summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/js-inlining-heuristic.cc
blob: ae271b3af9e9862ed51faea990712671b82091b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/js-inlining-heuristic.h"

#include "src/codegen/optimized-compilation-info.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/js-heap-broker.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/simplified-operator.h"
#include "src/objects/objects-inl.h"

namespace v8 {
namespace internal {
namespace compiler {

#define TRACE(...)                                      \
  do {                                                  \
    if (FLAG_trace_turbo_inlining) PrintF(__VA_ARGS__); \
  } while (false)

namespace {
bool IsSmall(BytecodeArrayRef bytecode) {
  return bytecode.length() <= FLAG_max_inlined_bytecode_size_small;
}
}  // namespace

JSInliningHeuristic::Candidate JSInliningHeuristic::CollectFunctions(
    Node* node, int functions_size) {
  DCHECK_NE(0, functions_size);
  Node* callee = node->InputAt(0);
  Candidate out;
  out.node = node;

  HeapObjectMatcher m(callee);
  if (m.HasValue() && m.Ref(broker()).IsJSFunction()) {
    out.functions[0] = m.Ref(broker()).AsJSFunction();
    JSFunctionRef function = out.functions[0].value();
    if (function.IsSerializedForCompilation()) {
      out.bytecode[0] = function.shared().GetBytecodeArray();
    }
    out.num_functions = 1;
    return out;
  }
  if (m.IsPhi()) {
    int const value_input_count = m.node()->op()->ValueInputCount();
    if (value_input_count > functions_size) {
      out.num_functions = 0;
      return out;
    }
    for (int n = 0; n < value_input_count; ++n) {
      HeapObjectMatcher m(callee->InputAt(n));
      if (!m.HasValue() || !m.Ref(broker()).IsJSFunction()) {
        out.num_functions = 0;
        return out;
      }

      out.functions[n] = m.Ref(broker()).AsJSFunction();
      JSFunctionRef function = out.functions[n].value();
      if (function.IsSerializedForCompilation()) {
        out.bytecode[n] = function.shared().GetBytecodeArray();
      }
    }
    out.num_functions = value_input_count;
    return out;
  }
  if (m.IsJSCreateClosure()) {
    CreateClosureParameters const& p = CreateClosureParametersOf(m.op());
    DCHECK(!out.functions[0].has_value());
    out.shared_info = SharedFunctionInfoRef(broker(), p.shared_info());
    SharedFunctionInfoRef shared_info = out.shared_info.value();
    if (shared_info.HasBytecodeArray()) {
      out.bytecode[0] = shared_info.GetBytecodeArray();
    }
    out.num_functions = 1;
    return out;
  }
  out.num_functions = 0;
  return out;
}

Reduction JSInliningHeuristic::Reduce(Node* node) {
  DisallowHeapAccessIf no_heap_acess(FLAG_concurrent_inlining);

  if (!IrOpcode::IsInlineeOpcode(node->opcode())) return NoChange();

  if (total_inlined_bytecode_size_ >= FLAG_max_inlined_bytecode_size_absolute &&
      mode_ != kStressInlining) {
    return NoChange();
  }

  // Check if we already saw that {node} before, and if so, just skip it.
  if (seen_.find(node->id()) != seen_.end()) return NoChange();
  seen_.insert(node->id());

  // Check if the {node} is an appropriate candidate for inlining.
  Candidate candidate = CollectFunctions(node, kMaxCallPolymorphism);
  if (candidate.num_functions == 0) {
    return NoChange();
  } else if (candidate.num_functions > 1 && !FLAG_polymorphic_inlining) {
    TRACE(
        "Not considering call site #%d:%s, because polymorphic inlining "
        "is disabled\n",
        node->id(), node->op()->mnemonic());
    return NoChange();
  }

  bool can_inline_candidate = false, candidate_is_small = true;
  candidate.total_size = 0;
  Node* frame_state = NodeProperties::GetFrameStateInput(node);
  FrameStateInfo const& frame_info = FrameStateInfoOf(frame_state->op());
  Handle<SharedFunctionInfo> frame_shared_info;
  for (int i = 0; i < candidate.num_functions; ++i) {
    if (!candidate.bytecode[i].has_value()) {
      // Can't inline without bytecode.
      // TODO(neis): Should this even be a broker message?
      if (candidate.functions[i].has_value()) {
        TRACE_BROKER(broker(),
                     "Missing bytecode array trying to inline JSFunction "
                         << *candidate.functions[i]);
      } else {
        TRACE_BROKER(
            broker(),
            "Missing bytecode array trying to inline SharedFunctionInfo "
                << *candidate.shared_info);
      }
      // Those functions that don't have their bytecode serialized probably
      // don't have the SFI either, so we exit the loop early.
      candidate.can_inline_function[i] = false;
      continue;
    }

    SharedFunctionInfoRef shared = candidate.functions[i].has_value()
                                       ? candidate.functions[i].value().shared()
                                       : candidate.shared_info.value();
    candidate.can_inline_function[i] = shared.IsInlineable();
    // Do not allow direct recursion i.e. f() -> f(). We still allow indirect
    // recurion like f() -> g() -> f(). The indirect recursion is helpful in
    // cases where f() is a small dispatch function that calls the appropriate
    // function. In the case of direct recursion, we only have some static
    // information for the first level of inlining and it may not be that useful
    // to just inline one level in recursive calls. In some cases like tail
    // recursion we may benefit from recursive inlining, if we have additional
    // analysis that converts them to iterative implementations. Though it is
    // not obvious if such an anlysis is needed.
    if (frame_info.shared_info().ToHandle(&frame_shared_info) &&
        frame_shared_info.equals(shared.object())) {
      TRACE("Not considering call site #%d:%s, because of recursive inlining\n",
            node->id(), node->op()->mnemonic());
      candidate.can_inline_function[i] = false;
    }
    // A function reaching this point should always have its bytecode
    // serialized.
    BytecodeArrayRef bytecode = candidate.bytecode[i].value();
    if (candidate.can_inline_function[i]) {
      can_inline_candidate = true;
      candidate.total_size += bytecode.length();
    }
    candidate_is_small = candidate_is_small && IsSmall(bytecode);
  }
  if (!can_inline_candidate) return NoChange();

  // Gather feedback on how often this call site has been hit before.
  if (node->opcode() == IrOpcode::kJSCall) {
    CallParameters const p = CallParametersOf(node->op());
    candidate.frequency = p.frequency();
  } else {
    ConstructParameters const p = ConstructParametersOf(node->op());
    candidate.frequency = p.frequency();
  }

  // Handling of special inlining modes right away:
  //  - For restricted inlining: stop all handling at this point.
  //  - For stressing inlining: immediately handle all functions.
  switch (mode_) {
    case kRestrictedInlining:
      return NoChange();
    case kStressInlining:
      return InlineCandidate(candidate, false);
    case kGeneralInlining:
      break;
  }

  // Don't consider a {candidate} whose frequency is below the
  // threshold, i.e. a call site that is only hit once every N
  // invocations of the caller.
  if (candidate.frequency.IsKnown() &&
      candidate.frequency.value() < FLAG_min_inlining_frequency) {
    return NoChange();
  }

  // Forcibly inline small functions here. In the case of polymorphic inlining
  // candidate_is_small is set only when all functions are small.
  if (candidate_is_small) {
    TRACE("Inlining small function(s) at call site #%d:%s\n", node->id(),
          node->op()->mnemonic());
    return InlineCandidate(candidate, true);
  }

  // In the general case we remember the candidate for later.
  candidates_.insert(candidate);
  return NoChange();
}

void JSInliningHeuristic::Finalize() {
  DisallowHeapAccessIf no_heap_acess(FLAG_concurrent_inlining);

  if (candidates_.empty()) return;  // Nothing to do without candidates.
  if (FLAG_trace_turbo_inlining) PrintCandidates();

  // We inline at most one candidate in every iteration of the fixpoint.
  // This is to ensure that we don't consume the full inlining budget
  // on things that aren't called very often.
  // TODO(bmeurer): Use std::priority_queue instead of std::set here.
  while (!candidates_.empty()) {
    auto i = candidates_.begin();
    Candidate candidate = *i;
    candidates_.erase(i);

    // Make sure we don't try to inline dead candidate nodes.
    if (candidate.node->IsDead()) {
      continue;
    }

    // Make sure we have some extra budget left, so that any small functions
    // exposed by this function would be given a chance to inline.
    double size_of_candidate =
        candidate.total_size * FLAG_reserve_inline_budget_scale_factor;
    int total_size =
        total_inlined_bytecode_size_ + static_cast<int>(size_of_candidate);
    if (total_size > FLAG_max_inlined_bytecode_size_cumulative) {
      // Try if any smaller functions are available to inline.
      continue;
    }

    Reduction const reduction = InlineCandidate(candidate, false);
    if (reduction.Changed()) return;
  }
}

namespace {

struct NodeAndIndex {
  Node* node;
  int index;
};

bool CollectStateValuesOwnedUses(Node* node, Node* state_values,
                                 NodeAndIndex* uses_buffer, size_t* use_count,
                                 size_t max_uses) {
  // Only accumulate states that are not shared with other users.
  if (state_values->UseCount() > 1) return true;
  for (int i = 0; i < state_values->InputCount(); i++) {
    Node* input = state_values->InputAt(i);
    if (input->opcode() == IrOpcode::kStateValues) {
      if (!CollectStateValuesOwnedUses(node, input, uses_buffer, use_count,
                                       max_uses)) {
        return false;
      }
    } else if (input == node) {
      if (*use_count >= max_uses) return false;
      uses_buffer[*use_count] = {state_values, i};
      (*use_count)++;
    }
  }
  return true;
}

}  // namespace

Node* JSInliningHeuristic::DuplicateStateValuesAndRename(Node* state_values,
                                                         Node* from, Node* to,
                                                         StateCloneMode mode) {
  // Only rename in states that are not shared with other users. This needs to
  // be in sync with the condition in {CollectStateValuesOwnedUses}.
  if (state_values->UseCount() > 1) return state_values;
  Node* copy = mode == kChangeInPlace ? state_values : nullptr;
  for (int i = 0; i < state_values->InputCount(); i++) {
    Node* input = state_values->InputAt(i);
    Node* processed;
    if (input->opcode() == IrOpcode::kStateValues) {
      processed = DuplicateStateValuesAndRename(input, from, to, mode);
    } else if (input == from) {
      processed = to;
    } else {
      processed = input;
    }
    if (processed != input) {
      if (!copy) {
        copy = graph()->CloneNode(state_values);
      }
      copy->ReplaceInput(i, processed);
    }
  }
  return copy ? copy : state_values;
}

namespace {

bool CollectFrameStateUniqueUses(Node* node, Node* frame_state,
                                 NodeAndIndex* uses_buffer, size_t* use_count,
                                 size_t max_uses) {
  // Only accumulate states that are not shared with other users.
  if (frame_state->UseCount() > 1) return true;
  if (frame_state->InputAt(kFrameStateStackInput) == node) {
    if (*use_count >= max_uses) return false;
    uses_buffer[*use_count] = {frame_state, kFrameStateStackInput};
    (*use_count)++;
  }
  if (!CollectStateValuesOwnedUses(node,
                                   frame_state->InputAt(kFrameStateLocalsInput),
                                   uses_buffer, use_count, max_uses)) {
    return false;
  }
  return true;
}

}  // namespace

Node* JSInliningHeuristic::DuplicateFrameStateAndRename(Node* frame_state,
                                                        Node* from, Node* to,
                                                        StateCloneMode mode) {
  // Only rename in states that are not shared with other users. This needs to
  // be in sync with the condition in {DuplicateFrameStateAndRename}.
  if (frame_state->UseCount() > 1) return frame_state;
  Node* copy = mode == kChangeInPlace ? frame_state : nullptr;
  if (frame_state->InputAt(kFrameStateStackInput) == from) {
    if (!copy) {
      copy = graph()->CloneNode(frame_state);
    }
    copy->ReplaceInput(kFrameStateStackInput, to);
  }
  Node* locals = frame_state->InputAt(kFrameStateLocalsInput);
  Node* new_locals = DuplicateStateValuesAndRename(locals, from, to, mode);
  if (new_locals != locals) {
    if (!copy) {
      copy = graph()->CloneNode(frame_state);
    }
    copy->ReplaceInput(kFrameStateLocalsInput, new_locals);
  }
  return copy ? copy : frame_state;
}

bool JSInliningHeuristic::TryReuseDispatch(Node* node, Node* callee,
                                           Node** if_successes, Node** calls,
                                           Node** inputs, int input_count) {
  // We will try to reuse the control flow branch created for computing
  // the {callee} target of the call. We only reuse the branch if there
  // is no side-effect between the call and the branch, and if the callee is
  // only used as the target (and possibly also in the related frame states).

  // We are trying to match the following pattern:
  //
  //         C1     C2
  //          .     .
  //          |     |
  //         Merge(merge)  <-----------------+
  //           ^    ^                        |
  //  V1  V2   |    |         E1  E2         |
  //   .  .    |    +----+     .  .          |
  //   |  |    |         |     |  |          |
  //  Phi(callee)      EffectPhi(effect_phi) |
  //     ^                    ^              |
  //     |                    |              |
  //     +----+               |              |
  //     |    |               |              |
  //     |   StateValues      |              |
  //     |       ^            |              |
  //     +----+  |            |              |
  //     |    |  |            |              |
  //     |    FrameState      |              |
  //     |           ^        |              |
  //     |           |        |          +---+
  //     |           |        |          |   |
  //     +----+     Checkpoint(checkpoint)   |
  //     |    |           ^                  |
  //     |    StateValues |    +-------------+
  //     |        |       |    |
  //     +-----+  |       |    |
  //     |     |  |       |    |
  //     |     FrameState |    |
  //     |             ^  |    |
  //     +-----------+ |  |    |
  //                  Call(node)
  //                   |
  //                   |
  //                   .
  //
  // The {callee} here is a phi that merges the possible call targets, {node}
  // is the actual call that we will try to duplicate and connect to the
  // control that comes into {merge}. There can be a {checkpoint} between
  // the call and the calle phi.
  //
  // The idea is to get rid of the merge, effect phi and phi, then duplicate
  // the call (with all the frame states and such), and connect the duplicated
  // calls and states directly to the inputs of the ex-phi, ex-effect-phi and
  // ex-merge. The tricky part is to make sure that there is no interference
  // from the outside. In particular, there should not be any unaccounted uses
  // of the  phi, effect-phi and merge because we will remove them from
  // the graph.
  //
  //     V1              E1   C1  V2   E2               C2
  //     .                .    .  .    .                .
  //     |                |    |  |    |                |
  //     +----+           |    |  +----+                |
  //     |    |           |    |  |    |                |
  //     |   StateValues  |    |  |   StateValues       |
  //     |       ^        |    |  |       ^             |
  //     +----+  |        |    |  +----+  |             |
  //     |    |  |        |    |  |    |  |             |
  //     |    FrameState  |    |  |    FrameState       |
  //     |           ^    |    |  |           ^         |
  //     |           |    |    |  |           |         |
  //     |           |    |    |  |           |         |
  //     +----+     Checkpoint |  +----+     Checkpoint |
  //     |    |           ^    |  |    |           ^    |
  //     |    StateValues |    |  |    StateValues |    |
  //     |        |       |    |  |        |       |    |
  //     +-----+  |       |    |  +-----+  |       |    |
  //     |     |  |       |    |  |     |  |       |    |
  //     |     FrameState |    |  |     FrameState |    |
  //     |              ^ |    |  |              ^ |    |
  //     +-------------+| |    |  +-------------+| |    |
  //                   Call----+                Call----+
  //                     |                       |
  //                     +-------+  +------------+
  //                             |  |
  //                             Merge
  //                             EffectPhi
  //                             Phi
  //                              |
  //                             ...

  // Bailout if the call is not polymorphic anymore (other reducers might
  // have replaced the callee phi with a constant).
  if (callee->opcode() != IrOpcode::kPhi) return false;
  int const num_calls = callee->op()->ValueInputCount();

  // If there is a control node between the callee computation
  // and the call, bail out.
  Node* merge = NodeProperties::GetControlInput(callee);
  if (NodeProperties::GetControlInput(node) != merge) return false;

  // If there is a non-checkpoint effect node between the callee computation
  // and the call, bail out. We will drop any checkpoint between the call and
  // the callee phi because the callee computation should have its own
  // checkpoint that the call can fall back to.
  Node* checkpoint = nullptr;
  Node* effect = NodeProperties::GetEffectInput(node);
  if (effect->opcode() == IrOpcode::kCheckpoint) {
    checkpoint = effect;
    if (NodeProperties::GetControlInput(checkpoint) != merge) return false;
    effect = NodeProperties::GetEffectInput(effect);
  }
  if (effect->opcode() != IrOpcode::kEffectPhi) return false;
  if (NodeProperties::GetControlInput(effect) != merge) return false;
  Node* effect_phi = effect;

  // The effect phi, the callee, the call and the checkpoint must be the only
  // users of the merge.
  for (Node* merge_use : merge->uses()) {
    if (merge_use != effect_phi && merge_use != callee && merge_use != node &&
        merge_use != checkpoint) {
      return false;
    }
  }

  // The effect phi must be only used by the checkpoint or the call.
  for (Node* effect_phi_use : effect_phi->uses()) {
    if (effect_phi_use != node && effect_phi_use != checkpoint) return false;
  }

  // We must replace the callee phi with the appropriate constant in
  // the entire subgraph reachable by inputs from the call (terminating
  // at phis and merges). Since we do not want to walk (and later duplicate)
  // the subgraph here, we limit the possible uses to this set:
  //
  // 1. In the call (as a target).
  // 2. The checkpoint between the call and the callee computation merge.
  // 3. The lazy deoptimization frame state.
  //
  // This corresponds to the most common pattern, where the function is
  // called with only local variables or constants as arguments.
  //
  // To check the uses, we first collect all the occurrences of callee in 1, 2
  // and 3, and then we check that all uses of callee are in the collected
  // occurrences. If there is an unaccounted use, we do not try to rewire
  // the control flow.
  //
  // Note: With CFG, this would be much easier and more robust - we would just
  // duplicate all the nodes between the merge and the call, replacing all
  // occurrences of the {callee} phi with the appropriate constant.

  // First compute the set of uses that are only reachable from 2 and 3.
  const size_t kMaxUses = 8;
  NodeAndIndex replaceable_uses[kMaxUses];
  size_t replaceable_uses_count = 0;

  // Collect the uses to check case 2.
  Node* checkpoint_state = nullptr;
  if (checkpoint) {
    checkpoint_state = checkpoint->InputAt(0);
    if (!CollectFrameStateUniqueUses(callee, checkpoint_state, replaceable_uses,
                                     &replaceable_uses_count, kMaxUses)) {
      return false;
    }
  }

  // Collect the uses to check case 3.
  Node* frame_state = NodeProperties::GetFrameStateInput(node);
  if (!CollectFrameStateUniqueUses(callee, frame_state, replaceable_uses,
                                   &replaceable_uses_count, kMaxUses)) {
    return false;
  }

  // Bail out if there is a use of {callee} that is not reachable from 1, 2
  // and 3.
  for (Edge edge : callee->use_edges()) {
    // Case 1 (use by the call as a target).
    if (edge.from() == node && edge.index() == 0) continue;
    // Case 2 and 3 - used in checkpoint and/or lazy deopt frame states.
    bool found = false;
    for (size_t i = 0; i < replaceable_uses_count; i++) {
      if (replaceable_uses[i].node == edge.from() &&
          replaceable_uses[i].index == edge.index()) {
        found = true;
        break;
      }
    }
    if (!found) return false;
  }

  // Clone the call and the framestate, including the uniquely reachable
  // state values, making sure that we replace the phi with the constant.
  for (int i = 0; i < num_calls; ++i) {
    // Clone the calls for each branch.
    // We need to specialize the calls to the correct target, effect, and
    // control. We also need to duplicate the checkpoint and the lazy
    // frame state, and change all the uses of the callee to the constant
    // callee.
    Node* target = callee->InputAt(i);
    Node* effect = effect_phi->InputAt(i);
    Node* control = merge->InputAt(i);

    if (checkpoint) {
      // Duplicate the checkpoint.
      Node* new_checkpoint_state = DuplicateFrameStateAndRename(
          checkpoint_state, callee, target,
          (i == num_calls - 1) ? kChangeInPlace : kCloneState);
      effect = graph()->NewNode(checkpoint->op(), new_checkpoint_state, effect,
                                control);
    }

    // Duplicate the call.
    Node* new_lazy_frame_state = DuplicateFrameStateAndRename(
        frame_state, callee, target,
        (i == num_calls - 1) ? kChangeInPlace : kCloneState);
    inputs[0] = target;
    inputs[input_count - 3] = new_lazy_frame_state;
    inputs[input_count - 2] = effect;
    inputs[input_count - 1] = control;
    calls[i] = if_successes[i] =
        graph()->NewNode(node->op(), input_count, inputs);
  }

  // Mark the control inputs dead, so that we can kill the merge.
  node->ReplaceInput(input_count - 1, jsgraph()->Dead());
  callee->ReplaceInput(num_calls, jsgraph()->Dead());
  effect_phi->ReplaceInput(num_calls, jsgraph()->Dead());
  if (checkpoint) {
    checkpoint->ReplaceInput(2, jsgraph()->Dead());
  }

  merge->Kill();
  return true;
}

void JSInliningHeuristic::CreateOrReuseDispatch(Node* node, Node* callee,
                                                Candidate const& candidate,
                                                Node** if_successes,
                                                Node** calls, Node** inputs,
                                                int input_count) {
  SourcePositionTable::Scope position(
      source_positions_, source_positions_->GetSourcePosition(node));
  if (TryReuseDispatch(node, callee, if_successes, calls, inputs,
                       input_count)) {
    return;
  }

  Node* fallthrough_control = NodeProperties::GetControlInput(node);
  int const num_calls = candidate.num_functions;

  // Create the appropriate control flow to dispatch to the cloned calls.
  for (int i = 0; i < num_calls; ++i) {
    // TODO(2206): Make comparison be based on underlying SharedFunctionInfo
    // instead of the target JSFunction reference directly.
    Node* target = jsgraph()->Constant(candidate.functions[i].value());
    if (i != (num_calls - 1)) {
      Node* check =
          graph()->NewNode(simplified()->ReferenceEqual(), callee, target);
      Node* branch =
          graph()->NewNode(common()->Branch(), check, fallthrough_control);
      fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
      if_successes[i] = graph()->NewNode(common()->IfTrue(), branch);
    } else {
      if_successes[i] = fallthrough_control;
    }

    // Clone the calls for each branch.
    // The first input to the call is the actual target (which we specialize
    // to the known {target}); the last input is the control dependency.
    // We also specialize the new.target of JSConstruct {node}s if it refers
    // to the same node as the {node}'s target input, so that we can later
    // properly inline the JSCreate operations.
    if (node->opcode() == IrOpcode::kJSConstruct && inputs[0] == inputs[1]) {
      inputs[1] = target;
    }
    inputs[0] = target;
    inputs[input_count - 1] = if_successes[i];
    calls[i] = if_successes[i] =
        graph()->NewNode(node->op(), input_count, inputs);
  }
}

Reduction JSInliningHeuristic::InlineCandidate(Candidate const& candidate,
                                               bool small_function) {
  int const num_calls = candidate.num_functions;
  Node* const node = candidate.node;
  if (num_calls == 1) {
    Reduction const reduction = inliner_.ReduceJSCall(node);
    if (reduction.Changed()) {
      total_inlined_bytecode_size_ += candidate.bytecode[0].value().length();
    }
    return reduction;
  }

  // Expand the JSCall/JSConstruct node to a subgraph first if
  // we have multiple known target functions.
  DCHECK_LT(1, num_calls);
  Node* calls[kMaxCallPolymorphism + 1];
  Node* if_successes[kMaxCallPolymorphism];
  Node* callee = NodeProperties::GetValueInput(node, 0);

  // Setup the inputs for the cloned call nodes.
  int const input_count = node->InputCount();
  Node** inputs = graph()->zone()->NewArray<Node*>(input_count);
  for (int i = 0; i < input_count; ++i) {
    inputs[i] = node->InputAt(i);
  }

  // Create the appropriate control flow to dispatch to the cloned calls.
  CreateOrReuseDispatch(node, callee, candidate, if_successes, calls, inputs,
                        input_count);

  // Check if we have an exception projection for the call {node}.
  Node* if_exception = nullptr;
  if (NodeProperties::IsExceptionalCall(node, &if_exception)) {
    Node* if_exceptions[kMaxCallPolymorphism + 1];
    for (int i = 0; i < num_calls; ++i) {
      if_successes[i] = graph()->NewNode(common()->IfSuccess(), calls[i]);
      if_exceptions[i] =
          graph()->NewNode(common()->IfException(), calls[i], calls[i]);
    }

    // Morph the {if_exception} projection into a join.
    Node* exception_control =
        graph()->NewNode(common()->Merge(num_calls), num_calls, if_exceptions);
    if_exceptions[num_calls] = exception_control;
    Node* exception_effect = graph()->NewNode(common()->EffectPhi(num_calls),
                                              num_calls + 1, if_exceptions);
    Node* exception_value = graph()->NewNode(
        common()->Phi(MachineRepresentation::kTagged, num_calls), num_calls + 1,
        if_exceptions);
    ReplaceWithValue(if_exception, exception_value, exception_effect,
                     exception_control);
  }

  // Morph the original call site into a join of the dispatched call sites.
  Node* control =
      graph()->NewNode(common()->Merge(num_calls), num_calls, if_successes);
  calls[num_calls] = control;
  Node* effect =
      graph()->NewNode(common()->EffectPhi(num_calls), num_calls + 1, calls);
  Node* value =
      graph()->NewNode(common()->Phi(MachineRepresentation::kTagged, num_calls),
                       num_calls + 1, calls);
  ReplaceWithValue(node, value, effect, control);

  // Inline the individual, cloned call sites.
  for (int i = 0; i < num_calls && total_inlined_bytecode_size_ <
                                       FLAG_max_inlined_bytecode_size_absolute;
       ++i) {
    if (candidate.can_inline_function[i] &&
        (small_function || total_inlined_bytecode_size_ <
                               FLAG_max_inlined_bytecode_size_cumulative)) {
      Node* node = calls[i];
      Reduction const reduction = inliner_.ReduceJSCall(node);
      if (reduction.Changed()) {
        total_inlined_bytecode_size_ += candidate.bytecode[i]->length();
        // Killing the call node is not strictly necessary, but it is safer to
        // make sure we do not resurrect the node.
        node->Kill();
      }
    }
  }

  return Replace(value);
}

bool JSInliningHeuristic::CandidateCompare::operator()(
    const Candidate& left, const Candidate& right) const {
  if (right.frequency.IsUnknown()) {
    if (left.frequency.IsUnknown()) {
      // If left and right are both unknown then the ordering is indeterminate,
      // which breaks strict weak ordering requirements, so we fall back to the
      // node id as a tie breaker.
      return left.node->id() > right.node->id();
    }
    return true;
  } else if (left.frequency.IsUnknown()) {
    return false;
  } else if (left.frequency.value() > right.frequency.value()) {
    return true;
  } else if (left.frequency.value() < right.frequency.value()) {
    return false;
  } else {
    return left.node->id() > right.node->id();
  }
}

void JSInliningHeuristic::PrintCandidates() {
  StdoutStream os;
  os << candidates_.size() << " candidate(s) for inlining:" << std::endl;
  for (const Candidate& candidate : candidates_) {
    os << "- candidate: " << candidate.node->op()->mnemonic() << " node #"
       << candidate.node->id() << " with frequency " << candidate.frequency
       << ", " << candidate.num_functions << " target(s):" << std::endl;
    for (int i = 0; i < candidate.num_functions; ++i) {
      SharedFunctionInfoRef shared = candidate.functions[i].has_value()
                                         ? candidate.functions[i]->shared()
                                         : candidate.shared_info.value();
      os << "  - target: " << shared;
      if (candidate.bytecode[i].has_value()) {
        os << ", bytecode size: " << candidate.bytecode[i]->length();
      } else {
        os << ", no bytecode";
      }
      os << std::endl;
    }
  }
}

Graph* JSInliningHeuristic::graph() const { return jsgraph()->graph(); }

CommonOperatorBuilder* JSInliningHeuristic::common() const {
  return jsgraph()->common();
}

SimplifiedOperatorBuilder* JSInliningHeuristic::simplified() const {
  return jsgraph()->simplified();
}

#undef TRACE

}  // namespace compiler
}  // namespace internal
}  // namespace v8