summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/loop-peeling.cc
blob: ae5b0dfbaca42b8017c72288eef531abbd50809c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/loop-peeling.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/graph.h"
#include "src/compiler/node-marker.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/zone/zone.h"

// Loop peeling is an optimization that copies the body of a loop, creating
// a new copy of the body called the "peeled iteration" that represents the
// first iteration. Beginning with a loop as follows:

//             E
//             |                 A
//             |                 |                     (backedges)
//             | +---------------|---------------------------------+
//             | | +-------------|-------------------------------+ |
//             | | |             | +--------+                    | |
//             | | |             | | +----+ |                    | |
//             | | |             | | |    | |                    | |
//           ( Loop )<-------- ( phiA )   | |                    | |
//              |                 |       | |                    | |
//      ((======P=================U=======|=|=====))             | |
//      ((                                | |     ))             | |
//      ((        X <---------------------+ |     ))             | |
//      ((                                  |     ))             | |
//      ((     body                         |     ))             | |
//      ((                                  |     ))             | |
//      ((        Y <-----------------------+     ))             | |
//      ((                                        ))             | |
//      ((===K====L====M==========================))             | |
//           |    |    |                                         | |
//           |    |    +-----------------------------------------+ |
//           |    +------------------------------------------------+
//           |
//          exit

// The body of the loop is duplicated so that all nodes considered "inside"
// the loop (e.g. {P, U, X, Y, K, L, M}) have a corresponding copies in the
// peeled iteration (e.g. {P', U', X', Y', K', L', M'}). What were considered
// backedges of the loop correspond to edges from the peeled iteration to
// the main loop body, with multiple backedges requiring a merge.

// Similarly, any exits from the loop body need to be merged with "exits"
// from the peeled iteration, resulting in the graph as follows:

//             E
//             |                 A
//             |                 |
//      ((=====P'================U'===============))
//      ((                                        ))
//      ((        X'<-------------+               ))
//      ((                        |               ))
//      ((   peeled iteration     |               ))
//      ((                        |               ))
//      ((        Y'<-----------+ |               ))
//      ((                      | |               ))
//      ((===K'===L'====M'======|=|===============))
//           |    |     |       | |
//  +--------+    +-+ +-+       | |
//  |               | |         | |
//  |              Merge <------phi
//  |                |           |
//  |          +-----+           |
//  |          |                 |                     (backedges)
//  |          | +---------------|---------------------------------+
//  |          | | +-------------|-------------------------------+ |
//  |          | | |             | +--------+                    | |
//  |          | | |             | | +----+ |                    | |
//  |          | | |             | | |    | |                    | |
//  |        ( Loop )<-------- ( phiA )   | |                    | |
//  |           |                 |       | |                    | |
//  |   ((======P=================U=======|=|=====))             | |
//  |   ((                                | |     ))             | |
//  |   ((        X <---------------------+ |     ))             | |
//  |   ((                                  |     ))             | |
//  |   ((     body                         |     ))             | |
//  |   ((                                  |     ))             | |
//  |   ((        Y <-----------------------+     ))             | |
//  |   ((                                        ))             | |
//  |   ((===K====L====M==========================))             | |
//  |        |    |    |                                         | |
//  |        |    |    +-----------------------------------------+ |
//  |        |    +------------------------------------------------+
//  |        |
//  |        |
//  +----+ +-+
//       | |
//      Merge
//        |
//      exit

// Note that the boxes ((===)) above are not explicitly represented in the
// graph, but are instead computed by the {LoopFinder}.

namespace v8 {
namespace internal {
namespace compiler {

struct Peeling {
  // Maps a node to its index in the {pairs} vector.
  NodeMarker<size_t> node_map;
  // The vector which contains the mapped nodes.
  NodeVector* pairs;

  Peeling(Graph* graph, size_t max, NodeVector* p)
      : node_map(graph, static_cast<uint32_t>(max)), pairs(p) {}

  Node* map(Node* node) {
    if (node_map.Get(node) == 0) return node;
    return pairs->at(node_map.Get(node));
  }

  void Insert(Node* original, Node* copy) {
    node_map.Set(original, 1 + pairs->size());
    pairs->push_back(original);
    pairs->push_back(copy);
  }

  void CopyNodes(Graph* graph, Zone* tmp_zone_, Node* dead, NodeRange nodes,
                 SourcePositionTable* source_positions) {
    NodeVector inputs(tmp_zone_);
    // Copy all the nodes first.
    for (Node* node : nodes) {
      SourcePositionTable::Scope position(
          source_positions, source_positions->GetSourcePosition(node));
      inputs.clear();
      for (Node* input : node->inputs()) {
        inputs.push_back(map(input));
      }
      Node* copy = graph->NewNode(node->op(), node->InputCount(), &inputs[0]);
      if (NodeProperties::IsTyped(node)) {
        NodeProperties::SetType(copy, NodeProperties::GetType(node));
      }
      Insert(node, copy);
    }

    // Fix remaining inputs of the copies.
    for (Node* original : nodes) {
      Node* copy = pairs->at(node_map.Get(original));
      for (int i = 0; i < copy->InputCount(); i++) {
        copy->ReplaceInput(i, map(original->InputAt(i)));
      }
    }
  }

  bool Marked(Node* node) { return node_map.Get(node) > 0; }
};


class PeeledIterationImpl : public PeeledIteration {
 public:
  NodeVector node_pairs_;
  explicit PeeledIterationImpl(Zone* zone) : node_pairs_(zone) {}
};


Node* PeeledIteration::map(Node* node) {
  // TODO(turbofan): we use a simple linear search, since the peeled iteration
  // is really only used in testing.
  PeeledIterationImpl* impl = static_cast<PeeledIterationImpl*>(this);
  for (size_t i = 0; i < impl->node_pairs_.size(); i += 2) {
    if (impl->node_pairs_[i] == node) return impl->node_pairs_[i + 1];
  }
  return node;
}

bool LoopPeeler::CanPeel(LoopTree::Loop* loop) {
  // Look for returns and if projections that are outside the loop but whose
  // control input is inside the loop.
  Node* loop_node = loop_tree_->GetLoopControl(loop);
  for (Node* node : loop_tree_->LoopNodes(loop)) {
    for (Node* use : node->uses()) {
      if (!loop_tree_->Contains(loop, use)) {
        bool unmarked_exit;
        switch (node->opcode()) {
          case IrOpcode::kLoopExit:
            unmarked_exit = (node->InputAt(1) != loop_node);
            break;
          case IrOpcode::kLoopExitValue:
          case IrOpcode::kLoopExitEffect:
            unmarked_exit = (node->InputAt(1)->InputAt(1) != loop_node);
            break;
          default:
            unmarked_exit = (use->opcode() != IrOpcode::kTerminate);
        }
        if (unmarked_exit) {
          if (FLAG_trace_turbo_loop) {
            Node* loop_node = loop_tree_->GetLoopControl(loop);
            PrintF(
                "Cannot peel loop %i. Loop exit without explicit mark: Node %i "
                "(%s) is inside "
                "loop, but its use %i (%s) is outside.\n",
                loop_node->id(), node->id(), node->op()->mnemonic(), use->id(),
                use->op()->mnemonic());
          }
          return false;
        }
      }
    }
  }
  return true;
}

PeeledIteration* LoopPeeler::Peel(LoopTree::Loop* loop) {
  if (!CanPeel(loop)) return nullptr;

  //============================================================================
  // Construct the peeled iteration.
  //============================================================================
  PeeledIterationImpl* iter = new (tmp_zone_) PeeledIterationImpl(tmp_zone_);
  size_t estimated_peeled_size = 5 + (loop->TotalSize()) * 2;
  Peeling peeling(graph_, estimated_peeled_size, &iter->node_pairs_);

  Node* dead = graph_->NewNode(common_->Dead());

  // Map the loop header nodes to their entry values.
  for (Node* node : loop_tree_->HeaderNodes(loop)) {
    peeling.Insert(node, node->InputAt(kAssumedLoopEntryIndex));
  }

  // Copy all the nodes of loop body for the peeled iteration.
  peeling.CopyNodes(graph_, tmp_zone_, dead, loop_tree_->BodyNodes(loop),
                    source_positions_);

  //============================================================================
  // Replace the entry to the loop with the output of the peeled iteration.
  //============================================================================
  Node* loop_node = loop_tree_->GetLoopControl(loop);
  Node* new_entry;
  int backedges = loop_node->InputCount() - 1;
  if (backedges > 1) {
    // Multiple backedges from original loop, therefore multiple output edges
    // from the peeled iteration.
    NodeVector inputs(tmp_zone_);
    for (int i = 1; i < loop_node->InputCount(); i++) {
      inputs.push_back(peeling.map(loop_node->InputAt(i)));
    }
    Node* merge =
        graph_->NewNode(common_->Merge(backedges), backedges, &inputs[0]);

    // Merge values from the multiple output edges of the peeled iteration.
    for (Node* node : loop_tree_->HeaderNodes(loop)) {
      if (node->opcode() == IrOpcode::kLoop) continue;  // already done.
      inputs.clear();
      for (int i = 0; i < backedges; i++) {
        inputs.push_back(peeling.map(node->InputAt(1 + i)));
      }
      for (Node* input : inputs) {
        if (input != inputs[0]) {  // Non-redundant phi.
          inputs.push_back(merge);
          const Operator* op = common_->ResizeMergeOrPhi(node->op(), backedges);
          Node* phi = graph_->NewNode(op, backedges + 1, &inputs[0]);
          node->ReplaceInput(0, phi);
          break;
        }
      }
    }
    new_entry = merge;
  } else {
    // Only one backedge, simply replace the input to loop with output of
    // peeling.
    for (Node* node : loop_tree_->HeaderNodes(loop)) {
      node->ReplaceInput(0, peeling.map(node->InputAt(1)));
    }
    new_entry = peeling.map(loop_node->InputAt(1));
  }
  loop_node->ReplaceInput(0, new_entry);

  //============================================================================
  // Change the exit and exit markers to merge/phi/effect-phi.
  //============================================================================
  for (Node* exit : loop_tree_->ExitNodes(loop)) {
    switch (exit->opcode()) {
      case IrOpcode::kLoopExit:
        // Change the loop exit node to a merge node.
        exit->ReplaceInput(1, peeling.map(exit->InputAt(0)));
        NodeProperties::ChangeOp(exit, common_->Merge(2));
        break;
      case IrOpcode::kLoopExitValue:
        // Change exit marker to phi.
        exit->InsertInput(graph_->zone(), 1, peeling.map(exit->InputAt(0)));
        NodeProperties::ChangeOp(
            exit, common_->Phi(MachineRepresentation::kTagged, 2));
        break;
      case IrOpcode::kLoopExitEffect:
        // Change effect exit marker to effect phi.
        exit->InsertInput(graph_->zone(), 1, peeling.map(exit->InputAt(0)));
        NodeProperties::ChangeOp(exit, common_->EffectPhi(2));
        break;
      default:
        break;
    }
  }
  return iter;
}

void LoopPeeler::PeelInnerLoops(LoopTree::Loop* loop) {
  // If the loop has nested loops, peel inside those.
  if (!loop->children().empty()) {
    for (LoopTree::Loop* inner_loop : loop->children()) {
      PeelInnerLoops(inner_loop);
    }
    return;
  }
  // Only peel small-enough loops.
  if (loop->TotalSize() > LoopPeeler::kMaxPeeledNodes) return;
  if (FLAG_trace_turbo_loop) {
    PrintF("Peeling loop with header: ");
    for (Node* node : loop_tree_->HeaderNodes(loop)) {
      PrintF("%i ", node->id());
    }
    PrintF("\n");
  }

  Peel(loop);
}

namespace {

void EliminateLoopExit(Node* node) {
  DCHECK_EQ(IrOpcode::kLoopExit, node->opcode());
  // The exit markers take the loop exit as input. We iterate over uses
  // and remove all the markers from the graph.
  for (Edge edge : node->use_edges()) {
    if (NodeProperties::IsControlEdge(edge)) {
      Node* marker = edge.from();
      if (marker->opcode() == IrOpcode::kLoopExitValue) {
        NodeProperties::ReplaceUses(marker, marker->InputAt(0));
        marker->Kill();
      } else if (marker->opcode() == IrOpcode::kLoopExitEffect) {
        NodeProperties::ReplaceUses(marker, nullptr,
                                    NodeProperties::GetEffectInput(marker));
        marker->Kill();
      }
    }
  }
  NodeProperties::ReplaceUses(node, nullptr, nullptr,
                              NodeProperties::GetControlInput(node, 0));
  node->Kill();
}

}  // namespace

void LoopPeeler::PeelInnerLoopsOfTree() {
  for (LoopTree::Loop* loop : loop_tree_->outer_loops()) {
    PeelInnerLoops(loop);
  }

  EliminateLoopExits(graph_, tmp_zone_);
}

// static
void LoopPeeler::EliminateLoopExits(Graph* graph, Zone* tmp_zone) {
  ZoneQueue<Node*> queue(tmp_zone);
  ZoneVector<bool> visited(graph->NodeCount(), false, tmp_zone);
  queue.push(graph->end());
  while (!queue.empty()) {
    Node* node = queue.front();
    queue.pop();

    if (node->opcode() == IrOpcode::kLoopExit) {
      Node* control = NodeProperties::GetControlInput(node);
      EliminateLoopExit(node);
      if (!visited[control->id()]) {
        visited[control->id()] = true;
        queue.push(control);
      }
    } else {
      for (int i = 0; i < node->op()->ControlInputCount(); i++) {
        Node* control = NodeProperties::GetControlInput(node, i);
        if (!visited[control->id()]) {
          visited[control->id()] = true;
          queue.push(control);
        }
      }
    }
  }
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8