summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/operator.h
blob: ec365fab6f963bcce60a023f4674d3fefbd2efbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_COMPILER_OPERATOR_H_
#define V8_COMPILER_OPERATOR_H_

#include <ostream>  // NOLINT(readability/streams)

#include "src/base/flags.h"
#include "src/base/functional.h"
#include "src/zone.h"

namespace v8 {
namespace internal {
namespace compiler {

// An operator represents description of the "computation" of a node in the
// compiler IR. A computation takes values (i.e. data) as input and produces
// zero or more values as output. The side-effects of a computation must be
// captured by additional control and data dependencies which are part of the
// IR graph.
// Operators are immutable and describe the statically-known parts of a
// computation. Thus they can be safely shared by many different nodes in the
// IR graph, or even globally between graphs. Operators can have "static
// parameters" which are compile-time constant parameters to the operator, such
// as the name for a named field access, the ID of a runtime function, etc.
// Static parameters are private to the operator and only semantically
// meaningful to the operator itself.
class Operator : public ZoneObject {
 public:
  typedef uint8_t Opcode;

  // Properties inform the operator-independent optimizer about legal
  // transformations for nodes that have this operator.
  enum Property {
    kNoProperties = 0,
    kReducible = 1 << 0,    // Participates in strength reduction.
    kCommutative = 1 << 1,  // OP(a, b) == OP(b, a) for all inputs.
    kAssociative = 1 << 2,  // OP(a, OP(b,c)) == OP(OP(a,b), c) for all inputs.
    kIdempotent = 1 << 3,   // OP(a); OP(a) == OP(a).
    kNoRead = 1 << 4,       // Has no scheduling dependency on Effects
    kNoWrite = 1 << 5,      // Does not modify any Effects and thereby
                            // create new scheduling dependencies.
    kNoThrow = 1 << 6,      // Can never generate an exception.
    kFoldable = kNoRead | kNoWrite,
    kKontrol = kFoldable | kNoThrow,
    kEliminatable = kNoWrite | kNoThrow,
    kPure = kNoRead | kNoWrite | kNoThrow | kIdempotent
  };
  typedef base::Flags<Property, uint8_t> Properties;

  // Constructor.
  Operator(Opcode opcode, Properties properties, const char* mnemonic,
           size_t value_in, size_t effect_in, size_t control_in,
           size_t value_out, size_t effect_out, size_t control_out);

  virtual ~Operator() {}

  // A small integer unique to all instances of a particular kind of operator,
  // useful for quick matching for specific kinds of operators. For fast access
  // the opcode is stored directly in the operator object.
  Opcode opcode() const { return opcode_; }

  // Returns a constant string representing the mnemonic of the operator,
  // without the static parameters. Useful for debugging.
  const char* mnemonic() const { return mnemonic_; }

  // Check if this operator equals another operator. Equivalent operators can
  // be merged, and nodes with equivalent operators and equivalent inputs
  // can be merged.
  virtual bool Equals(const Operator* that) const {
    return this->opcode() == that->opcode();
  }

  // Compute a hashcode to speed up equivalence-set checking.
  // Equal operators should always have equal hashcodes, and unequal operators
  // should have unequal hashcodes with high probability.
  virtual size_t HashCode() const { return base::hash<Opcode>()(opcode()); }

  // Check whether this operator has the given property.
  bool HasProperty(Property property) const {
    return (properties() & property) == property;
  }

  Properties properties() const { return properties_; }

  // TODO(bmeurer): Use bit fields below?
  static const size_t kMaxControlOutputCount = (1u << 16) - 1;

  // TODO(titzer): convert return values here to size_t.
  int ValueInputCount() const { return value_in_; }
  int EffectInputCount() const { return effect_in_; }
  int ControlInputCount() const { return control_in_; }

  int ValueOutputCount() const { return value_out_; }
  int EffectOutputCount() const { return effect_out_; }
  int ControlOutputCount() const { return control_out_; }

  static size_t ZeroIfEliminatable(Properties properties) {
    return (properties & kEliminatable) == kEliminatable ? 0 : 1;
  }

  static size_t ZeroIfNoThrow(Properties properties) {
    return (properties & kNoThrow) == kNoThrow ? 0 : 2;
  }

  static size_t ZeroIfPure(Properties properties) {
    return (properties & kPure) == kPure ? 0 : 1;
  }

  // TODO(titzer): API for input and output types, for typechecking graph.
 protected:
  // Print the full operator into the given stream, including any
  // static parameters. Useful for debugging and visualizing the IR.
  virtual void PrintTo(std::ostream& os) const;
  friend std::ostream& operator<<(std::ostream& os, const Operator& op);

 private:
  Opcode opcode_;
  Properties properties_;
  const char* mnemonic_;
  uint32_t value_in_;
  uint16_t effect_in_;
  uint16_t control_in_;
  uint16_t value_out_;
  uint8_t effect_out_;
  uint16_t control_out_;

  DISALLOW_COPY_AND_ASSIGN(Operator);
};

DEFINE_OPERATORS_FOR_FLAGS(Operator::Properties)

std::ostream& operator<<(std::ostream& os, const Operator& op);


// A templatized implementation of Operator that has one static parameter of
// type {T}.
template <typename T, typename Pred = std::equal_to<T>,
          typename Hash = base::hash<T>>
class Operator1 : public Operator {
 public:
  Operator1(Opcode opcode, Properties properties, const char* mnemonic,
            size_t value_in, size_t effect_in, size_t control_in,
            size_t value_out, size_t effect_out, size_t control_out,
            T parameter, Pred const& pred = Pred(), Hash const& hash = Hash())
      : Operator(opcode, properties, mnemonic, value_in, effect_in, control_in,
                 value_out, effect_out, control_out),
        parameter_(parameter),
        pred_(pred),
        hash_(hash) {}

  T const& parameter() const { return parameter_; }

  bool Equals(const Operator* other) const FINAL {
    if (opcode() != other->opcode()) return false;
    const Operator1<T>* that = reinterpret_cast<const Operator1<T>*>(other);
    return this->pred_(this->parameter(), that->parameter());
  }
  size_t HashCode() const FINAL {
    return base::hash_combine(this->opcode(), this->hash_(this->parameter()));
  }
  virtual void PrintParameter(std::ostream& os) const {
    os << "[" << this->parameter() << "]";
  }

 protected:
  void PrintTo(std::ostream& os) const FINAL {
    os << mnemonic();
    PrintParameter(os);
  }

 private:
  T const parameter_;
  Pred const pred_;
  Hash const hash_;
};


// Helper to extract parameters from Operator1<*> operator.
template <typename T>
inline T const& OpParameter(const Operator* op) {
  return reinterpret_cast<const Operator1<T>*>(op)->parameter();
}

// NOTE: We have to be careful to use the right equal/hash functions below, for
// float/double we always use the ones operating on the bit level.
template <>
inline float const& OpParameter(const Operator* op) {
  return reinterpret_cast<const Operator1<float, base::bit_equal_to<float>,
                                          base::bit_hash<float>>*>(op)
      ->parameter();
}

template <>
inline double const& OpParameter(const Operator* op) {
  return reinterpret_cast<const Operator1<double, base::bit_equal_to<double>,
                                          base::bit_hash<double>>*>(op)
      ->parameter();
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8

#endif  // V8_COMPILER_OPERATOR_H_