());
  // Find the last interval that ends before the position. If the
  // position is contained in one of the intervals in the chain, we
  // split that interval and use the first part.
  auto current = FirstSearchIntervalForPosition(position);

  // If the split position coincides with the beginning of a use interval
  // we need to split use positons in a special way.
  bool split_at_start = false;

  if (current->start() == position) {
    // When splitting at start we need to locate the previous use interval.
    current = first_interval_;
  }

  UseInterval* after = nullptr;
  while (current != nullptr) {
    if (current->Contains(position)) {
      after = current->SplitAt(position, zone);
      break;
    }
    auto next = current->next();
    if (next->start() >= position) {
      split_at_start = (next->start() == position);
      after = next;
      current->set_next(nullptr);
      break;
    }
    current = next;
  }
  DCHECK(nullptr != after);

  // Partition original use intervals to the two live ranges.
  auto before = current;
  result->last_interval_ =
      (last_interval_ == before)
          ? after            // Only interval in the range after split.
          : last_interval_;  // Last interval of the original range.
  result->first_interval_ = after;
  last_interval_ = before;

  // Find the last use position before the split and the first use
  // position after it.
  auto use_after = first_pos_;
  UsePosition* use_before = nullptr;
  if (split_at_start) {
    // The split position coincides with the beginning of a use interval (the
    // end of a lifetime hole). Use at this position should be attributed to
    // the split child because split child owns use interval covering it.
    while (use_after != nullptr && use_after->pos() < position) {
      use_before = use_after;
      use_after = use_after->next();
    }
  } else {
    while (use_after != nullptr && use_after->pos() <= position) {
      use_before = use_after;
      use_after = use_after->next();
    }
  }

  // Partition original use positions to the two live ranges.
  if (use_before != nullptr) {
    use_before->set_next(nullptr);
  } else {
    first_pos_ = nullptr;
  }
  result->first_pos_ = use_after;

  // Discard cached iteration state. It might be pointing
  // to the use that no longer belongs to this live range.
  last_processed_use_ = nullptr;
  current_interval_ = nullptr;

  // Link the new live range in the chain before any of the other
  // ranges linked from the range before the split.
  result->parent_ = (parent_ == nullptr) ? this : parent_;
  result->next_ = next_;
  next_ = result;

  // Invalidate size and weight of this range. The child range has them
  // invalid at construction.
  size_ = kInvalidSize;
  weight_ = kInvalidWeight;
#ifdef DEBUG
  Verify();
  result->Verify();
#endif
}


// This implements an ordering on live ranges so that they are ordered by their
// start positions.  This is needed for the correctness of the register
// allocation algorithm.  If two live ranges start at the same offset then there
// is a tie breaker based on where the value is first used.  This part of the
// ordering is merely a heuristic.
bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
  LifetimePosition start = Start();
  LifetimePosition other_start = other->Start();
  if (start == other_start) {
    UsePosition* pos = first_pos();
    if (pos == nullptr) return false;
    UsePosition* other_pos = other->first_pos();
    if (other_pos == nullptr) return true;
    return pos->pos() < other_pos->pos();
  }
  return start < other_start;
}


void LiveRange::ShortenTo(LifetimePosition start) {
  TRACE("Shorten live range %d to [%d\n", id_, start.value());
  DCHECK(first_interval_ != nullptr);
  DCHECK(first_interval_->start() <= start);
  DCHECK(start < first_interval_->end());
  first_interval_->set_start(start);
}


void LiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end,
                               Zone* zone) {
  TRACE("Ensure live range %d in interval [%d %d[\n", id_, start.value(),
        end.value());
  auto new_end = end;
  while (first_interval_ != nullptr && first_interval_->start() <= end) {
    if (first_interval_->end() > end) {
      new_end = first_interval_->end();
    }
    first_interval_ = first_interval_->next();
  }

  auto new_interval = new (zone) UseInterval(start, new_end);
  new_interval->set_next(first_interval_);
  first_interval_ = new_interval;
  if (new_interval->next() == nullptr) {
    last_interval_ = new_interval;
  }
}


void LiveRange::AddUseInterval(LifetimePosition start, LifetimePosition end,
                               Zone* zone) {
  TRACE("Add to live range %d interval [%d %d[\n", id_, start.value(),
        end.value());
  if (first_interval_ == nullptr) {
    auto interval = new (zone) UseInterval(start, end);
    first_interval_ = interval;
    last_interval_ = interval;
  } else {
    if (end == first_interval_->start()) {
      first_interval_->set_start(start);
    } else if (end < first_interval_->start()) {
      auto interval = new (zone) UseInterval(start, end);
      interval->set_next(first_interval_);
      first_interval_ = interval;
    } else {
      // Order of instruction's processing (see ProcessInstructions) guarantees
      // that each new use interval either precedes or intersects with
      // last added interval.
      DCHECK(start < first_interval_->end());
      first_interval_->set_start(Min(start, first_interval_->start()));
      first_interval_->set_end(Max(end, first_interval_->end()));
    }
  }
}


void LiveRange::AddUsePosition(UsePosition* use_pos) {
  auto pos = use_pos->pos();
  TRACE("Add to live range %d use position %d\n", id_, pos.value());
  UsePosition* prev_hint = nullptr;
  UsePosition* prev = nullptr;
  auto current = first_pos_;
  while (current != nullptr && current->pos() < pos) {
    prev_hint = current->HasHint() ? current : prev_hint;
    prev = current;
    current = current->next();
  }

  if (prev == nullptr) {
    use_pos->set_next(first_pos_);
    first_pos_ = use_pos;
  } else {
    use_pos->set_next(prev->next());
    prev->set_next(use_pos);
  }

  if (prev_hint == nullptr && use_pos->HasHint()) {
    current_hint_position_ = use_pos;
  }
}


void LiveRange::ConvertUsesToOperand(const InstructionOperand& op,
                                     const InstructionOperand& spill_op) {
  for (auto pos = first_pos(); pos != nullptr; pos = pos->next()) {
    DCHECK(Start() <= pos->pos() && pos->pos() <= End());
    if (!pos->HasOperand()) continue;
    switch (pos->type()) {
      case UsePositionType::kRequiresSlot:
        DCHECK(spill_op.IsStackSlot() || spill_op.IsDoubleStackSlot());
        InstructionOperand::ReplaceWith(pos->operand(), &spill_op);
        break;
      case UsePositionType::kRequiresRegister:
        DCHECK(op.IsRegister() || op.IsDoubleRegister());
      // Fall through.
      case UsePositionType::kAny:
        InstructionOperand::ReplaceWith(pos->operand(), &op);
        break;
    }
  }
}


void LiveRange::SetUseHints(int register_index) {
  for (auto pos = first_pos(); pos != nullptr; pos = pos->next()) {
    if (!pos->HasOperand()) continue;
    switch (pos->type()) {
      case UsePositionType::kRequiresSlot:
        break;
      case UsePositionType::kRequiresRegister:
      case UsePositionType::kAny:
        pos->set_assigned_register(register_index);
        break;
    }
  }
}


bool LiveRange::CanCover(LifetimePosition position) const {
  if (IsEmpty()) return false;
  return Start() <= position && position < End();
}


bool LiveRange::Covers(LifetimePosition position) const {
  if (!CanCover(position)) return false;
  auto start_search = FirstSearchIntervalForPosition(position);
  for (auto interval = start_search; interval != nullptr;
       interval = interval->next()) {
    DCHECK(interval->next() == nullptr ||
           interval->next()->start() >= interval->start());
    AdvanceLastProcessedMarker(interval, position);
    if (interval->Contains(position)) return true;
    if (interval->start() > position) return false;
  }
  return false;
}


LifetimePosition LiveRange::FirstIntersection(LiveRange* other) const {
  auto b = other->first_interval();
  if (b == nullptr) return LifetimePosition::Invalid();
  auto advance_last_processed_up_to = b->start();
  auto a = FirstSearchIntervalForPosition(b->start());
  while (a != nullptr && b != nullptr) {
    if (a->start() > other->End()) break;
    if (b->start() > End()) break;
    auto cur_intersection = a->Intersect(b);
    if (cur_intersection.IsValid()) {
      return cur_intersection;
    }
    if (a->start() < b->start()) {
      a = a->next();
      if (a == nullptr || a->start() > other->End()) break;
      AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
    } else {
      b = b->next();
    }
  }
  return LifetimePosition::Invalid();
}


unsigned LiveRange::GetSize() {
  if (size_ == kInvalidSize) {
    size_ = 0;
    for (auto interval = first_interval(); interval != nullptr;
         interval = interval->next()) {
      size_ += (interval->end().value() - interval->start().value());
    }
  }

  return static_cast<unsigned>(size_);
}


static bool AreUseIntervalsIntersecting(UseInterval* interval1,
                                        UseInterval* interval2) {
  while (interval1 != nullptr && interval2 != nullptr) {
    if (interval1->start() < interval2->start()) {
      if (interval1->end() > interval2->start()) {
        return true;
      }
      interval1 = interval1->next();
    } else {
      if (interval2->end() > interval1->start()) {
        return true;
      }
      interval2 = interval2->next();
    }
  }
  return false;
}


std::ostream& operator<<(std::ostream& os,
                         const PrintableLiveRange& printable_range) {
  const LiveRange* range = printable_range.range_;
  os << "Range: " << range->id() << " ";
  if (range->is_phi()) os << "phi ";
  if (range->is_non_loop_phi()) os << "nlphi ";

  os << "{" << std::endl;
  auto interval = range->first_interval();
  auto use_pos = range->first_pos();
  PrintableInstructionOperand pio;
  pio.register_configuration_ = printable_range.register_configuration_;
  while (use_pos != nullptr) {
    pio.op_ = *use_pos->operand();
    os << pio << use_pos->pos() << " ";
    use_pos = use_pos->next();
  }
  os << std::endl;

  while (interval != nullptr) {
    os << '[' << interval->start() << ", " << interval->end() << ')'
       << std::endl;
    interval = interval->next();
  }
  os << "}";
  return os;
}


SpillRange::SpillRange(LiveRange* parent, Zone* zone)
    : live_ranges_(zone), assigned_slot_(kUnassignedSlot) {
  DCHECK(!parent->IsChild());
  UseInterval* result = nullptr;
  UseInterval* node = nullptr;
  // Copy the intervals for all ranges.
  for (auto range = parent; range != nullptr; range = range->next()) {
    auto src = range->first_interval();
    while (src != nullptr) {
      auto new_node = new (zone) UseInterval(src->start(), src->end());
      if (result == nullptr) {
        result = new_node;
      } else {
        node->set_next(new_node);
      }
      node = new_node;
      src = src->next();
    }
  }
  use_interval_ = result;
  live_ranges().push_back(parent);
  end_position_ = node->end();
  DCHECK(!parent->HasSpillRange());
  parent->SetSpillRange(this);
}


int SpillRange::ByteWidth() const {
  return GetByteWidth(live_ranges_[0]->machine_type());
}


bool SpillRange::IsIntersectingWith(SpillRange* other) const {
  if (this->use_interval_ == nullptr || other->use_interval_ == nullptr ||
      this->End() <= other->use_interval_->start() ||
      other->End() <= this->use_interval_->start()) {
    return false;
  }
  return AreUseIntervalsIntersecting(use_interval_, other->use_interval_);
}


bool SpillRange::TryMerge(SpillRange* other) {
  // TODO(dcarney): byte widths should be compared here not kinds.
  if (live_ranges_[0]->kind() != other->live_ranges_[0]->kind() ||
      IsIntersectingWith(other)) {
    return false;
  }

  auto max = LifetimePosition::MaxPosition();
  if (End() < other->End() && other->End() != max) {
    end_position_ = other->End();
  }
  other->end_position_ = max;

  MergeDisjointIntervals(other->use_interval_);
  other->use_interval_ = nullptr;

  for (auto range : other->live_ranges()) {
    DCHECK(range->GetSpillRange() == other);
    range->SetSpillRange(this);
  }

  live_ranges().insert(live_ranges().end(), other->live_ranges().begin(),
                       other->live_ranges().end());
  other->live_ranges().clear();

  return true;
}


void SpillRange::MergeDisjointIntervals(UseInterval* other) {
  UseInterval* tail = nullptr;
  auto current = use_interval_;
  while (other != nullptr) {
    // Make sure the 'current' list starts first
    if (current == nullptr || current->start() > other->start()) {
      std::swap(current, other);
    }
    // Check disjointness
    DCHECK(other == nullptr || current->end() <= other->start());
    // Append the 'current' node to the result accumulator and move forward
    if (tail == nullptr) {
      use_interval_ = current;
    } else {
      tail->set_next(current);
    }
    tail = current;
    current = current->next();
  }
  // Other list is empty => we are done
}


RegisterAllocationData::PhiMapValue::PhiMapValue(PhiInstruction* phi,
                                                 const InstructionBlock* block,
                                                 Zone* zone)
    : phi_(phi),
      block_(block),
      incoming_operands_(zone),
      assigned_register_(kUnassignedRegister) {
  incoming_operands_.reserve(phi->operands().size());
}


void RegisterAllocationData::PhiMapValue::AddOperand(
    InstructionOperand* operand) {
  incoming_operands_.push_back(operand);
}


void RegisterAllocationData::PhiMapValue::CommitAssignment(
    const InstructionOperand& assigned) {
  for (auto operand : incoming_operands_) {
    InstructionOperand::ReplaceWith(operand, &assigned);
  }
}


RegisterAllocationData::RegisterAllocationData(
    const RegisterConfiguration* config, Zone* zone, Frame* frame,
    InstructionSequence* code, const char* debug_name)
    : allocation_zone_(zone),
      frame_(frame),
      code_(code),
      debug_name_(debug_name),
      config_(config),
      phi_map_(allocation_zone()),
      live_in_sets_(code->InstructionBlockCount(), nullptr, allocation_zone()),
      live_ranges_(code->VirtualRegisterCount() * 2, nullptr,
                   allocation_zone()),
      fixed_live_ranges_(this->config()->num_general_registers(), nullptr,
                         allocation_zone()),
      fixed_double_live_ranges_(this->config()->num_double_registers(), nullptr,
                                allocation_zone()),
      spill_ranges_(allocation_zone()),
      delayed_references_(allocation_zone()),
      assigned_registers_(nullptr),
      assigned_double_registers_(nullptr),
      virtual_register_count_(code->VirtualRegisterCount()) {
  DCHECK(this->config()->num_general_registers() <=
         RegisterConfiguration::kMaxGeneralRegisters);
  DCHECK(this->config()->num_double_registers() <=
         RegisterConfiguration::kMaxDoubleRegisters);
  spill_ranges().reserve(8);
  assigned_registers_ = new (code_zone())
      BitVector(this->config()->num_general_registers(), code_zone());
  assigned_double_registers_ = new (code_zone())
      BitVector(this->config()->num_aliased_double_registers(), code_zone());
  this->frame()->SetAllocatedRegisters(assigned_registers_);
  this->frame()->SetAllocatedDoubleRegisters(assigned_double_registers_);
}


MoveOperands* RegisterAllocationData::AddGapMove(
    int index, Instruction::GapPosition position,
    const InstructionOperand& from, const InstructionOperand& to) {
  auto instr = code()->InstructionAt(index);
  auto moves = instr->GetOrCreateParallelMove(position, code_zone());
  return moves->AddMove(from, to);
}


MachineType RegisterAllocationData::MachineTypeFor(int virtual_register) {
  DCHECK_LT(virtual_register, code()->VirtualRegisterCount());
  return code()->GetRepresentation(virtual_register);
}


LiveRange* RegisterAllocationData::LiveRangeFor(int index) {
  if (index >= static_cast<int>(live_ranges().size())) {
    live_ranges().resize(index + 1, nullptr);
  }
  auto result = live_ranges()[index];
  if (result == nullptr) {
    result = NewLiveRange(index, MachineTypeFor(index));
    live_ranges()[index] = result;
  }
  return result;
}


LiveRange* RegisterAllocationData::NewLiveRange(int index,
                                                MachineType machine_type) {
  return new (allocation_zone()) LiveRange(index, machine_type);
}


LiveRange* RegisterAllocationData::NewChildRangeFor(LiveRange* range) {
  int vreg = virtual_register_count_++;
  if (vreg >= static_cast<int>(live_ranges().size())) {
    live_ranges().resize(vreg + 1, nullptr);
  }
  auto child = new (allocation_zone()) LiveRange(vreg, range->machine_type());
  DCHECK_NULL(live_ranges()[vreg]);
  live_ranges()[vreg] = child;
  return child;
}


RegisterAllocationData::PhiMapValue* RegisterAllocationData::InitializePhiMap(
    const InstructionBlock* block, PhiInstruction* phi) {
  auto map_value = new (allocation_zone())
      RegisterAllocationData::PhiMapValue(phi, block, allocation_zone());
  auto res =
      phi_map_.insert(std::make_pair(phi->virtual_register(), map_value));
  DCHECK(res.second);
  USE(res);
  return map_value;
}


RegisterAllocationData::PhiMapValue* RegisterAllocationData::GetPhiMapValueFor(
    int virtual_register) {
  auto it = phi_map_.find(virtual_register);
  DCHECK(it != phi_map_.end());
  return it->second;
}


bool RegisterAllocationData::ExistsUseWithoutDefinition() {
  bool found = false;
  BitVector::Iterator iterator(live_in_sets()[0]);
  while (!iterator.Done()) {
    found = true;
    int operand_index = iterator.Current();
    PrintF("Register allocator error: live v%d reached first block.\n",
           operand_index);
    LiveRange* range = LiveRangeFor(operand_index);
    PrintF("  (first use is at %d)\n", range->first_pos()->pos().value());
    if (debug_name() == nullptr) {
      PrintF("\n");
    } else {
      PrintF("  (function: %s)\n", debug_name());
    }
    iterator.Advance();
  }
  return found;
}


SpillRange* RegisterAllocationData::AssignSpillRangeToLiveRange(
    LiveRange* range) {
  auto spill_range =
      new (allocation_zone()) SpillRange(range, allocation_zone());
  spill_ranges().push_back(spill_range);
  return spill_range;
}


void RegisterAllocationData::MarkAllocated(RegisterKind kind, int index) {
  if (kind == DOUBLE_REGISTERS) {
    assigned_double_registers_->Add(index);
  } else {
    DCHECK(kind == GENERAL_REGISTERS);
    assigned_registers_->Add(index);
  }
}


bool RegisterAllocationData::IsBlockBoundary(LifetimePosition pos) const {
  return pos.IsFullStart() &&
         code()->GetInstructionBlock(pos.ToInstructionIndex())->code_start() ==
             pos.ToInstructionIndex();
}


void RegisterAllocationData::Print(
    const InstructionSequence* instructionSequence) {
  OFStream os(stdout);
  PrintableInstructionSequence wrapper;
  wrapper.register_configuration_ = config();
  wrapper.sequence_ = instructionSequence;
  os << wrapper << std::endl;
}


void RegisterAllocationData::Print(const Instruction* instruction) {
  OFStream os(stdout);
  PrintableInstruction wrapper;
  wrapper.instr_ = instruction;
  wrapper.register_configuration_ = config();
  os << wrapper << std::endl;
}


void RegisterAllocationData::Print(const LiveRange* range, bool with_children) {
  OFStream os(stdout);
  PrintableLiveRange wrapper;
  wrapper.register_configuration_ = config();
  for (const LiveRange* i = range; i != nullptr; i = i->next()) {
    wrapper.range_ = i;
    os << wrapper << std::endl;
    if (!with_children) break;
  }
}


void RegisterAllocationData::Print(const InstructionOperand& op) {
  OFStream os(stdout);
  PrintableInstructionOperand wrapper;
  wrapper.register_configuration_ = config();
  wrapper.op_ = op;
  os << wrapper << std::endl;
}


void RegisterAllocationData::Print(const MoveOperands* move) {
  OFStream os(stdout);
  PrintableInstructionOperand wrapper;
  wrapper.register_configuration_ = config();
  wrapper.op_ = move->destination();
  os << wrapper << " = ";
  wrapper.op_ = move->source();
  os << wrapper << std::endl;
}


ConstraintBuilder::ConstraintBuilder(RegisterAllocationData* data)
    : data_(data) {}


InstructionOperand* ConstraintBuilder::AllocateFixed(
    UnallocatedOperand* operand, int pos, bool is_tagged) {
  TRACE("Allocating fixed reg for op %d\n", operand->virtual_register());
  DCHECK(operand->HasFixedPolicy());
  InstructionOperand allocated;
  MachineType machine_type = InstructionSequence::DefaultRepresentation();
  int virtual_register = operand->virtual_register();
  if (virtual_register != InstructionOperand::kInvalidVirtualRegister) {
    machine_type = data()->MachineTypeFor(virtual_register);
  }
  if (operand->HasFixedSlotPolicy()) {
    AllocatedOperand::AllocatedKind kind =
        IsFloatingPoint(machine_type) ? AllocatedOperand::DOUBLE_STACK_SLOT
                                      : AllocatedOperand::STACK_SLOT;
    allocated =
        AllocatedOperand(kind, machine_type, operand->fixed_slot_index());
  } else if (operand->HasFixedRegisterPolicy()) {
    allocated = AllocatedOperand(AllocatedOperand::REGISTER, machine_type,
                                 operand->fixed_register_index());
  } else if (operand->HasFixedDoubleRegisterPolicy()) {
    DCHECK_NE(InstructionOperand::kInvalidVirtualRegister, virtual_register);
    allocated = AllocatedOperand(AllocatedOperand::DOUBLE_REGISTER,
                                 machine_type, operand->fixed_register_index());
  } else {
    UNREACHABLE();
  }
  InstructionOperand::ReplaceWith(operand, &allocated);
  if (is_tagged) {
    TRACE("Fixed reg is tagged at %d\n", pos);
    auto instr = InstructionAt(pos);
    if (instr->HasReferenceMap()) {
      instr->reference_map()->RecordReference(*AllocatedOperand::cast(operand));
    }
  }
  return operand;
}


void ConstraintBuilder::MeetRegisterConstraints() {
  for (auto block : code()->instruction_blocks()) {
    MeetRegisterConstraints(block);
  }
}


void ConstraintBuilder::MeetRegisterConstraints(const InstructionBlock* block) {
  int start = block->first_instruction_index();
  int end = block->last_instruction_index();
  DCHECK_NE(-1, start);
  for (int i = start; i <= end; ++i) {
    MeetConstraintsBefore(i);
    if (i != end) MeetConstraintsAfter(i);
  }
  // Meet register constraints for the instruction in the end.
  MeetRegisterConstraintsForLastInstructionInBlock(block);
}


void ConstraintBuilder::MeetRegisterConstraintsForLastInstructionInBlock(
    const InstructionBlock* block) {
  int end = block->last_instruction_index();
  auto last_instruction = InstructionAt(end);
  for (size_t i = 0; i < last_instruction->OutputCount(); i++) {
    auto output_operand = last_instruction->OutputAt(i);
    DCHECK(!output_operand->IsConstant());
    auto output = UnallocatedOperand::cast(output_operand);
    int output_vreg = output->virtual_register();
    auto range = LiveRangeFor(output_vreg);
    bool assigned = false;
    if (output->HasFixedPolicy()) {
      AllocateFixed(output, -1, false);
      // This value is produced on the stack, we never need to spill it.
      if (output->IsStackSlot()) {
        DCHECK(StackSlotOperand::cast(output)->index() <
               data()->frame()->GetSpillSlotCount());
        range->SetSpillOperand(StackSlotOperand::cast(output));
        range->SetSpillStartIndex(end);
        assigned = true;
      }

      for (auto succ : block->successors()) {
        const InstructionBlock* successor = code()->InstructionBlockAt(succ);
        DCHECK(successor->PredecessorCount() == 1);
        int gap_index = successor->first_instruction_index();
        // Create an unconstrained operand for the same virtual register
        // and insert a gap move from the fixed output to the operand.
        UnallocatedOperand output_copy(UnallocatedOperand::ANY, output_vreg);
        data()->AddGapMove(gap_index, Instruction::START, *output, output_copy);
      }
    }

    if (!assigned) {
      for (auto succ : block->successors()) {
        const InstructionBlock* successor = code()->InstructionBlockAt(succ);
        DCHECK(successor->PredecessorCount() == 1);
        int gap_index = successor->first_instruction_index();
        range->SpillAtDefinition(allocation_zone(), gap_index, output);
        range->SetSpillStartIndex(gap_index);
      }
    }
  }
}


void ConstraintBuilder::MeetConstraintsAfter(int instr_index) {
  auto first = InstructionAt(instr_index);
  // Handle fixed temporaries.
  for (size_t i = 0; i < first->TempCount(); i++) {
    auto temp = UnallocatedOperand::cast(first->TempAt(i));
    if (temp->HasFixedPolicy()) AllocateFixed(temp, instr_index, false);
  }
  // Handle constant/fixed output operands.
  for (size_t i = 0; i < first->OutputCount(); i++) {
    InstructionOperand* output = first->OutputAt(i);
    if (output->IsConstant()) {
      int output_vreg = ConstantOperand::cast(output)->virtual_register();
      auto range = LiveRangeFor(output_vreg);
      range->SetSpillStartIndex(instr_index + 1);
      range->SetSpillOperand(output);
      continue;
    }
    auto first_output = UnallocatedOperand::cast(output);
    auto range = LiveRangeFor(first_output->virtual_register());
    bool assigned = false;
    if (first_output->HasFixedPolicy()) {
      int output_vreg = first_output->virtual_register();
      UnallocatedOperand output_copy(UnallocatedOperand::ANY, output_vreg);
      bool is_tagged = IsReference(output_vreg);
      AllocateFixed(first_output, instr_index, is_tagged);

      // This value is produced on the stack, we never need to spill it.
      if (first_output->IsStackSlot()) {
        DCHECK(StackSlotOperand::cast(first_output)->index() <
               data()->frame()->GetTotalFrameSlotCount());
        range->SetSpillOperand(StackSlotOperand::cast(first_output));
        range->SetSpillStartIndex(instr_index + 1);
        assigned = true;
      }
      data()->AddGapMove(instr_index + 1, Instruction::START, *first_output,
                         output_copy);
    }
    // Make sure we add a gap move for spilling (if we have not done
    // so already).
    if (!assigned) {
      range->SpillAtDefinition(allocation_zone(), instr_index + 1,
                               first_output);
      range->SetSpillStartIndex(instr_index + 1);
    }
  }
}


void ConstraintBuilder::MeetConstraintsBefore(int instr_index) {
  auto second = InstructionAt(instr_index);
  // Handle fixed input operands of second instruction.
  for (size_t i = 0; i < second->InputCount(); i++) {
    auto input = second->InputAt(i);
    if (input->IsImmediate()) continue;  // Ignore immediates.
    auto cur_input = UnallocatedOperand::cast(input);
    if (cur_input->HasFixedPolicy()) {
      int input_vreg = cur_input->virtual_register();
      UnallocatedOperand input_copy(UnallocatedOperand::ANY, input_vreg);
      bool is_tagged = IsReference(input_vreg);
      AllocateFixed(cur_input, instr_index, is_tagged);
      data()->AddGapMove(instr_index, Instruction::END, input_copy, *cur_input);
    }
  }
  // Handle "output same as input" for second instruction.
  for (size_t i = 0; i < second->OutputCount(); i++) {
    auto output = second->OutputAt(i);
    if (!output->IsUnallocated()) continue;
    auto second_output = UnallocatedOperand::cast(output);
    if (!second_output->HasSameAsInputPolicy()) continue;
    DCHECK(i == 0);  // Only valid for first output.
    UnallocatedOperand* cur_input =
        UnallocatedOperand::cast(second->InputAt(0));
    int output_vreg = second_output->virtual_register();
    int input_vreg = cur_input->virtual_register();
    UnallocatedOperand input_copy(UnallocatedOperand::ANY, input_vreg);
    cur_input->set_virtual_register(second_output->virtual_register());
    auto gap_move = data()->AddGapMove(instr_index, Instruction::END,
                                       input_copy, *cur_input);
    if (IsReference(input_vreg) && !IsReference(output_vreg)) {
      if (second->HasReferenceMap()) {
        RegisterAllocationData::DelayedReference delayed_reference = {
            second->reference_map(), &gap_move->source()};
        data()->delayed_references().push_back(delayed_reference);
      }
    } else if (!IsReference(input_vreg) && IsReference(output_vreg)) {
      // The input is assumed to immediately have a tagged representation,
      // before the pointer map can be used. I.e. the pointer map at the
      // instruction will include the output operand (whose value at the
      // beginning of the instruction is equal to the input operand). If
      // this is not desired, then the pointer map at this instruction needs
      // to be adjusted manually.
    }
  }
}


void ConstraintBuilder::ResolvePhis() {
  // Process the blocks in reverse order.
  for (InstructionBlock* block : base::Reversed(code()->instruction_blocks())) {
    ResolvePhis(block);
  }
}


void ConstraintBuilder::ResolvePhis(const InstructionBlock* block) {
  for (auto phi : block->phis()) {
    int phi_vreg = phi->virtual_register();
    auto map_value = data()->InitializePhiMap(block, phi);
    auto& output = phi->output();
    // Map the destination operands, so the commitment phase can find them.
    for (size_t i = 0; i < phi->operands().size(); ++i) {
      InstructionBlock* cur_block =
          code()->InstructionBlockAt(block->predecessors()[i]);
      UnallocatedOperand input(UnallocatedOperand::ANY, phi->operands()[i]);
      auto move = data()->AddGapMove(cur_block->last_instruction_index(),
                                     Instruction::END, input, output);
      map_value->AddOperand(&move->destination());
      DCHECK(!InstructionAt(cur_block->last_instruction_index())
                  ->HasReferenceMap());
    }
    auto live_range = LiveRangeFor(phi_vreg);
    int gap_index = block->first_instruction_index();
    live_range->SpillAtDefinition(allocation_zone(), gap_index, &output);
    live_range->SetSpillStartIndex(gap_index);
    // We use the phi-ness of some nodes in some later heuristics.
    live_range->set_is_phi(true);
    live_range->set_is_non_loop_phi(!block->IsLoopHeader());
  }
}


LiveRangeBuilder::LiveRangeBuilder(RegisterAllocationData* data,
                                   Zone* local_zone)
    : data_(data), phi_hints_(local_zone) {}


BitVector* LiveRangeBuilder::ComputeLiveOut(const InstructionBlock* block) {
  // Compute live out for the given block, except not including backward
  // successor edges.
  auto live_out = new (allocation_zone())
      BitVector(code()->VirtualRegisterCount(), allocation_zone());

  // Process all successor blocks.
  for (auto succ : block->successors()) {
    // Add values live on entry to the successor. Note the successor's
    // live_in will not be computed yet for backwards edges.
    auto live_in = live_in_sets()[succ.ToSize()];
    if (live_in != nullptr) live_out->Union(*live_in);

    // All phi input operands corresponding to this successor edge are live
    // out from this block.
    auto successor = code()->InstructionBlockAt(succ);
    size_t index = successor->PredecessorIndexOf(block->rpo_number());
    DCHECK(index < successor->PredecessorCount());
    for (auto phi : successor->phis()) {
      live_out->Add(phi->operands()[index]);
    }
  }
  return live_out;
}


void LiveRangeBuilder::AddInitialIntervals(const InstructionBlock* block,
                                           BitVector* live_out) {
  // Add an interval that includes the entire block to the live range for
  // each live_out value.
  auto start = LifetimePosition::GapFromInstructionIndex(
      block->first_instruction_index());
  auto end = LifetimePosition::InstructionFromInstructionIndex(
                 block->last_instruction_index()).NextStart();
  BitVector::Iterator iterator(live_out);
  while (!iterator.Done()) {
    int operand_index = iterator.Current();
    auto range = LiveRangeFor(operand_index);
    range->AddUseInterval(start, end, allocation_zone());
    iterator.Advance();
  }
}


int LiveRangeBuilder::FixedDoubleLiveRangeID(int index) {
  return -index - 1 - config()->num_general_registers();
}


LiveRange* LiveRangeBuilder::FixedLiveRangeFor(int index) {
  DCHECK(index < config()->num_general_registers());
  auto result = data()->fixed_live_ranges()[index];
  if (result == nullptr) {
    result = data()->NewLiveRange(FixedLiveRangeID(index),
                                  InstructionSequence::DefaultRepresentation());
    DCHECK(result->IsFixed());
    result->set_assigned_register(index);
    data()->MarkAllocated(GENERAL_REGISTERS, index);
    data()->fixed_live_ranges()[index] = result;
  }
  return result;
}


LiveRange* LiveRangeBuilder::FixedDoubleLiveRangeFor(int index) {
  DCHECK(index < config()->num_aliased_double_registers());
  auto result = data()->fixed_double_live_ranges()[index];
  if (result == nullptr) {
    result = data()->NewLiveRange(FixedDoubleLiveRangeID(index), kRepFloat64);
    DCHECK(result->IsFixed());
    result->set_assigned_register(index);
    data()->MarkAllocated(DOUBLE_REGISTERS, index);
    data()->fixed_double_live_ranges()[index] = result;
  }
  return result;
}


LiveRange* LiveRangeBuilder::LiveRangeFor(InstructionOperand* operand) {
  if (operand->IsUnallocated()) {
    return LiveRangeFor(UnallocatedOperand::cast(operand)->virtual_register());
  } else if (operand->IsConstant()) {
    return LiveRangeFor(ConstantOperand::cast(operand)->virtual_register());
  } else if (operand->IsRegister()) {
    return FixedLiveRangeFor(RegisterOperand::cast(operand)->index());
  } else if (operand->IsDoubleRegister()) {
    return FixedDoubleLiveRangeFor(
        DoubleRegisterOperand::cast(operand)->index());
  } else {
    return nullptr;
  }
}


UsePosition* LiveRangeBuilder::NewUsePosition(LifetimePosition pos,
                                              InstructionOperand* operand,
                                              void* hint,
                                              UsePositionHintType hint_type) {
  return new (allocation_zone()) UsePosition(pos, operand, hint, hint_type);
}


UsePosition* LiveRangeBuilder::Define(LifetimePosition position,
                                      InstructionOperand* operand, void* hint,
                                      UsePositionHintType hint_type) {
  auto range = LiveRangeFor(operand);
  if (range == nullptr) return nullptr;

  if (range->IsEmpty() || range->Start() > position) {
    // Can happen if there is a definition without use.
    range->AddUseInterval(position, position.NextStart(), allocation_zone());
    range->AddUsePosition(NewUsePosition(position.NextStart()));
  } else {
    range->ShortenTo(position);
  }
  if (!operand->IsUnallocated()) return nullptr;
  auto unalloc_operand = UnallocatedOperand::cast(operand);
  auto use_pos = NewUsePosition(position, unalloc_operand, hint, hint_type);
  range->AddUsePosition(use_pos);
  return use_pos;
}


UsePosition* LiveRangeBuilder::Use(LifetimePosition block_start,
                                   LifetimePosition position,
                                   InstructionOperand* operand, void* hint,
                                   UsePositionHintType hint_type) {
  auto range = LiveRangeFor(operand);
  if (range == nullptr) return nullptr;
  UsePosition* use_pos = nullptr;
  if (operand->IsUnallocated()) {
    UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
    use_pos = NewUsePosition(position, unalloc_operand, hint, hint_type);
    range->AddUsePosition(use_pos);
  }
  range->AddUseInterval(block_start, position, allocation_zone());
  return use_pos;
}


void LiveRangeBuilder::ProcessInstructions(const InstructionBlock* block,
                                           BitVector* live) {
  int block_start = block->first_instruction_index();
  auto block_start_position =
      LifetimePosition::GapFromInstructionIndex(block_start);

  for (int index = block->last_instruction_index(); index >= block_start;
       index--) {
    auto curr_position =
        LifetimePosition::InstructionFromInstructionIndex(index);
    auto instr = code()->InstructionAt(index);
    DCHECK(instr != nullptr);
    DCHECK(curr_position.IsInstructionPosition());
    // Process output, inputs, and temps of this instruction.
    for (size_t i = 0; i < instr->OutputCount(); i++) {
      auto output = instr->OutputAt(i);
      if (output->IsUnallocated()) {
        // Unsupported.
        DCHECK(!UnallocatedOperand::cast(output)->HasSlotPolicy());
        int out_vreg = UnallocatedOperand::cast(output)->virtual_register();
        live->Remove(out_vreg);
      } else if (output->IsConstant()) {
        int out_vreg = ConstantOperand::cast(output)->virtual_register();
        live->Remove(out_vreg);
      }
      if (block->IsHandler() && index == block_start) {
        // The register defined here is blocked from gap start - it is the
        // exception value.
        // TODO(mtrofin): should we explore an explicit opcode for
        // the first instruction in the handler?
        Define(LifetimePosition::GapFromInstructionIndex(index), output);
      } else {
        Define(curr_position, output);
      }
    }

    if (instr->ClobbersRegisters()) {
      for (int i = 0; i < config()->num_general_registers(); ++i) {
        if (!IsOutputRegisterOf(instr, i)) {
          auto range = FixedLiveRangeFor(i);
          range->AddUseInterval(curr_position, curr_position.End(),
                                allocation_zone());
        }
      }
    }

    if (instr->ClobbersDoubleRegisters()) {
      for (int i = 0; i < config()->num_aliased_double_registers(); ++i) {
        if (!IsOutputDoubleRegisterOf(instr, i)) {
          auto range = FixedDoubleLiveRangeFor(i);
          range->AddUseInterval(curr_position, curr_position.End(),
                                allocation_zone());
        }
      }
    }

    for (size_t i = 0; i < instr->InputCount(); i++) {
      auto input = instr->InputAt(i);
      if (input->IsImmediate()) continue;  // Ignore immediates.
      LifetimePosition use_pos;
      if (input->IsUnallocated() &&
          UnallocatedOperand::cast(input)->IsUsedAtStart()) {
        use_pos = curr_position;
      } else {
        use_pos = curr_position.End();
      }

      if (input->IsUnallocated()) {
        UnallocatedOperand* unalloc = UnallocatedOperand::cast(input);
        int vreg = unalloc->virtual_register();
        live->Add(vreg);
        if (unalloc->HasSlotPolicy()) {
          LiveRangeFor(vreg)->set_has_slot_use(true);
        }
      }
      Use(block_start_position, use_pos, input);
    }

    for (size_t i = 0; i < instr->TempCount(); i++) {
      auto temp = instr->TempAt(i);
      // Unsupported.
      DCHECK_IMPLIES(temp->IsUnallocated(),
                     !UnallocatedOperand::cast(temp)->HasSlotPolicy());
      if (instr->ClobbersTemps()) {
        if (temp->IsRegister()) continue;
        if (temp->IsUnallocated()) {
          UnallocatedOperand* temp_unalloc = UnallocatedOperand::cast(temp);
          if (temp_unalloc->HasFixedPolicy()) {
            continue;
          }
        }
      }
      Use(block_start_position, curr_position.End(), temp);
      Define(curr_position, temp);
    }

    // Process the moves of the instruction's gaps, making their sources live.
    const Instruction::GapPosition kPositions[] = {Instruction::END,
                                                   Instruction::START};
    curr_position = curr_position.PrevStart();
    DCHECK(curr_position.IsGapPosition());
    for (auto position : kPositions) {
      auto move = instr->GetParallelMove(position);
      if (move == nullptr) continue;
      if (position == Instruction::END) {
        curr_position = curr_position.End();
      } else {
        curr_position = curr_position.Start();
      }
      for (auto cur : *move) {
        auto& from = cur->source();
        auto& to = cur->destination();
        void* hint = &to;
        UsePositionHintType hint_type = UsePosition::HintTypeForOperand(to);
        UsePosition* to_use = nullptr;
        int phi_vreg = -1;
        if (to.IsUnallocated()) {
          int to_vreg = UnallocatedOperand::cast(to).virtual_register();
          auto to_range = LiveRangeFor(to_vreg);
          if (to_range->is_phi()) {
            phi_vreg = to_vreg;
            if (to_range->is_non_loop_phi()) {
              hint = to_range->current_hint_position();
              hint_type = hint == nullptr ? UsePositionHintType::kNone
                                          : UsePositionHintType::kUsePos;
            } else {
              hint_type = UsePositionHintType::kPhi;
              hint = data()->GetPhiMapValueFor(to_vreg);
            }
          } else {
            if (live->Contains(to_vreg)) {
              to_use = Define(curr_position, &to, &from,
                              UsePosition::HintTypeForOperand(from));
              live->Remove(to_vreg);
            } else {
              cur->Eliminate();
              continue;
            }
          }
        } else {
          Define(curr_position, &to);
        }
        auto from_use =
            Use(block_start_position, curr_position, &from, hint, hint_type);
        // Mark range live.
        if (from.IsUnallocated()) {
          live->Add(UnallocatedOperand::cast(from).virtual_register());
        }
        // Resolve use position hints just created.
        if (to_use != nullptr && from_use != nullptr) {
          to_use->ResolveHint(from_use);
          from_use->ResolveHint(to_use);
        }
        DCHECK_IMPLIES(to_use != nullptr, to_use->IsResolved());
        DCHECK_IMPLIES(from_use != nullptr, from_use->IsResolved());
        // Potentially resolve phi hint.
        if (phi_vreg != -1) ResolvePhiHint(&from, from_use);
      }
    }
  }
}


void LiveRangeBuilder::ProcessPhis(const InstructionBlock* block,
                                   BitVector* live) {
  for (auto phi : block->phis()) {
    // The live range interval already ends at the first instruction of the
    // block.
    int phi_vreg = phi->virtual_register();
    live->Remove(phi_vreg);
    InstructionOperand* hint = nullptr;
    auto instr = GetLastInstruction(
        code(), code()->InstructionBlockAt(block->predecessors()[0]));
    for (auto move : *instr->GetParallelMove(Instruction::END)) {
      auto& to = move->destination();
      if (to.IsUnallocated() &&
          UnallocatedOperand::cast(to).virtual_register() == phi_vreg) {
        hint = &move->source();
        break;
      }
    }
    DCHECK(hint != nullptr);
    auto block_start = LifetimePosition::GapFromInstructionIndex(
        block->first_instruction_index());
    auto use_pos = Define(block_start, &phi->output(), hint,
                          UsePosition::HintTypeForOperand(*hint));
    MapPhiHint(hint, use_pos);
  }
}


void LiveRangeBuilder::ProcessLoopHeader(const InstructionBlock* block,
                                         BitVector* live) {
  DCHECK(block->IsLoopHeader());
  // Add a live range stretching from the first loop instruction to the last
  // for each value live on entry to the header.
  BitVector::Iterator iterator(live);
  auto start = LifetimePosition::GapFromInstructionIndex(
      block->first_instruction_index());
  auto end = LifetimePosition::GapFromInstructionIndex(
                 code()->LastLoopInstructionIndex(block)).NextFullStart();
  while (!iterator.Done()) {
    int operand_index = iterator.Current();
    auto range = LiveRangeFor(operand_index);
    range->EnsureInterval(start, end, allocation_zone());
    iterator.Advance();
  }
  // Insert all values into the live in sets of all blocks in the loop.
  for (int i = block->rpo_number().ToInt() + 1; i < block->loop_end().ToInt();
       ++i) {
    live_in_sets()[i]->Union(*live);
  }
}


void LiveRangeBuilder::BuildLiveRanges() {
  // Process the blocks in reverse order.
  for (int block_id = code()->InstructionBlockCount() - 1; block_id >= 0;
       --block_id) {
    auto block = code()->InstructionBlockAt(RpoNumber::FromInt(block_id));
    auto live = ComputeLiveOut(block);
    // Initially consider all live_out values live for the entire block. We
    // will shorten these intervals if necessary.
    AddInitialIntervals(block, live);
    // Process the instructions in reverse order, generating and killing
    // live values.
    ProcessInstructions(block, live);
    // All phi output operands are killed by this block.
    ProcessPhis(block, live);
    // Now live is live_in for this block except not including values live
    // out on backward successor edges.
    if (block->IsLoopHeader()) ProcessLoopHeader(block, live);
    live_in_sets()[block_id] = live;
  }
  // Postprocess the ranges.
  for (auto range : data()->live_ranges()) {
    if (range == nullptr) continue;
    // Give slots to all ranges with a non fixed slot use.
    if (range->has_slot_use() && range->HasNoSpillType()) {
      data()->AssignSpillRangeToLiveRange(range);
    }
    // TODO(bmeurer): This is a horrible hack to make sure that for constant
    // live ranges, every use requires the constant to be in a register.
    // Without this hack, all uses with "any" policy would get the constant
    // operand assigned.
    if (range->HasSpillOperand() && range->GetSpillOperand()->IsConstant()) {
      for (auto pos = range->first_pos(); pos != nullptr; pos = pos->next()) {
        if (pos->type() == UsePositionType::kRequiresSlot) continue;
        UsePositionType new_type = UsePositionType::kAny;
        // Can't mark phis as needing a register.
        if (!pos->pos().IsGapPosition()) {
          new_type = UsePositionType::kRequiresRegister;
        }
        pos->set_type(new_type, true);
      }
    }
  }
#ifdef DEBUG
  Verify();
#endif
}


void LiveRangeBuilder::MapPhiHint(InstructionOperand* operand,
                                  UsePosition* use_pos) {
  DCHECK(!use_pos->IsResolved());
  auto res = phi_hints_.insert(std::make_pair(operand, use_pos));
  DCHECK(res.second);
  USE(res);
}


void LiveRangeBuilder::ResolvePhiHint(InstructionOperand* operand,
                                      UsePosition* use_pos) {
  auto it = phi_hints_.find(operand);
  if (it == phi_hints_.end()) return;
  DCHECK(!it->second->IsResolved());
  it->second->ResolveHint(use_pos);
}


void LiveRangeBuilder::Verify() const {
  for (auto& hint : phi_hints_) {
    CHECK(hint.second->IsResolved());
  }
  for (auto current : data()->live_ranges()) {
    if (current != nullptr) current->Verify();
  }
}


RegisterAllocator::RegisterAllocator(RegisterAllocationData* data,
                                     RegisterKind kind)
    : data_(data),
      mode_(kind),
      num_registers_(GetRegisterCount(data->config(), kind)) {}


LiveRange* RegisterAllocator::SplitRangeAt(LiveRange* range,
                                           LifetimePosition pos) {
  DCHECK(!range->IsFixed());
  TRACE("Splitting live range %d at %d\n", range->id(), pos.value());

  if (pos <= range->Start()) return range;

  // We can't properly connect liveranges if splitting occurred at the end
  // a block.
  DCHECK(pos.IsStart() || pos.IsGapPosition() ||
         (GetInstructionBlock(code(), pos)->last_instruction_index() !=
          pos.ToInstructionIndex()));

  auto result = data()->NewChildRangeFor(range);
  range->SplitAt(pos, result, allocation_zone());
  return result;
}


LiveRange* RegisterAllocator::SplitBetween(LiveRange* range,
                                           LifetimePosition start,
                                           LifetimePosition end) {
  DCHECK(!range->IsFixed());
  TRACE("Splitting live range %d in position between [%d, %d]\n", range->id(),
        start.value(), end.value());

  auto split_pos = FindOptimalSplitPos(start, end);
  DCHECK(split_pos >= start);
  return SplitRangeAt(range, split_pos);
}


LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start,
                                                        LifetimePosition end) {
  int start_instr = start.ToInstructionIndex();
  int end_instr = end.ToInstructionIndex();
  DCHECK(start_instr <= end_instr);

  // We have no choice
  if (start_instr == end_instr) return end;

  auto start_block = GetInstructionBlock(code(), start);
  auto end_block = GetInstructionBlock(code(), end);

  if (end_block == start_block) {
    // The interval is split in the same basic block. Split at the latest
    // possible position.
    return end;
  }

  auto block = end_block;
  // Find header of outermost loop.
  // TODO(titzer): fix redundancy below.
  while (GetContainingLoop(code(), block) != nullptr &&
         GetContainingLoop(code(), block)->rpo_number().ToInt() >
             start_block->rpo_number().ToInt()) {
    block = GetContainingLoop(code(), block);
  }

  // We did not find any suitable outer loop. Split at the latest possible
  // position unless end_block is a loop header itself.
  if (block == end_block && !end_block->IsLoopHeader()) return end;

  return LifetimePosition::GapFromInstructionIndex(
      block->first_instruction_index());
}


LifetimePosition RegisterAllocator::FindOptimalSpillingPos(
    LiveRange* range, LifetimePosition pos) {
  auto block = GetInstructionBlock(code(), pos.Start());
  auto loop_header =
      block->IsLoopHeader() ? block : GetContainingLoop(code(), block);

  if (loop_header == nullptr) return pos;

  auto prev_use = range->PreviousUsePositionRegisterIsBeneficial(pos);

  while (loop_header != nullptr) {
    // We are going to spill live range inside the loop.
    // If possible try to move spilling position backwards to loop header.
    // This will reduce number of memory moves on the back edge.
    auto loop_start = LifetimePosition::GapFromInstructionIndex(
        loop_header->first_instruction_index());

    if (range->Covers(loop_start)) {
      if (prev_use == nullptr || prev_use->pos() < loop_start) {
        // No register beneficial use inside the loop before the pos.
        pos = loop_start;
      }
    }

    // Try hoisting out to an outer loop.
    loop_header = GetContainingLoop(code(), loop_header);
  }

  return pos;
}


void RegisterAllocator::Spill(LiveRange* range) {
  DCHECK(!range->spilled());
  TRACE("Spilling live range %d\n", range->id());
  auto first = range->TopLevel();
  if (first->HasNoSpillType()) {
    data()->AssignSpillRangeToLiveRange(first);
  }
  range->Spill();
}


const ZoneVector<LiveRange*>& RegisterAllocator::GetFixedRegisters() const {
  return mode() == DOUBLE_REGISTERS ? data()->fixed_double_live_ranges()
                                    : data()->fixed_live_ranges();
}


const char* RegisterAllocator::RegisterName(int allocation_index) const {
  if (mode() == GENERAL_REGISTERS) {
    return data()->config()->general_register_name(allocation_index);
  } else {
    return data()->config()->double_register_name(allocation_index);
  }
}


LinearScanAllocator::LinearScanAllocator(RegisterAllocationData* data,
                                         RegisterKind kind, Zone* local_zone)
    : RegisterAllocator(data, kind),
      unhandled_live_ranges_(local_zone),
      active_live_ranges_(local_zone),
      inactive_live_ranges_(local_zone) {
  unhandled_live_ranges().reserve(
      static_cast<size_t>(code()->VirtualRegisterCount() * 2));
  active_live_ranges().reserve(8);
  inactive_live_ranges().reserve(8);
  // TryAllocateFreeReg and AllocateBlockedReg assume this
  // when allocating local arrays.
  DCHECK(RegisterConfiguration::kMaxDoubleRegisters >=
         this->data()->config()->num_general_registers());
}


void LinearScanAllocator::AllocateRegisters() {
  DCHECK(unhandled_live_ranges().empty());
  DCHECK(active_live_ranges().empty());
  DCHECK(inactive_live_ranges().empty());

  for (auto range : data()->live_ranges()) {
    if (range == nullptr) continue;
    if (range->kind() == mode()) {
      AddToUnhandledUnsorted(range);
    }
  }
  SortUnhandled();
  DCHECK(UnhandledIsSorted());

  auto& fixed_ranges = GetFixedRegisters();
  for (auto current : fixed_ranges) {
    if (current != nullptr) {
      DCHECK_EQ(mode(), current->kind());
      AddToInactive(current);
    }
  }

  while (!unhandled_live_ranges().empty()) {
    DCHECK(UnhandledIsSorted());
    auto current = unhandled_live_ranges().back();
    unhandled_live_ranges().pop_back();
    DCHECK(UnhandledIsSorted());
    auto position = current->Start();
#ifdef DEBUG
    allocation_finger_ = position;
#endif
    TRACE("Processing interval %d start=%d\n", current->id(), position.value());

    if (!current->HasNoSpillType()) {
      TRACE("Live range %d already has a spill operand\n", current->id());
      auto next_pos = position;
      if (next_pos.IsGapPosition()) {
        next_pos = next_pos.NextStart();
      }
      auto pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
      // If the range already has a spill operand and it doesn't need a
      // register immediately, split it and spill the first part of the range.
      if (pos == nullptr) {
        Spill(current);
        continue;
      } else if (pos->pos() > current->Start().NextStart()) {
        // Do not spill live range eagerly if use position that can benefit from
        // the register is too close to the start of live range.
        SpillBetween(current, current->Start(), pos->pos());
        DCHECK(UnhandledIsSorted());
        continue;
      }
    }

    if (TryReuseSpillForPhi(current)) continue;

    for (size_t i = 0; i < active_live_ranges().size(); ++i) {
      auto cur_active = active_live_ranges()[i];
      if (cur_active->End() <= position) {
        ActiveToHandled(cur_active);
        --i;  // The live range was removed from the list of active live ranges.
      } else if (!cur_active->Covers(position)) {
        ActiveToInactive(cur_active);
        --i;  // The live range was removed from the list of active live ranges.
      }
    }

    for (size_t i = 0; i < inactive_live_ranges().size(); ++i) {
      auto cur_inactive = inactive_live_ranges()[i];
      if (cur_inactive->End() <= position) {
        InactiveToHandled(cur_inactive);
        --i;  // Live range was removed from the list of inactive live ranges.
      } else if (cur_inactive->Covers(position)) {
        InactiveToActive(cur_inactive);
        --i;  // Live range was removed from the list of inactive live ranges.
      }
    }

    DCHECK(!current->HasRegisterAssigned() && !current->spilled());

    bool result = TryAllocateFreeReg(current);
    if (!result) AllocateBlockedReg(current);
    if (current->HasRegisterAssigned()) {
      AddToActive(current);
    }
  }
}


void LinearScanAllocator::SetLiveRangeAssignedRegister(LiveRange* range,
                                                       int reg) {
  data()->MarkAllocated(range->kind(), reg);
  range->set_assigned_register(reg);
  range->SetUseHints(reg);
  if (range->is_phi()) {
    data()->GetPhiMapValueFor(range->id())->set_assigned_register(reg);
  }
}


void LinearScanAllocator::AddToActive(LiveRange* range) {
  TRACE("Add live range %d to active\n", range->id());
  active_live_ranges().push_back(range);
}


void LinearScanAllocator::AddToInactive(LiveRange* range) {
  TRACE("Add live range %d to inactive\n", range->id());
  inactive_live_ranges().push_back(range);
}


void LinearScanAllocator::AddToUnhandledSorted(LiveRange* range) {
  if (range == nullptr || range->IsEmpty()) return;
  DCHECK(!range->HasRegisterAssigned() && !range->spilled());
  DCHECK(allocation_finger_ <= range->Start());
  for (int i = static_cast<int>(unhandled_live_ranges().size() - 1); i >= 0;
       --i) {
    auto cur_range = unhandled_live_ranges().at(i);
    if (!range->ShouldBeAllocatedBefore(cur_range)) continue;
    TRACE("Add live range %d to unhandled at %d\n", range->id(), i + 1);
    auto it = unhandled_live_ranges().begin() + (i + 1);
    unhandled_live_ranges().insert(it, range);
    DCHECK(UnhandledIsSorted());
    return;
  }
  TRACE("Add live range %d to unhandled at start\n", range->id());
  unhandled_live_ranges().insert(unhandled_live_ranges().begin(), range);
  DCHECK(UnhandledIsSorted());
}


void LinearScanAllocator::AddToUnhandledUnsorted(LiveRange* range) {
  if (range == nullptr || range->IsEmpty()) return;
  DCHECK(!range->HasRegisterAssigned() && !range->spilled());
  TRACE("Add live range %d to unhandled unsorted at end\n", range->id());
  unhandled_live_ranges().push_back(range);
}


static bool UnhandledSortHelper(LiveRange* a, LiveRange* b) {
  DCHECK(!a->ShouldBeAllocatedBefore(b) || !b->ShouldBeAllocatedBefore(a));
  if (a->ShouldBeAllocatedBefore(b)) return false;
  if (b->ShouldBeAllocatedBefore(a)) return true;
  return a->id() < b->id();
}


// Sort the unhandled live ranges so that the ranges to be processed first are
// at the end of the array list.  This is convenient for the register allocation
// algorithm because it is efficient to remove elements from the end.
void LinearScanAllocator::SortUnhandled() {
  TRACE("Sort unhandled\n");
  std::sort(unhandled_live_ranges().begin(), unhandled_live_ranges().end(),
            &UnhandledSortHelper);
}


bool LinearScanAllocator::UnhandledIsSorted() {
  size_t len = unhandled_live_ranges().size();
  for (size_t i = 1; i < len; i++) {
    auto a = unhandled_live_ranges().at(i - 1);
    auto b = unhandled_live_ranges().at(i);
    if (a->Start() < b->Start()) return false;
  }
  return true;
}


void LinearScanAllocator::ActiveToHandled(LiveRange* range) {
  RemoveElement(&active_live_ranges(), range);
  TRACE("Moving live range %d from active to handled\n", range->id());
}


void LinearScanAllocator::ActiveToInactive(LiveRange* range) {
  RemoveElement(&active_live_ranges(), range);
  inactive_live_ranges().push_back(range);
  TRACE("Moving live range %d from active to inactive\n", range->id());
}


void LinearScanAllocator::InactiveToHandled(LiveRange* range) {
  RemoveElement(&inactive_live_ranges(), range);
  TRACE("Moving live range %d from inactive to handled\n", range->id());
}


void LinearScanAllocator::InactiveToActive(LiveRange* range) {
  RemoveElement(&inactive_live_ranges(), range);
  active_live_ranges().push_back(range);
  TRACE("Moving live range %d from inactive to active\n", range->id());
}


bool LinearScanAllocator::TryAllocateFreeReg(LiveRange* current) {
  LifetimePosition free_until_pos[RegisterConfiguration::kMaxDoubleRegisters];

  for (int i = 0; i < num_registers(); i++) {
    free_until_pos[i] = LifetimePosition::MaxPosition();
  }

  for (auto cur_active : active_live_ranges()) {
    free_until_pos[cur_active->assigned_register()] =
        LifetimePosition::GapFromInstructionIndex(0);
  }

  for (auto cur_inactive : inactive_live_ranges()) {
    DCHECK(cur_inactive->End() > current->Start());
    auto next_intersection = cur_inactive->FirstIntersection(current);
    if (!next_intersection.IsValid()) continue;
    int cur_reg = cur_inactive->assigned_register();
    free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
  }

  int hint_register;
  if (current->FirstHintPosition(&hint_register) != nullptr) {
    TRACE("Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
          RegisterName(hint_register), free_until_pos[hint_register].value(),
          current->id(), current->End().value());

    // The desired register is free until the end of the current live range.
    if (free_until_pos[hint_register] >= current->End()) {
      TRACE("Assigning preferred reg %s to live range %d\n",
            RegisterName(hint_register), current->id());
      SetLiveRangeAssignedRegister(current, hint_register);
      return true;
    }
  }

  // Find the register which stays free for the longest time.
  int reg = 0;
  for (int i = 1; i < num_registers(); ++i) {
    if (free_until_pos[i] > free_until_pos[reg]) {
      reg = i;
    }
  }

  auto pos = free_until_pos[reg];

  if (pos <= current->Start()) {
    // All registers are blocked.
    return false;
  }

  if (pos < current->End()) {
    // Register reg is available at the range start but becomes blocked before
    // the range end. Split current at position where it becomes blocked.
    auto tail = SplitRangeAt(current, pos);
    AddToUnhandledSorted(tail);
  }

  // Register reg is available at the range start and is free until
  // the range end.
  DCHECK(pos >= current->End());
  TRACE("Assigning free reg %s to live range %d\n", RegisterName(reg),
        current->id());
  SetLiveRangeAssignedRegister(current, reg);

  return true;
}


void LinearScanAllocator::AllocateBlockedReg(LiveRange* current) {
  auto register_use = current->NextRegisterPosition(current->Start());
  if (register_use == nullptr) {
    // There is no use in the current live range that requires a register.
    // We can just spill it.
    Spill(current);
    return;
  }

  LifetimePosition use_pos[RegisterConfiguration::kMaxDoubleRegisters];
  LifetimePosition block_pos[RegisterConfiguration::kMaxDoubleRegisters];

  for (int i = 0; i < num_registers(); i++) {
    use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
  }

  for (auto range : active_live_ranges()) {
    int cur_reg = range->assigned_register();
    if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
      block_pos[cur_reg] = use_pos[cur_reg] =
          LifetimePosition::GapFromInstructionIndex(0);
    } else {
      auto next_use =
          range->NextUsePositionRegisterIsBeneficial(current->Start());
      if (next_use == nullptr) {
        use_pos[cur_reg] = range->End();
      } else {
        use_pos[cur_reg] = next_use->pos();
      }
    }
  }

  for (auto range : inactive_live_ranges()) {
    DCHECK(range->End() > current->Start());
    auto next_intersection = range->FirstIntersection(current);
    if (!next_intersection.IsValid()) continue;
    int cur_reg = range->assigned_register();
    if (range->IsFixed()) {
      block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
      use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
    } else {
      use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
    }
  }

  int reg = 0;
  for (int i = 1; i < num_registers(); ++i) {
    if (use_pos[i] > use_pos[reg]) {
      reg = i;
    }
  }

  auto pos = use_pos[reg];

  if (pos < register_use->pos()) {
    // All registers are blocked before the first use that requires a register.
    // Spill starting part of live range up to that use.
    SpillBetween(current, current->Start(), register_use->pos());
    return;
  }

  if (block_pos[reg] < current->End()) {
    // Register becomes blocked before the current range end. Split before that
    // position.
    LiveRange* tail =
        SplitBetween(current, current->Start(), block_pos[reg].Start());
    AddToUnhandledSorted(tail);
  }

  // Register reg is not blocked for the whole range.
  DCHECK(block_pos[reg] >= current->End());
  TRACE("Assigning blocked reg %s to live range %d\n", RegisterName(reg),
        current->id());
  SetLiveRangeAssignedRegister(current, reg);

  // This register was not free. Thus we need to find and spill
  // parts of active and inactive live regions that use the same register
  // at the same lifetime positions as current.
  SplitAndSpillIntersecting(current);
}


void LinearScanAllocator::SplitAndSpillIntersecting(LiveRange* current) {
  DCHECK(current->HasRegisterAssigned());
  int reg = current->assigned_register();
  auto split_pos = current->Start();
  for (size_t i = 0; i < active_live_ranges().size(); ++i) {
    auto range = active_live_ranges()[i];
    if (range->assigned_register() == reg) {
      auto next_pos = range->NextRegisterPosition(current->Start());
      auto spill_pos = FindOptimalSpillingPos(range, split_pos);
      if (next_pos == nullptr) {
        SpillAfter(range, spill_pos);
      } else {
        // When spilling between spill_pos and next_pos ensure that the range
        // remains spilled at least until the start of the current live range.
        // This guarantees that we will not introduce new unhandled ranges that
        // start before the current range as this violates allocation invariant
        // and will lead to an inconsistent state of active and inactive
        // live-ranges: ranges are allocated in order of their start positions,
        // ranges are retired from active/inactive when the start of the
        // current live-range is larger than their end.
        SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
      }
      ActiveToHandled(range);
      --i;
    }
  }

  for (size_t i = 0; i < inactive_live_ranges().size(); ++i) {
    auto range = inactive_live_ranges()[i];
    DCHECK(range->End() > current->Start());
    if (range->assigned_register() == reg && !range->IsFixed()) {
      LifetimePosition next_intersection = range->FirstIntersection(current);
      if (next_intersection.IsValid()) {
        UsePosition* next_pos = range->NextRegisterPosition(current->Start());
        if (next_pos == nullptr) {
          SpillAfter(range, split_pos);
        } else {
          next_intersection = Min(next_intersection, next_pos->pos());
          SpillBetween(range, split_pos, next_intersection);
        }
        InactiveToHandled(range);
        --i;
      }
    }
  }
}


bool LinearScanAllocator::TryReuseSpillForPhi(LiveRange* range) {
  if (range->IsChild() || !range->is_phi()) return false;
  DCHECK(!range->HasSpillOperand());
  auto phi_map_value = data()->GetPhiMapValueFor(range->id());
  auto phi = phi_map_value->phi();
  auto block = phi_map_value->block();
  // Count the number of spilled operands.
  size_t spilled_count = 0;
  LiveRange* first_op = nullptr;
  for (size_t i = 0; i < phi->operands().size(); i++) {
    int op = phi->operands()[i];
    LiveRange* op_range = LiveRangeFor(op);
    if (!op_range->HasSpillRange()) continue;
    auto pred = code()->InstructionBlockAt(block->predecessors()[i]);
    auto pred_end = LifetimePosition::InstructionFromInstructionIndex(
        pred->last_instruction_index());
    while (op_range != nullptr && !op_range->CanCover(pred_end)) {
      op_range = op_range->next();
    }
    if (op_range != nullptr && op_range->spilled()) {
      spilled_count++;
      if (first_op == nullptr) {
        first_op = op_range->TopLevel();
      }
    }
  }

  // Only continue if more than half of the operands are spilled.
  if (spilled_count * 2 <= phi->operands().size()) {
    return false;
  }

  // Try to merge the spilled operands and count the number of merged spilled
  // operands.
  DCHECK(first_op != nullptr);
  auto first_op_spill = first_op->GetSpillRange();
  size_t num_merged = 1;
  for (size_t i = 1; i < phi->operands().size(); i++) {
    int op = phi->operands()[i];
    auto op_range = LiveRangeFor(op);
    if (!op_range->HasSpillRange()) continue;
    auto op_spill = op_range->GetSpillRange();
    if (op_spill == first_op_spill || first_op_spill->TryMerge(op_spill)) {
      num_merged++;
    }
  }

  // Only continue if enough operands could be merged to the
  // same spill slot.
  if (num_merged * 2 <= phi->operands().size() ||
      AreUseIntervalsIntersecting(first_op_spill->interval(),
                                  range->first_interval())) {
    return false;
  }

  // If the range does not need register soon, spill it to the merged
  // spill range.
  auto next_pos = range->Start();
  if (next_pos.IsGapPosition()) next_pos = next_pos.NextStart();
  auto pos = range->NextUsePositionRegisterIsBeneficial(next_pos);
  if (pos == nullptr) {
    auto spill_range =
        range->TopLevel()->HasSpillRange()
            ? range->TopLevel()->GetSpillRange()
            : data()->AssignSpillRangeToLiveRange(range->TopLevel());
    bool merged = first_op_spill->TryMerge(spill_range);
    CHECK(merged);
    Spill(range);
    return true;
  } else if (pos->pos() > range->Start().NextStart()) {
    auto spill_range =
        range->TopLevel()->HasSpillRange()
            ? range->TopLevel()->GetSpillRange()
            : data()->AssignSpillRangeToLiveRange(range->TopLevel());
    bool merged = first_op_spill->TryMerge(spill_range);
    CHECK(merged);
    SpillBetween(range, range->Start(), pos->pos());
    DCHECK(UnhandledIsSorted());
    return true;
  }
  return false;
}


void LinearScanAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
  auto second_part = SplitRangeAt(range, pos);
  Spill(second_part);
}


void LinearScanAllocator::SpillBetween(LiveRange* range, LifetimePosition start,
                                       LifetimePosition end) {
  SpillBetweenUntil(range, start, start, end);
}


void LinearScanAllocator::SpillBetweenUntil(LiveRange* range,
                                            LifetimePosition start,
                                            LifetimePosition until,
                                            LifetimePosition end) {
  CHECK(start < end);
  auto second_part = SplitRangeAt(range, start);

  if (second_part->Start() < end) {
    // The split result intersects with [start, end[.
    // Split it at position between ]start+1, end[, spill the middle part
    // and put the rest to unhandled.
    auto third_part_end = end.PrevStart().End();
    if (data()->IsBlockBoundary(end.Start())) {
      third_part_end = end.Start();
    }
    auto third_part = SplitBetween(
        second_part, Max(second_part->Start().End(), until), third_part_end);

    DCHECK(third_part != second_part);

    Spill(second_part);
    AddToUnhandledSorted(third_part);
  } else {
    // The split result does not intersect with [start, end[.
    // Nothing to spill. Just put it to unhandled as whole.
    AddToUnhandledSorted(second_part);
  }
}


SpillSlotLocator::SpillSlotLocator(RegisterAllocationData* data)
    : data_(data) {}


void SpillSlotLocator::LocateSpillSlots() {
  auto code = data()->code();
  for (auto range : data()->live_ranges()) {
    if (range == nullptr || range->IsEmpty() || range->IsChild()) continue;
    // We care only about ranges which spill in the frame.
    if (!range->HasSpillRange()) continue;
    auto spills = range->spills_at_definition();
    DCHECK_NOT_NULL(spills);
    for (; spills != nullptr; spills = spills->next) {
      code->GetInstructionBlock(spills->gap_index)->mark_needs_frame();
    }
  }
}


OperandAssigner::OperandAssigner(RegisterAllocationData* data) : data_(data) {}


void OperandAssigner::AssignSpillSlots() {
  auto& spill_ranges = data()->spill_ranges();
  // Merge disjoint spill ranges
  for (size_t i = 0; i < spill_ranges.size(); i++) {
    auto range = spill_ranges[i];
    if (range->IsEmpty()) continue;
    for (size_t j = i + 1; j < spill_ranges.size(); j++) {
      auto other = spill_ranges[j];
      if (!other->IsEmpty()) {
        range->TryMerge(other);
      }
    }
  }
  // Allocate slots for the merged spill ranges.
  for (auto range : spill_ranges) {
    if (range->IsEmpty()) continue;
    // Allocate a new operand referring to the spill slot.
    int byte_width = range->ByteWidth();
    int index = data()->frame()->AllocateSpillSlot(byte_width);
    range->set_assigned_slot(index);
  }
}


void OperandAssigner::CommitAssignment() {
  for (auto range : data()->live_ranges()) {
    if (range == nullptr || range->IsEmpty()) continue;
    InstructionOperand spill_operand;
    if (range->TopLevel()->HasSpillOperand()) {
      spill_operand = *range->TopLevel()->GetSpillOperand();
    } else if (range->TopLevel()->HasSpillRange()) {
      spill_operand = range->TopLevel()->GetSpillRangeOperand();
    }
    auto assigned = range->GetAssignedOperand();
    range->ConvertUsesToOperand(assigned, spill_operand);
    if (range->is_phi()) {
      data()->GetPhiMapValueFor(range->id())->CommitAssignment(assigned);
    }
    if (!range->IsChild() && !spill_operand.IsInvalid()) {
      // If this top level range has a child spilled in a deferred block, we use
      // the range and control flow connection mechanism instead of spilling at
      // definition. Refer to the ConnectLiveRanges and ResolveControlFlow
      // phases. Normally, when we spill at definition, we do not insert a
      // connecting move when a successor child range is spilled - because the
      // spilled range picks up its value from the slot which was assigned at
      // definition. For ranges that are determined to spill only in deferred
      // blocks, we let ConnectLiveRanges and ResolveControlFlow insert such
      // moves between ranges. Because of how the ranges are split around
      // deferred blocks, this amounts to spilling and filling inside such
      // blocks.
      if (!range->TryCommitSpillInDeferredBlock(data()->code(),
                                                spill_operand)) {
        // Spill at definition if the range isn't spilled only in deferred
        // blocks.
        range->CommitSpillsAtDefinition(
            data()->code(), spill_operand,
            range->has_slot_use() || range->spilled());
      }
    }
  }
}


ReferenceMapPopulator::ReferenceMapPopulator(RegisterAllocationData* data)
    : data_(data) {}


bool ReferenceMapPopulator::SafePointsAreInOrder() const {
  int safe_point = 0;
  for (auto map : *data()->code()->reference_maps()) {
    if (safe_point > map->instruction_position()) return false;
    safe_point = map->instruction_position();
  }
  return true;
}


void ReferenceMapPopulator::PopulateReferenceMaps() {
  DCHECK(SafePointsAreInOrder());
  // Map all delayed references.
  for (auto& delayed_reference : data()->delayed_references()) {
    delayed_reference.map->RecordReference(
        AllocatedOperand::cast(*delayed_reference.operand));
  }
  // Iterate over all safe point positions and record a pointer
  // for all spilled live ranges at this point.
  int last_range_start = 0;
  auto reference_maps = data()->code()->reference_maps();
  ReferenceMapDeque::const_iterator first_it = reference_maps->begin();
  for (LiveRange* range : data()->live_ranges()) {
    if (range == nullptr) continue;
    // Iterate over the first parts of multi-part live ranges.
    if (range->IsChild()) continue;
    // Skip non-reference values.
    if (!data()->IsReference(range->id())) continue;
    // Skip empty live ranges.
    if (range->IsEmpty()) continue;

    // Find the extent of the range and its children.
    int start = range->Start().ToInstructionIndex();
    int end = 0;
    for (auto cur = range; cur != nullptr; cur = cur->next()) {
      auto this_end = cur->End();
      if (this_end.ToInstructionIndex() > end)
        end = this_end.ToInstructionIndex();
      DCHECK(cur->Start().ToInstructionIndex() >= start);
    }

    // Most of the ranges are in order, but not all.  Keep an eye on when they
    // step backwards and reset the first_it so we don't miss any safe points.
    if (start < last_range_start) first_it = reference_maps->begin();
    last_range_start = start;

    // Step across all the safe points that are before the start of this range,
    // recording how far we step in order to save doing this for the next range.
    for (; first_it != reference_maps->end(); ++first_it) {
      auto map = *first_it;
      if (map->instruction_position() >= start) break;
    }

    InstructionOperand spill_operand;
    if (((range->HasSpillOperand() &&
          !range->GetSpillOperand()->IsConstant()) ||
         range->HasSpillRange())) {
      if (range->HasSpillOperand()) {
        spill_operand = *range->GetSpillOperand();
      } else {
        spill_operand = range->GetSpillRangeOperand();
      }
      DCHECK(spill_operand.IsStackSlot());
      DCHECK_EQ(kRepTagged,
                AllocatedOperand::cast(spill_operand).machine_type());
    }

    // Step through the safe points to see whether they are in the range.
    for (auto it = first_it; it != reference_maps->end(); ++it) {
      auto map = *it;
      int safe_point = map->instruction_position();

      // The safe points are sorted so we can stop searching here.
      if (safe_point - 1 > end) break;

      // Advance to the next active range that covers the current
      // safe point position.
      auto safe_point_pos =
          LifetimePosition::InstructionFromInstructionIndex(safe_point);
      auto cur = range;
      while (cur != nullptr && !cur->Covers(safe_point_pos)) {
        cur = cur->next();
      }
      if (cur == nullptr) continue;

      // Check if the live range is spilled and the safe point is after
      // the spill position.
      int spill_index = range->IsSpilledOnlyInDeferredBlocks()
                            ? cur->Start().ToInstructionIndex()
                            : range->spill_start_index();

      if (!spill_operand.IsInvalid() && safe_point >= spill_index) {
        TRACE("Pointer for range %d (spilled at %d) at safe point %d\n",
              range->id(), spill_index, safe_point);
        map->RecordReference(AllocatedOperand::cast(spill_operand));
      }

      if (!cur->spilled()) {
        TRACE(
            "Pointer in register for range %d (start at %d) "
            "at safe point %d\n",
            cur->id(), cur->Start().value(), safe_point);
        auto operand = cur->GetAssignedOperand();
        DCHECK(!operand.IsStackSlot());
        DCHECK_EQ(kRepTagged, AllocatedOperand::cast(operand).machine_type());
        map->RecordReference(AllocatedOperand::cast(operand));
      }
    }
  }
}


namespace {

class LiveRangeBound {
 public:
  explicit LiveRangeBound(const LiveRange* range)
      : range_(range), start_(range->Start()), end_(range->End()) {
    DCHECK(!range->IsEmpty());
  }

  bool CanCover(LifetimePosition position) {
    return start_ <= position && position < end_;
  }

  const LiveRange* const range_;
  const LifetimePosition start_;
  const LifetimePosition end_;

 private:
  DISALLOW_COPY_AND_ASSIGN(LiveRangeBound);
};


struct FindResult {
  const LiveRange* cur_cover_;
  const LiveRange* pred_cover_;
};


class LiveRangeBoundArray {
 public:
  LiveRangeBoundArray() : length_(0), start_(nullptr) {}

  bool ShouldInitialize() { return start_ == nullptr; }

  void Initialize(Zone* zone, const LiveRange* const range) {
    size_t length = 0;
    for (auto i = range; i != nullptr; i = i->next()) length++;
    start_ = zone->NewArray<LiveRangeBound>(length);
    length_ = length;
    auto curr = start_;
    for (auto i = range; i != nullptr; i = i->next(), ++curr) {
      new (curr) LiveRangeBound(i);
    }
  }

  LiveRangeBound* Find(const LifetimePosition position) const {
    size_t left_index = 0;
    size_t right_index = length_;
    while (true) {
      size_t current_index = left_index + (right_index - left_index) / 2;
      DCHECK(right_index > current_index);
      auto bound = &start_[current_index];
      if (bound->start_ <= position) {
        if (position < bound->end_) return bound;
        DCHECK(left_index < current_index);
        left_index = current_index;
      } else {
        right_index = current_index;
      }
    }
  }

  LiveRangeBound* FindPred(const InstructionBlock* pred) {
    auto pred_end = LifetimePosition::InstructionFromInstructionIndex(
        pred->last_instruction_index());
    return Find(pred_end);
  }

  LiveRangeBound* FindSucc(const InstructionBlock* succ) {
    auto succ_start = LifetimePosition::GapFromInstructionIndex(
        succ->first_instruction_index());
    return Find(succ_start);
  }

  void Find(const InstructionBlock* block, const InstructionBlock* pred,
            FindResult* result) const {
    auto pred_end = LifetimePosition::InstructionFromInstructionIndex(
        pred->last_instruction_index());
    auto bound = Find(pred_end);
    result->pred_cover_ = bound->range_;
    auto cur_start = LifetimePosition::GapFromInstructionIndex(
        block->first_instruction_index());
    // Common case.
    if (bound->CanCover(cur_start)) {
      result->cur_cover_ = bound->range_;
      return;
    }
    result->cur_cover_ = Find(cur_start)->range_;
    DCHECK(result->pred_cover_ != nullptr && result->cur_cover_ != nullptr);
  }

 private:
  size_t length_;
  LiveRangeBound* start_;

  DISALLOW_COPY_AND_ASSIGN(LiveRangeBoundArray);
};


class LiveRangeFinder {
 public:
  explicit LiveRangeFinder(const RegisterAllocationData* data, Zone* zone)
      : data_(data),
        bounds_length_(static_cast<int>(data_->live_ranges().size())),
        bounds_(zone->NewArray<LiveRangeBoundArray>(bounds_length_)),
        zone_(zone) {
    for (int i = 0; i < bounds_length_; ++i) {
      new (&bounds_[i]) LiveRangeBoundArray();
    }
  }

  LiveRangeBoundArray* ArrayFor(int operand_index) {
    DCHECK(operand_index < bounds_length_);
    auto range = data_->live_ranges()[operand_index];
    DCHECK(range != nullptr && !range->IsEmpty());
    auto array = &bounds_[operand_index];
    if (array->ShouldInitialize()) {
      array->Initialize(zone_, range);
    }
    return array;
  }

 private:
  const RegisterAllocationData* const data_;
  const int bounds_length_;
  LiveRangeBoundArray* const bounds_;
  Zone* const zone_;

  DISALLOW_COPY_AND_ASSIGN(LiveRangeFinder);
};


typedef std::pair<ParallelMove*, InstructionOperand> DelayedInsertionMapKey;


struct DelayedInsertionMapCompare {
  bool operator()(const DelayedInsertionMapKey& a,
                  const DelayedInsertionMapKey& b) const {
    if (a.first == b.first) {
      return a.second.Compare(b.second);
    }
    return a.first < b.first;
  }
};


typedef ZoneMap<DelayedInsertionMapKey, InstructionOperand,
                DelayedInsertionMapCompare> DelayedInsertionMap;

}  // namespace


LiveRangeConnector::LiveRangeConnector(RegisterAllocationData* data)
    : data_(data) {}


bool LiveRangeConnector::CanEagerlyResolveControlFlow(
    const InstructionBlock* block) const {
  if (block->PredecessorCount() != 1) return false;
  return block->predecessors()[0].IsNext(block->rpo_number());
}


void LiveRangeConnector::ResolveControlFlow(Zone* local_zone) {
  // Lazily linearize live ranges in memory for fast lookup.
  LiveRangeFinder finder(data(), local_zone);
  auto& live_in_sets = data()->live_in_sets();
  for (auto block : code()->instruction_blocks()) {
    if (CanEagerlyResolveControlFlow(block)) continue;
    auto live = live_in_sets[block->rpo_number().ToInt()];
    BitVector::Iterator iterator(live);
    while (!iterator.Done()) {
      auto* array = finder.ArrayFor(iterator.Current());
      for (auto pred : block->predecessors()) {
        FindResult result;
        const auto* pred_block = code()->InstructionBlockAt(pred);
        array->Find(block, pred_block, &result);
        if (result.cur_cover_ == result.pred_cover_ ||
            (!result.cur_cover_->TopLevel()->IsSpilledOnlyInDeferredBlocks() &&
             result.cur_cover_->spilled()))
          continue;
        auto pred_op = result.pred_cover_->GetAssignedOperand();
        auto cur_op = result.cur_cover_->GetAssignedOperand();
        if (pred_op.Equals(cur_op)) continue;
        ResolveControlFlow(block, cur_op, pred_block, pred_op);
      }
      iterator.Advance();
    }
  }
}


void LiveRangeConnector::ResolveControlFlow(const InstructionBlock* block,
                                            const InstructionOperand& cur_op,
                                            const InstructionBlock* pred,
                                            const InstructionOperand& pred_op) {
  DCHECK(!pred_op.Equals(cur_op));
  int gap_index;
  Instruction::GapPosition position;
  if (block->PredecessorCount() == 1) {
    gap_index = block->first_instruction_index();
    position = Instruction::START;
  } else {
    DCHECK(pred->SuccessorCount() == 1);
    DCHECK(!code()
                ->InstructionAt(pred->last_instruction_index())
                ->HasReferenceMap());
    gap_index = pred->last_instruction_index();
    position = Instruction::END;
  }
  data()->AddGapMove(gap_index, position, pred_op, cur_op);
}


void LiveRangeConnector::ConnectRanges(Zone* local_zone) {
  DelayedInsertionMap delayed_insertion_map(local_zone);
  for (auto first_range : data()->live_ranges()) {
    if (first_range == nullptr || first_range->IsChild()) continue;
    bool connect_spilled = first_range->IsSpilledOnlyInDeferredBlocks();
    for (auto second_range = first_range->next(); second_range != nullptr;
         first_range = second_range, second_range = second_range->next()) {
      auto pos = second_range->Start();
      // Add gap move if the two live ranges touch and there is no block
      // boundary.
      if (!connect_spilled && second_range->spilled()) continue;
      if (first_range->End() != pos) continue;
      if (data()->IsBlockBoundary(pos) &&
          !CanEagerlyResolveControlFlow(GetInstructionBlock(code(), pos))) {
        continue;
      }
      auto prev_operand = first_range->GetAssignedOperand();
      auto cur_operand = second_range->GetAssignedOperand();
      if (prev_operand.Equals(cur_operand)) continue;
      bool delay_insertion = false;
      Instruction::GapPosition gap_pos;
      int gap_index = pos.ToInstructionIndex();
      if (pos.IsGapPosition()) {
        gap_pos = pos.IsStart() ? Instruction::START : Instruction::END;
      } else {
        if (pos.IsStart()) {
          delay_insertion = true;
        } else {
          gap_index++;
        }
        gap_pos = delay_insertion ? Instruction::END : Instruction::START;
      }
      auto move = code()->InstructionAt(gap_index)->GetOrCreateParallelMove(
          gap_pos, code_zone());
      if (!delay_insertion) {
        move->AddMove(prev_operand, cur_operand);
      } else {
        delayed_insertion_map.insert(
            std::make_pair(std::make_pair(move, prev_operand), cur_operand));
      }
    }
  }
  if (delayed_insertion_map.empty()) return;
  // Insert all the moves which should occur after the stored move.
  ZoneVector<MoveOperands*> to_insert(local_zone);
  ZoneVector<MoveOperands*> to_eliminate(local_zone);
  to_insert.reserve(4);
  to_eliminate.reserve(4);
  auto moves = delayed_insertion_map.begin()->first.first;
  for (auto it = delayed_insertion_map.begin();; ++it) {
    bool done = it == delayed_insertion_map.end();
    if (done || it->first.first != moves) {
      // Commit the MoveOperands for current ParallelMove.
      for (auto move : to_eliminate) {
        move->Eliminate();
      }
      for (auto move : to_insert) {
        moves->push_back(move);
      }
      if (done) break;
      // Reset state.
      to_eliminate.clear();
      to_insert.clear();
      moves = it->first.first;
    }
    // Gather all MoveOperands for a single ParallelMove.
    auto move = new (code_zone()) MoveOperands(it->first.second, it->second);
    auto eliminate = moves->PrepareInsertAfter(move);
    to_insert.push_back(move);
    if (eliminate != nullptr) to_eliminate.push_back(eliminate);
  }
}


}  // namespace compiler
}  // namespace internal
}  // namespace v8