summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/loop-analysis.cc
blob: 23591b24119884324d86663737371761dbfb806a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/loop-analysis.h"

#include "src/compiler/graph.h"
#include "src/compiler/node-marker.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/zone/zone.h"

namespace v8 {
namespace internal {
namespace compiler {

#define OFFSET(x) ((x)&0x1f)
#define BIT(x) (1u << OFFSET(x))
#define INDEX(x) ((x) >> 5)

// Temporary information for each node during marking.
struct NodeInfo {
  Node* node;
  NodeInfo* next;       // link in chaining loop members
};


// Temporary loop info needed during traversal and building the loop tree.
struct TempLoopInfo {
  Node* header;
  NodeInfo* header_list;
  NodeInfo* exit_list;
  NodeInfo* body_list;
  LoopTree::Loop* loop;
};


// Encapsulation of the loop finding algorithm.
// -----------------------------------------------------------------------------
// Conceptually, the contents of a loop are those nodes that are "between" the
// loop header and the backedges of the loop. Graphs in the soup of nodes can
// form improper cycles, so standard loop finding algorithms that work on CFGs
// aren't sufficient. However, in valid TurboFan graphs, all cycles involve
// either a {Loop} node or a phi. The {Loop} node itself and its accompanying
// phis are treated together as a set referred to here as the loop header.
// This loop finding algorithm works by traversing the graph in two directions,
// first from nodes to their inputs, starting at {end}, then in the reverse
// direction, from nodes to their uses, starting at loop headers.
// 1 bit per loop per node per direction are required during the marking phase.
// To handle nested loops correctly, the algorithm must filter some reachability
// marks on edges into/out-of the loop header nodes.
class LoopFinderImpl {
 public:
  LoopFinderImpl(Graph* graph, LoopTree* loop_tree, Zone* zone)
      : zone_(zone),
        end_(graph->end()),
        queue_(zone),
        queued_(graph, 2),
        info_(graph->NodeCount(), {nullptr, nullptr}, zone),
        loops_(zone),
        loop_num_(graph->NodeCount(), -1, zone),
        loop_tree_(loop_tree),
        loops_found_(0),
        width_(0),
        backward_(nullptr),
        forward_(nullptr) {}

  void Run() {
    PropagateBackward();
    PropagateForward();
    FinishLoopTree();
  }

  void Print() {
    // Print out the results.
    for (NodeInfo& ni : info_) {
      if (ni.node == nullptr) continue;
      for (int i = 1; i <= loops_found_; i++) {
        int index = ni.node->id() * width_ + INDEX(i);
        bool marked_forward = forward_[index] & BIT(i);
        bool marked_backward = backward_[index] & BIT(i);
        if (marked_forward && marked_backward) {
          PrintF("X");
        } else if (marked_forward) {
          PrintF(">");
        } else if (marked_backward) {
          PrintF("<");
        } else {
          PrintF(" ");
        }
      }
      PrintF(" #%d:%s\n", ni.node->id(), ni.node->op()->mnemonic());
    }

    int i = 0;
    for (TempLoopInfo& li : loops_) {
      PrintF("Loop %d headed at #%d\n", i, li.header->id());
      i++;
    }

    for (LoopTree::Loop* loop : loop_tree_->outer_loops_) {
      PrintLoop(loop);
    }
  }

 private:
  Zone* zone_;
  Node* end_;
  NodeDeque queue_;
  NodeMarker<bool> queued_;
  ZoneVector<NodeInfo> info_;
  ZoneVector<TempLoopInfo> loops_;
  ZoneVector<int> loop_num_;
  LoopTree* loop_tree_;
  int loops_found_;
  int width_;
  uint32_t* backward_;
  uint32_t* forward_;

  int num_nodes() {
    return static_cast<int>(loop_tree_->node_to_loop_num_.size());
  }

  // Tb = Tb | (Fb - loop_filter)
  bool PropagateBackwardMarks(Node* from, Node* to, int loop_filter) {
    if (from == to) return false;
    uint32_t* fp = &backward_[from->id() * width_];
    uint32_t* tp = &backward_[to->id() * width_];
    bool change = false;
    for (int i = 0; i < width_; i++) {
      uint32_t mask = i == INDEX(loop_filter) ? ~BIT(loop_filter) : 0xFFFFFFFF;
      uint32_t prev = tp[i];
      uint32_t next = prev | (fp[i] & mask);
      tp[i] = next;
      if (!change && (prev != next)) change = true;
    }
    return change;
  }

  // Tb = Tb | B
  bool SetBackwardMark(Node* to, int loop_num) {
    uint32_t* tp = &backward_[to->id() * width_ + INDEX(loop_num)];
    uint32_t prev = tp[0];
    uint32_t next = prev | BIT(loop_num);
    tp[0] = next;
    return next != prev;
  }

  // Tf = Tf | B
  bool SetForwardMark(Node* to, int loop_num) {
    uint32_t* tp = &forward_[to->id() * width_ + INDEX(loop_num)];
    uint32_t prev = tp[0];
    uint32_t next = prev | BIT(loop_num);
    tp[0] = next;
    return next != prev;
  }

  // Tf = Tf | (Ff & Tb)
  bool PropagateForwardMarks(Node* from, Node* to) {
    if (from == to) return false;
    bool change = false;
    int findex = from->id() * width_;
    int tindex = to->id() * width_;
    for (int i = 0; i < width_; i++) {
      uint32_t marks = backward_[tindex + i] & forward_[findex + i];
      uint32_t prev = forward_[tindex + i];
      uint32_t next = prev | marks;
      forward_[tindex + i] = next;
      if (!change && (prev != next)) change = true;
    }
    return change;
  }

  bool IsInLoop(Node* node, int loop_num) {
    int offset = node->id() * width_ + INDEX(loop_num);
    return backward_[offset] & forward_[offset] & BIT(loop_num);
  }

  // Propagate marks backward from loop headers.
  void PropagateBackward() {
    ResizeBackwardMarks();
    SetBackwardMark(end_, 0);
    Queue(end_);

    while (!queue_.empty()) {
      Node* node = queue_.front();
      info(node);
      queue_.pop_front();
      queued_.Set(node, false);

      int loop_num = -1;
      // Setup loop headers first.
      if (node->opcode() == IrOpcode::kLoop) {
        // found the loop node first.
        loop_num = CreateLoopInfo(node);
      } else if (NodeProperties::IsPhi(node)) {
        // found a phi first.
        Node* merge = node->InputAt(node->InputCount() - 1);
        if (merge->opcode() == IrOpcode::kLoop) {
          loop_num = CreateLoopInfo(merge);
        }
      } else if (node->opcode() == IrOpcode::kLoopExit) {
        // Intentionally ignore return value. Loop exit node marks
        // are propagated normally.
        CreateLoopInfo(node->InputAt(1));
      } else if (node->opcode() == IrOpcode::kLoopExitValue ||
                 node->opcode() == IrOpcode::kLoopExitEffect) {
        Node* loop_exit = NodeProperties::GetControlInput(node);
        // Intentionally ignore return value. Loop exit node marks
        // are propagated normally.
        CreateLoopInfo(loop_exit->InputAt(1));
      }

      // Propagate marks backwards from this node.
      for (int i = 0; i < node->InputCount(); i++) {
        Node* input = node->InputAt(i);
        if (IsBackedge(node, i)) {
          // Only propagate the loop mark on backedges.
          if (SetBackwardMark(input, loop_num)) Queue(input);
        } else {
          // Entry or normal edge. Propagate all marks except loop_num.
          if (PropagateBackwardMarks(node, input, loop_num)) Queue(input);
        }
      }
    }
  }

  // Make a new loop if necessary for the given node.
  int CreateLoopInfo(Node* node) {
    DCHECK_EQ(IrOpcode::kLoop, node->opcode());
    int loop_num = LoopNum(node);
    if (loop_num > 0) return loop_num;

    loop_num = ++loops_found_;
    if (INDEX(loop_num) >= width_) ResizeBackwardMarks();

    // Create a new loop.
    loops_.push_back({node, nullptr, nullptr, nullptr, nullptr});
    loop_tree_->NewLoop();
    SetLoopMarkForLoopHeader(node, loop_num);
    return loop_num;
  }

  void SetLoopMark(Node* node, int loop_num) {
    info(node);  // create the NodeInfo
    SetBackwardMark(node, loop_num);
    loop_tree_->node_to_loop_num_[node->id()] = loop_num;
  }

  void SetLoopMarkForLoopHeader(Node* node, int loop_num) {
    DCHECK_EQ(IrOpcode::kLoop, node->opcode());
    SetLoopMark(node, loop_num);
    for (Node* use : node->uses()) {
      if (NodeProperties::IsPhi(use)) {
        SetLoopMark(use, loop_num);
      }

      // Do not keep the loop alive if it does not have any backedges.
      if (node->InputCount() <= 1) continue;

      if (use->opcode() == IrOpcode::kLoopExit) {
        SetLoopMark(use, loop_num);
        for (Node* exit_use : use->uses()) {
          if (exit_use->opcode() == IrOpcode::kLoopExitValue ||
              exit_use->opcode() == IrOpcode::kLoopExitEffect) {
            SetLoopMark(exit_use, loop_num);
          }
        }
      }
    }
  }

  void ResizeBackwardMarks() {
    int new_width = width_ + 1;
    int max = num_nodes();
    uint32_t* new_backward = zone_->NewArray<uint32_t>(new_width * max);
    memset(new_backward, 0, new_width * max * sizeof(uint32_t));
    if (width_ > 0) {  // copy old matrix data.
      for (int i = 0; i < max; i++) {
        uint32_t* np = &new_backward[i * new_width];
        uint32_t* op = &backward_[i * width_];
        for (int j = 0; j < width_; j++) np[j] = op[j];
      }
    }
    width_ = new_width;
    backward_ = new_backward;
  }

  void ResizeForwardMarks() {
    int max = num_nodes();
    forward_ = zone_->NewArray<uint32_t>(width_ * max);
    memset(forward_, 0, width_ * max * sizeof(uint32_t));
  }

  // Propagate marks forward from loops.
  void PropagateForward() {
    ResizeForwardMarks();
    for (TempLoopInfo& li : loops_) {
      SetForwardMark(li.header, LoopNum(li.header));
      Queue(li.header);
    }
    // Propagate forward on paths that were backward reachable from backedges.
    while (!queue_.empty()) {
      Node* node = queue_.front();
      queue_.pop_front();
      queued_.Set(node, false);
      for (Edge edge : node->use_edges()) {
        Node* use = edge.from();
        if (!IsBackedge(use, edge.index())) {
          if (PropagateForwardMarks(node, use)) Queue(use);
        }
      }
    }
  }

  bool IsLoopHeaderNode(Node* node) {
    return node->opcode() == IrOpcode::kLoop || NodeProperties::IsPhi(node);
  }

  bool IsLoopExitNode(Node* node) {
    return node->opcode() == IrOpcode::kLoopExit ||
           node->opcode() == IrOpcode::kLoopExitValue ||
           node->opcode() == IrOpcode::kLoopExitEffect;
  }

  bool IsBackedge(Node* use, int index) {
    if (LoopNum(use) <= 0) return false;
    if (NodeProperties::IsPhi(use)) {
      return index != NodeProperties::FirstControlIndex(use) &&
             index != kAssumedLoopEntryIndex;
    } else if (use->opcode() == IrOpcode::kLoop) {
      return index != kAssumedLoopEntryIndex;
    }
    DCHECK(IsLoopExitNode(use));
    return false;
  }

  int LoopNum(Node* node) { return loop_tree_->node_to_loop_num_[node->id()]; }

  NodeInfo& info(Node* node) {
    NodeInfo& i = info_[node->id()];
    if (i.node == nullptr) i.node = node;
    return i;
  }

  void Queue(Node* node) {
    if (!queued_.Get(node)) {
      queue_.push_back(node);
      queued_.Set(node, true);
    }
  }

  void AddNodeToLoop(NodeInfo* node_info, TempLoopInfo* loop, int loop_num) {
    if (LoopNum(node_info->node) == loop_num) {
      if (IsLoopHeaderNode(node_info->node)) {
        node_info->next = loop->header_list;
        loop->header_list = node_info;
      } else {
        DCHECK(IsLoopExitNode(node_info->node));
        node_info->next = loop->exit_list;
        loop->exit_list = node_info;
      }
    } else {
      node_info->next = loop->body_list;
      loop->body_list = node_info;
    }
  }

  void FinishLoopTree() {
    DCHECK(loops_found_ == static_cast<int>(loops_.size()));
    DCHECK(loops_found_ == static_cast<int>(loop_tree_->all_loops_.size()));

    // Degenerate cases.
    if (loops_found_ == 0) return;
    if (loops_found_ == 1) return FinishSingleLoop();

    for (int i = 1; i <= loops_found_; i++) ConnectLoopTree(i);

    size_t count = 0;
    // Place the node into the innermost nested loop of which it is a member.
    for (NodeInfo& ni : info_) {
      if (ni.node == nullptr) continue;

      TempLoopInfo* innermost = nullptr;
      int innermost_index = 0;
      int pos = ni.node->id() * width_;
      // Search the marks word by word.
      for (int i = 0; i < width_; i++) {
        uint32_t marks = backward_[pos + i] & forward_[pos + i];
        for (int j = 0; j < 32; j++) {
          if (marks & (1u << j)) {
            int loop_num = i * 32 + j;
            if (loop_num == 0) continue;
            TempLoopInfo* loop = &loops_[loop_num - 1];
            if (innermost == nullptr ||
                loop->loop->depth_ > innermost->loop->depth_) {
              innermost = loop;
              innermost_index = loop_num;
            }
          }
        }
      }
      if (innermost == nullptr) continue;
      AddNodeToLoop(&ni, innermost, innermost_index);
      count++;
    }

    // Serialize the node lists for loops into the loop tree.
    loop_tree_->loop_nodes_.reserve(count);
    for (LoopTree::Loop* loop : loop_tree_->outer_loops_) {
      SerializeLoop(loop);
    }
  }

  // Handle the simpler case of a single loop (no checks for nesting necessary).
  void FinishSingleLoop() {
    // Place nodes into the loop header and body.
    TempLoopInfo* li = &loops_[0];
    li->loop = &loop_tree_->all_loops_[0];
    loop_tree_->SetParent(nullptr, li->loop);
    size_t count = 0;
    for (NodeInfo& ni : info_) {
      if (ni.node == nullptr || !IsInLoop(ni.node, 1)) continue;
      AddNodeToLoop(&ni, li, 1);
      count++;
    }

    // Serialize the node lists for the loop into the loop tree.
    loop_tree_->loop_nodes_.reserve(count);
    SerializeLoop(li->loop);
  }

  // Recursively serialize the list of header nodes and body nodes
  // so that nested loops occupy nested intervals.
  void SerializeLoop(LoopTree::Loop* loop) {
    int loop_num = loop_tree_->LoopNum(loop);
    TempLoopInfo& li = loops_[loop_num - 1];

    // Serialize the header.
    loop->header_start_ = static_cast<int>(loop_tree_->loop_nodes_.size());
    for (NodeInfo* ni = li.header_list; ni != nullptr; ni = ni->next) {
      loop_tree_->loop_nodes_.push_back(ni->node);
      loop_tree_->node_to_loop_num_[ni->node->id()] = loop_num;
    }

    // Serialize the body.
    loop->body_start_ = static_cast<int>(loop_tree_->loop_nodes_.size());
    for (NodeInfo* ni = li.body_list; ni != nullptr; ni = ni->next) {
      loop_tree_->loop_nodes_.push_back(ni->node);
      loop_tree_->node_to_loop_num_[ni->node->id()] = loop_num;
    }

    // Serialize nested loops.
    for (LoopTree::Loop* child : loop->children_) SerializeLoop(child);

    // Serialize the exits.
    loop->exits_start_ = static_cast<int>(loop_tree_->loop_nodes_.size());
    for (NodeInfo* ni = li.exit_list; ni != nullptr; ni = ni->next) {
      loop_tree_->loop_nodes_.push_back(ni->node);
      loop_tree_->node_to_loop_num_[ni->node->id()] = loop_num;
    }

    loop->exits_end_ = static_cast<int>(loop_tree_->loop_nodes_.size());
  }

  // Connect the LoopTree loops to their parents recursively.
  LoopTree::Loop* ConnectLoopTree(int loop_num) {
    TempLoopInfo& li = loops_[loop_num - 1];
    if (li.loop != nullptr) return li.loop;

    NodeInfo& ni = info(li.header);
    LoopTree::Loop* parent = nullptr;
    for (int i = 1; i <= loops_found_; i++) {
      if (i == loop_num) continue;
      if (IsInLoop(ni.node, i)) {
        // recursively create potential parent loops first.
        LoopTree::Loop* upper = ConnectLoopTree(i);
        if (parent == nullptr || upper->depth_ > parent->depth_) {
          parent = upper;
        }
      }
    }
    li.loop = &loop_tree_->all_loops_[loop_num - 1];
    loop_tree_->SetParent(parent, li.loop);
    return li.loop;
  }

  void PrintLoop(LoopTree::Loop* loop) {
    for (int i = 0; i < loop->depth_; i++) PrintF("  ");
    PrintF("Loop depth = %d ", loop->depth_);
    int i = loop->header_start_;
    while (i < loop->body_start_) {
      PrintF(" H#%d", loop_tree_->loop_nodes_[i++]->id());
    }
    while (i < loop->exits_start_) {
      PrintF(" B#%d", loop_tree_->loop_nodes_[i++]->id());
    }
    while (i < loop->exits_end_) {
      PrintF(" E#%d", loop_tree_->loop_nodes_[i++]->id());
    }
    PrintF("\n");
    for (LoopTree::Loop* child : loop->children_) PrintLoop(child);
  }
};


LoopTree* LoopFinder::BuildLoopTree(Graph* graph, Zone* zone) {
  LoopTree* loop_tree =
      new (graph->zone()) LoopTree(graph->NodeCount(), graph->zone());
  LoopFinderImpl finder(graph, loop_tree, zone);
  finder.Run();
  if (FLAG_trace_turbo_loop) {
    finder.Print();
  }
  return loop_tree;
}


Node* LoopTree::HeaderNode(Loop* loop) {
  Node* first = *HeaderNodes(loop).begin();
  if (first->opcode() == IrOpcode::kLoop) return first;
  DCHECK(IrOpcode::IsPhiOpcode(first->opcode()));
  Node* header = NodeProperties::GetControlInput(first);
  DCHECK_EQ(IrOpcode::kLoop, header->opcode());
  return header;
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8