summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/memory-optimizer.cc
blob: 3ba3dcc6b876ea11bff4e3320636b573844bcc09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/memory-optimizer.h"

#include "src/compiler/js-graph.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/compiler/simplified-operator.h"

namespace v8 {
namespace internal {
namespace compiler {

MemoryOptimizer::MemoryOptimizer(JSGraph* jsgraph, Zone* zone,
                                 PoisoningMitigationLevel poisoning_level,
                                 AllocationFolding allocation_folding)
    : jsgraph_(jsgraph),
      empty_state_(AllocationState::Empty(zone)),
      pending_(zone),
      tokens_(zone),
      zone_(zone),
      graph_assembler_(jsgraph, nullptr, nullptr, zone),
      poisoning_level_(poisoning_level),
      allocation_folding_(allocation_folding) {}

void MemoryOptimizer::Optimize() {
  EnqueueUses(graph()->start(), empty_state());
  while (!tokens_.empty()) {
    Token const token = tokens_.front();
    tokens_.pop();
    VisitNode(token.node, token.state);
  }
  DCHECK(pending_.empty());
  DCHECK(tokens_.empty());
}

MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node,
                                                  PretenureFlag pretenure,
                                                  Zone* zone)
    : node_ids_(zone), pretenure_(pretenure), size_(nullptr) {
  node_ids_.insert(node->id());
}

MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node,
                                                  PretenureFlag pretenure,
                                                  Node* size, Zone* zone)
    : node_ids_(zone), pretenure_(pretenure), size_(size) {
  node_ids_.insert(node->id());
}

void MemoryOptimizer::AllocationGroup::Add(Node* node) {
  node_ids_.insert(node->id());
}

bool MemoryOptimizer::AllocationGroup::Contains(Node* node) const {
  return node_ids_.find(node->id()) != node_ids_.end();
}

MemoryOptimizer::AllocationState::AllocationState()
    : group_(nullptr), size_(std::numeric_limits<int>::max()), top_(nullptr) {}

MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group)
    : group_(group), size_(std::numeric_limits<int>::max()), top_(nullptr) {}

MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group,
                                                  int size, Node* top)
    : group_(group), size_(size), top_(top) {}

bool MemoryOptimizer::AllocationState::IsNewSpaceAllocation() const {
  return group() && group()->IsNewSpaceAllocation();
}

void MemoryOptimizer::VisitNode(Node* node, AllocationState const* state) {
  DCHECK(!node->IsDead());
  DCHECK_LT(0, node->op()->EffectInputCount());
  switch (node->opcode()) {
    case IrOpcode::kAllocate:
      // Allocate nodes were purged from the graph in effect-control
      // linearization.
      UNREACHABLE();
    case IrOpcode::kAllocateRaw:
      return VisitAllocateRaw(node, state);
    case IrOpcode::kCall:
      return VisitCall(node, state);
    case IrOpcode::kCallWithCallerSavedRegisters:
      return VisitCallWithCallerSavedRegisters(node, state);
    case IrOpcode::kLoadElement:
      return VisitLoadElement(node, state);
    case IrOpcode::kLoadField:
      return VisitLoadField(node, state);
    case IrOpcode::kStoreElement:
      return VisitStoreElement(node, state);
    case IrOpcode::kStoreField:
      return VisitStoreField(node, state);
    case IrOpcode::kDeoptimizeIf:
    case IrOpcode::kDeoptimizeUnless:
    case IrOpcode::kIfException:
    case IrOpcode::kLoad:
    case IrOpcode::kProtectedLoad:
    case IrOpcode::kUnalignedLoad:
    case IrOpcode::kStore:
    case IrOpcode::kProtectedStore:
    case IrOpcode::kUnalignedStore:
    case IrOpcode::kRetain:
    case IrOpcode::kUnsafePointerAdd:
    case IrOpcode::kDebugBreak:
    case IrOpcode::kUnreachable:
    case IrOpcode::kWord32PoisonOnSpeculation:
    case IrOpcode::kWord64PoisonOnSpeculation:
      return VisitOtherEffect(node, state);
    default:
      break;
  }
  DCHECK_EQ(0, node->op()->EffectOutputCount());
}

#define __ gasm()->

void MemoryOptimizer::VisitAllocateRaw(Node* node,
                                       AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kAllocateRaw, node->opcode());
  Node* value;
  Node* size = node->InputAt(0);
  Node* effect = node->InputAt(1);
  Node* control = node->InputAt(2);

  gasm()->Reset(effect, control);

  PretenureFlag pretenure = PretenureFlagOf(node->op());

  // Propagate tenuring from outer allocations to inner allocations, i.e.
  // when we allocate an object in old space and store a newly allocated
  // child object into the pretenured object, then the newly allocated
  // child object also should get pretenured to old space.
  if (pretenure == TENURED) {
    for (Edge const edge : node->use_edges()) {
      Node* const user = edge.from();
      if (user->opcode() == IrOpcode::kStoreField && edge.index() == 0) {
        Node* const child = user->InputAt(1);
        if (child->opcode() == IrOpcode::kAllocateRaw &&
            PretenureFlagOf(child->op()) == NOT_TENURED) {
          NodeProperties::ChangeOp(child, node->op());
          break;
        }
      }
    }
  } else {
    DCHECK_EQ(NOT_TENURED, pretenure);
    for (Edge const edge : node->use_edges()) {
      Node* const user = edge.from();
      if (user->opcode() == IrOpcode::kStoreField && edge.index() == 1) {
        Node* const parent = user->InputAt(0);
        if (parent->opcode() == IrOpcode::kAllocateRaw &&
            PretenureFlagOf(parent->op()) == TENURED) {
          pretenure = TENURED;
          break;
        }
      }
    }
  }

  // Determine the top/limit addresses.
  Node* top_address = __ ExternalConstant(
      pretenure == NOT_TENURED
          ? ExternalReference::new_space_allocation_top_address(isolate())
          : ExternalReference::old_space_allocation_top_address(isolate()));
  Node* limit_address = __ ExternalConstant(
      pretenure == NOT_TENURED
          ? ExternalReference::new_space_allocation_limit_address(isolate())
          : ExternalReference::old_space_allocation_limit_address(isolate()));

  // Check if we can fold this allocation into a previous allocation represented
  // by the incoming {state}.
  Int32Matcher m(size);
  if (m.HasValue() && m.Value() < kMaxRegularHeapObjectSize) {
    int32_t const object_size = m.Value();
    if (allocation_folding_ == AllocationFolding::kDoAllocationFolding &&
        state->size() <= kMaxRegularHeapObjectSize - object_size &&
        state->group()->pretenure() == pretenure) {
      // We can fold this Allocate {node} into the allocation {group}
      // represented by the given {state}. Compute the upper bound for
      // the new {state}.
      int32_t const state_size = state->size() + object_size;

      // Update the reservation check to the actual maximum upper bound.
      AllocationGroup* const group = state->group();
      if (OpParameter<int32_t>(group->size()->op()) < state_size) {
        NodeProperties::ChangeOp(group->size(),
                                 common()->Int32Constant(state_size));
      }

      // Update the allocation top with the new object allocation.
      // TODO(bmeurer): Defer writing back top as much as possible.
      Node* top = __ IntAdd(state->top(), __ IntPtrConstant(object_size));
      __ Store(StoreRepresentation(MachineType::PointerRepresentation(),
                                   kNoWriteBarrier),
               top_address, __ IntPtrConstant(0), top);

      // Compute the effective inner allocated address.
      value = __ BitcastWordToTagged(
          __ IntAdd(state->top(), __ IntPtrConstant(kHeapObjectTag)));

      // Extend the allocation {group}.
      group->Add(value);
      state = AllocationState::Open(group, state_size, top, zone());
    } else {
      auto call_runtime = __ MakeDeferredLabel();
      auto done = __ MakeLabel(MachineType::PointerRepresentation());

      // Setup a mutable reservation size node; will be patched as we fold
      // additional allocations into this new group.
      Node* size = __ UniqueInt32Constant(object_size);

      // Load allocation top and limit.
      Node* top =
          __ Load(MachineType::Pointer(), top_address, __ IntPtrConstant(0));
      Node* limit =
          __ Load(MachineType::Pointer(), limit_address, __ IntPtrConstant(0));

      // Check if we need to collect garbage before we can start bump pointer
      // allocation (always done for folded allocations).
      Node* check = __ UintLessThan(
          __ IntAdd(top,
                    machine()->Is64() ? __ ChangeInt32ToInt64(size) : size),
          limit);

      __ GotoIfNot(check, &call_runtime);
      __ Goto(&done, top);

      __ Bind(&call_runtime);
      {
        Node* target =
            pretenure == NOT_TENURED ? __ AllocateInNewSpaceStubConstant()
                                     : __
                                       AllocateInOldSpaceStubConstant();
        if (!allocate_operator_.is_set()) {
          auto call_descriptor = Linkage::GetStubCallDescriptor(
              graph()->zone(), AllocateDescriptor{}, 0,
              CallDescriptor::kCanUseRoots, Operator::kNoThrow);
          allocate_operator_.set(common()->Call(call_descriptor));
        }
        Node* vfalse = __ Call(allocate_operator_.get(), target, size);
        vfalse = __ IntSub(vfalse, __ IntPtrConstant(kHeapObjectTag));
        __ Goto(&done, vfalse);
      }

      __ Bind(&done);

      // Compute the new top and write it back.
      top = __ IntAdd(done.PhiAt(0), __ IntPtrConstant(object_size));
      __ Store(StoreRepresentation(MachineType::PointerRepresentation(),
                                   kNoWriteBarrier),
               top_address, __ IntPtrConstant(0), top);

      // Compute the initial object address.
      value = __ BitcastWordToTagged(
          __ IntAdd(done.PhiAt(0), __ IntPtrConstant(kHeapObjectTag)));

      // Start a new allocation group.
      AllocationGroup* group =
          new (zone()) AllocationGroup(value, pretenure, size, zone());
      state = AllocationState::Open(group, object_size, top, zone());
    }
  } else {
    auto call_runtime = __ MakeDeferredLabel();
    auto done = __ MakeLabel(MachineRepresentation::kTaggedPointer);

    // Load allocation top and limit.
    Node* top =
        __ Load(MachineType::Pointer(), top_address, __ IntPtrConstant(0));
    Node* limit =
        __ Load(MachineType::Pointer(), limit_address, __ IntPtrConstant(0));

    // Compute the new top.
    Node* new_top =
        __ IntAdd(top, machine()->Is64() ? __ ChangeInt32ToInt64(size) : size);

    // Check if we can do bump pointer allocation here.
    Node* check = __ UintLessThan(new_top, limit);
    __ GotoIfNot(check, &call_runtime);
    __ Store(StoreRepresentation(MachineType::PointerRepresentation(),
                                 kNoWriteBarrier),
             top_address, __ IntPtrConstant(0), new_top);
    __ Goto(&done, __ BitcastWordToTagged(
                       __ IntAdd(top, __ IntPtrConstant(kHeapObjectTag))));

    __ Bind(&call_runtime);
    Node* target =
        pretenure == NOT_TENURED ? __ AllocateInNewSpaceStubConstant()
                                 : __
                                   AllocateInOldSpaceStubConstant();
    if (!allocate_operator_.is_set()) {
      auto call_descriptor = Linkage::GetStubCallDescriptor(
          graph()->zone(), AllocateDescriptor{}, 0,
          CallDescriptor::kCanUseRoots, Operator::kNoThrow);
      allocate_operator_.set(common()->Call(call_descriptor));
    }
    __ Goto(&done, __ Call(allocate_operator_.get(), target, size));

    __ Bind(&done);
    value = done.PhiAt(0);

    // Create an unfoldable allocation group.
    AllocationGroup* group =
        new (zone()) AllocationGroup(value, pretenure, zone());
    state = AllocationState::Closed(group, zone());
  }

  effect = __ ExtractCurrentEffect();
  control = __ ExtractCurrentControl();

  // Replace all effect uses of {node} with the {effect}, enqueue the
  // effect uses for further processing, and replace all value uses of
  // {node} with the {value}.
  for (Edge edge : node->use_edges()) {
    if (NodeProperties::IsEffectEdge(edge)) {
      EnqueueUse(edge.from(), edge.index(), state);
      edge.UpdateTo(effect);
    } else if (NodeProperties::IsValueEdge(edge)) {
      edge.UpdateTo(value);
    } else {
      DCHECK(NodeProperties::IsControlEdge(edge));
      edge.UpdateTo(control);
    }
  }

  // Kill the {node} to make sure we don't leave dangling dead uses.
  node->Kill();
}

#undef __

void MemoryOptimizer::VisitCall(Node* node, AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kCall, node->opcode());
  // If the call can allocate, we start with a fresh state.
  if (!(CallDescriptorOf(node->op())->flags() & CallDescriptor::kNoAllocate)) {
    state = empty_state();
  }
  EnqueueUses(node, state);
}

void MemoryOptimizer::VisitCallWithCallerSavedRegisters(
    Node* node, AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kCallWithCallerSavedRegisters, node->opcode());
  // If the call can allocate, we start with a fresh state.
  if (!(CallDescriptorOf(node->op())->flags() & CallDescriptor::kNoAllocate)) {
    state = empty_state();
  }
  EnqueueUses(node, state);
}

void MemoryOptimizer::VisitLoadElement(Node* node,
                                       AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kLoadElement, node->opcode());
  ElementAccess const& access = ElementAccessOf(node->op());
  Node* index = node->InputAt(1);
  node->ReplaceInput(1, ComputeIndex(access, index));
  if (NeedsPoisoning(access.load_sensitivity) &&
      access.machine_type.representation() !=
          MachineRepresentation::kTaggedPointer) {
    NodeProperties::ChangeOp(node,
                             machine()->PoisonedLoad(access.machine_type));
  } else {
    NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
  }
  EnqueueUses(node, state);
}

void MemoryOptimizer::VisitLoadField(Node* node, AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kLoadField, node->opcode());
  FieldAccess const& access = FieldAccessOf(node->op());
  Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag());
  node->InsertInput(graph()->zone(), 1, offset);
  if (NeedsPoisoning(access.load_sensitivity) &&
      access.machine_type.representation() !=
          MachineRepresentation::kTaggedPointer) {
    NodeProperties::ChangeOp(node,
                             machine()->PoisonedLoad(access.machine_type));
  } else {
    NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
  }
  EnqueueUses(node, state);
}

void MemoryOptimizer::VisitStoreElement(Node* node,
                                        AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kStoreElement, node->opcode());
  ElementAccess const& access = ElementAccessOf(node->op());
  Node* object = node->InputAt(0);
  Node* index = node->InputAt(1);
  WriteBarrierKind write_barrier_kind =
      ComputeWriteBarrierKind(object, state, access.write_barrier_kind);
  node->ReplaceInput(1, ComputeIndex(access, index));
  NodeProperties::ChangeOp(
      node, machine()->Store(StoreRepresentation(
                access.machine_type.representation(), write_barrier_kind)));
  EnqueueUses(node, state);
}

void MemoryOptimizer::VisitStoreField(Node* node,
                                      AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kStoreField, node->opcode());
  FieldAccess const& access = FieldAccessOf(node->op());
  Node* object = node->InputAt(0);
  WriteBarrierKind write_barrier_kind =
      ComputeWriteBarrierKind(object, state, access.write_barrier_kind);
  Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag());
  node->InsertInput(graph()->zone(), 1, offset);
  NodeProperties::ChangeOp(
      node, machine()->Store(StoreRepresentation(
                access.machine_type.representation(), write_barrier_kind)));
  EnqueueUses(node, state);
}

void MemoryOptimizer::VisitOtherEffect(Node* node,
                                       AllocationState const* state) {
  EnqueueUses(node, state);
}

Node* MemoryOptimizer::ComputeIndex(ElementAccess const& access, Node* key) {
  Node* index;
  if (machine()->Is64()) {
    // On 64-bit platforms, we need to feed a Word64 index to the Load and
    // Store operators. Since LoadElement or StoreElement don't do any bounds
    // checking themselves, we can be sure that the {key} was already checked
    // and is in valid range, so we can do the further address computation on
    // Word64 below, which ideally allows us to fuse the address computation
    // with the actual memory access operation on Intel platforms.
    index = graph()->NewNode(machine()->ChangeUint32ToUint64(), key);
  } else {
    index = key;
  }
  int const element_size_shift =
      ElementSizeLog2Of(access.machine_type.representation());
  if (element_size_shift) {
    index = graph()->NewNode(machine()->WordShl(), index,
                             jsgraph()->IntPtrConstant(element_size_shift));
  }
  int const fixed_offset = access.header_size - access.tag();
  if (fixed_offset) {
    index = graph()->NewNode(machine()->IntAdd(), index,
                             jsgraph()->IntPtrConstant(fixed_offset));
  }
  return index;
}

WriteBarrierKind MemoryOptimizer::ComputeWriteBarrierKind(
    Node* object, AllocationState const* state,
    WriteBarrierKind write_barrier_kind) {
  if (state->IsNewSpaceAllocation() && state->group()->Contains(object)) {
    write_barrier_kind = kNoWriteBarrier;
  }
  return write_barrier_kind;
}

MemoryOptimizer::AllocationState const* MemoryOptimizer::MergeStates(
    AllocationStates const& states) {
  // Check if all states are the same; or at least if all allocation
  // states belong to the same allocation group.
  AllocationState const* state = states.front();
  AllocationGroup* group = state->group();
  for (size_t i = 1; i < states.size(); ++i) {
    if (states[i] != state) state = nullptr;
    if (states[i]->group() != group) group = nullptr;
  }
  if (state == nullptr) {
    if (group != nullptr) {
      // We cannot fold any more allocations into this group, but we can still
      // eliminate write barriers on stores to this group.
      // TODO(bmeurer): We could potentially just create a Phi here to merge
      // the various tops; but we need to pay special attention not to create
      // an unschedulable graph.
      state = AllocationState::Closed(group, zone());
    } else {
      // The states are from different allocation groups.
      state = empty_state();
    }
  }
  return state;
}

void MemoryOptimizer::EnqueueMerge(Node* node, int index,
                                   AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kEffectPhi, node->opcode());
  int const input_count = node->InputCount() - 1;
  DCHECK_LT(0, input_count);
  Node* const control = node->InputAt(input_count);
  if (control->opcode() == IrOpcode::kLoop) {
    // For loops we always start with an empty state at the beginning.
    if (index == 0) EnqueueUses(node, empty_state());
  } else {
    DCHECK_EQ(IrOpcode::kMerge, control->opcode());
    // Check if we already know about this pending merge.
    NodeId const id = node->id();
    auto it = pending_.find(id);
    if (it == pending_.end()) {
      // Insert a new pending merge.
      it = pending_.insert(std::make_pair(id, AllocationStates(zone()))).first;
    }
    // Add the next input state.
    it->second.push_back(state);
    // Check if states for all inputs are available by now.
    if (it->second.size() == static_cast<size_t>(input_count)) {
      // All inputs to this effect merge are done, merge the states given all
      // input constraints, drop the pending merge and enqueue uses of the
      // EffectPhi {node}.
      state = MergeStates(it->second);
      EnqueueUses(node, state);
      pending_.erase(it);
    }
  }
}

void MemoryOptimizer::EnqueueUses(Node* node, AllocationState const* state) {
  for (Edge const edge : node->use_edges()) {
    if (NodeProperties::IsEffectEdge(edge)) {
      EnqueueUse(edge.from(), edge.index(), state);
    }
  }
}

void MemoryOptimizer::EnqueueUse(Node* node, int index,
                                 AllocationState const* state) {
  if (node->opcode() == IrOpcode::kEffectPhi) {
    // An EffectPhi represents a merge of different effect chains, which
    // needs special handling depending on whether the merge is part of a
    // loop or just a normal control join.
    EnqueueMerge(node, index, state);
  } else {
    Token token = {node, state};
    tokens_.push(token);
  }
}

Graph* MemoryOptimizer::graph() const { return jsgraph()->graph(); }

Isolate* MemoryOptimizer::isolate() const { return jsgraph()->isolate(); }

CommonOperatorBuilder* MemoryOptimizer::common() const {
  return jsgraph()->common();
}

MachineOperatorBuilder* MemoryOptimizer::machine() const {
  return jsgraph()->machine();
}

bool MemoryOptimizer::NeedsPoisoning(LoadSensitivity load_sensitivity) const {
  // Safe loads do not need poisoning.
  if (load_sensitivity == LoadSensitivity::kSafe) return false;

  switch (poisoning_level_) {
    case PoisoningMitigationLevel::kDontPoison:
      return false;
    case PoisoningMitigationLevel::kPoisonAll:
      return true;
    case PoisoningMitigationLevel::kPoisonCriticalOnly:
      return load_sensitivity == LoadSensitivity::kCritical;
  }
  UNREACHABLE();
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8