summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/js-inlining-heuristic.cc
blob: 9774de28e5f23911e4e1ac1950ce63060fbe73e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/js-inlining-heuristic.h"

#include "src/compilation-info.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/simplified-operator.h"
#include "src/objects-inl.h"

namespace v8 {
namespace internal {
namespace compiler {

#define TRACE(...)                                      \
  do {                                                  \
    if (FLAG_trace_turbo_inlining) PrintF(__VA_ARGS__); \
  } while (false)

namespace {

int CollectFunctions(Node* node, Handle<JSFunction>* functions,
                     int functions_size, Handle<SharedFunctionInfo>& shared) {
  DCHECK_NE(0, functions_size);
  HeapObjectMatcher m(node);
  if (m.HasValue() && m.Value()->IsJSFunction()) {
    functions[0] = Handle<JSFunction>::cast(m.Value());
    return 1;
  }
  if (m.IsPhi()) {
    int const value_input_count = m.node()->op()->ValueInputCount();
    if (value_input_count > functions_size) return 0;
    for (int n = 0; n < value_input_count; ++n) {
      HeapObjectMatcher m(node->InputAt(n));
      if (!m.HasValue() || !m.Value()->IsJSFunction()) return 0;
      functions[n] = Handle<JSFunction>::cast(m.Value());
    }
    return value_input_count;
  }
  if (m.IsJSCreateClosure()) {
    CreateClosureParameters const& p = CreateClosureParametersOf(m.op());
    functions[0] = Handle<JSFunction>::null();
    shared = p.shared_info();
    return 1;
  }
  return 0;
}

bool CanInlineFunction(Handle<SharedFunctionInfo> shared) {
  // Built-in functions are handled by the JSBuiltinReducer.
  if (shared->HasBuiltinFunctionId()) return false;

  // Only choose user code for inlining.
  if (!shared->IsUserJavaScript()) return false;

  // Quick check on the size of the AST to avoid parsing large candidate.
  if (shared->ast_node_count() > FLAG_max_inlined_nodes) {
    return false;
  }

  // Avoid inlining across the boundary of asm.js code.
  if (shared->asm_function()) return false;
  return true;
}

}  // namespace

Reduction JSInliningHeuristic::Reduce(Node* node) {
  if (!IrOpcode::IsInlineeOpcode(node->opcode())) return NoChange();

  // Check if we already saw that {node} before, and if so, just skip it.
  if (seen_.find(node->id()) != seen_.end()) return NoChange();
  seen_.insert(node->id());

  // Check if the {node} is an appropriate candidate for inlining.
  Node* callee = node->InputAt(0);
  Candidate candidate;
  candidate.node = node;
  candidate.num_functions = CollectFunctions(
      callee, candidate.functions, kMaxCallPolymorphism, candidate.shared_info);
  if (candidate.num_functions == 0) {
    return NoChange();
  } else if (candidate.num_functions > 1 && !FLAG_polymorphic_inlining) {
    TRACE(
        "Not considering call site #%d:%s, because polymorphic inlining "
        "is disabled\n",
        node->id(), node->op()->mnemonic());
    return NoChange();
  }

  // Functions marked with %SetForceInlineFlag are immediately inlined.
  bool can_inline = false, force_inline = true;
  for (int i = 0; i < candidate.num_functions; ++i) {
    Handle<SharedFunctionInfo> shared =
        candidate.functions[i].is_null()
            ? candidate.shared_info
            : handle(candidate.functions[i]->shared());
    if (!shared->force_inline()) {
      force_inline = false;
    }
    if (CanInlineFunction(shared)) {
      can_inline = true;
    }
  }
  if (force_inline) return InlineCandidate(candidate);
  if (!can_inline) return NoChange();

  // Stop inlining once the maximum allowed level is reached.
  int level = 0;
  for (Node* frame_state = NodeProperties::GetFrameStateInput(node);
       frame_state->opcode() == IrOpcode::kFrameState;
       frame_state = NodeProperties::GetFrameStateInput(frame_state)) {
    FrameStateInfo const& frame_info = OpParameter<FrameStateInfo>(frame_state);
    if (FrameStateFunctionInfo::IsJSFunctionType(frame_info.type())) {
      if (++level > FLAG_max_inlining_levels) {
        TRACE(
            "Not considering call site #%d:%s, because inlining depth "
            "%d exceeds maximum allowed level %d\n",
            node->id(), node->op()->mnemonic(), level,
            FLAG_max_inlining_levels);
        return NoChange();
      }
    }
  }

  // Gather feedback on how often this call site has been hit before.
  if (node->opcode() == IrOpcode::kJSCall) {
    CallParameters const p = CallParametersOf(node->op());
    candidate.frequency = p.frequency();
  } else {
    ConstructParameters const p = ConstructParametersOf(node->op());
    candidate.frequency = p.frequency();
  }

  // Handling of special inlining modes right away:
  //  - For restricted inlining: stop all handling at this point.
  //  - For stressing inlining: immediately handle all functions.
  switch (mode_) {
    case kRestrictedInlining:
      return NoChange();
    case kStressInlining:
      return InlineCandidate(candidate);
    case kGeneralInlining:
      break;
  }

  // In the general case we remember the candidate for later.
  candidates_.insert(candidate);
  return NoChange();
}

void JSInliningHeuristic::Finalize() {
  if (candidates_.empty()) return;  // Nothing to do without candidates.
  if (FLAG_trace_turbo_inlining) PrintCandidates();

  // We inline at most one candidate in every iteration of the fixpoint.
  // This is to ensure that we don't consume the full inlining budget
  // on things that aren't called very often.
  // TODO(bmeurer): Use std::priority_queue instead of std::set here.
  while (!candidates_.empty()) {
    if (cumulative_count_ > FLAG_max_inlined_nodes_cumulative) return;
    auto i = candidates_.begin();
    Candidate candidate = *i;
    candidates_.erase(i);
    // Only include candidates that we've successfully called before.
    // The candidate list is sorted, so we can exit at the first occurance of
    // frequency 0 in the list.
    if (candidate.frequency <= 0.0) return;
    // Make sure we don't try to inline dead candidate nodes.
    if (!candidate.node->IsDead()) {
      Reduction const reduction = InlineCandidate(candidate);
      if (reduction.Changed()) return;
    }
  }
}

Reduction JSInliningHeuristic::InlineCandidate(Candidate const& candidate) {
  int const num_calls = candidate.num_functions;
  Node* const node = candidate.node;
  if (num_calls == 1) {
    Handle<SharedFunctionInfo> shared =
        candidate.functions[0].is_null()
            ? candidate.shared_info
            : handle(candidate.functions[0]->shared());
    Reduction const reduction = inliner_.ReduceJSCall(node);
    if (reduction.Changed()) {
      cumulative_count_ += shared->ast_node_count();
    }
    return reduction;
  }

  // Expand the JSCall/JSConstruct node to a subgraph first if
  // we have multiple known target functions.
  DCHECK_LT(1, num_calls);
  Node* calls[kMaxCallPolymorphism + 1];
  Node* if_successes[kMaxCallPolymorphism];
  Node* callee = NodeProperties::GetValueInput(node, 0);
  Node* fallthrough_control = NodeProperties::GetControlInput(node);

  // Setup the inputs for the cloned call nodes.
  int const input_count = node->InputCount();
  Node** inputs = graph()->zone()->NewArray<Node*>(input_count);
  for (int i = 0; i < input_count; ++i) {
    inputs[i] = node->InputAt(i);
  }

  // Create the appropriate control flow to dispatch to the cloned calls.
  for (int i = 0; i < num_calls; ++i) {
    // TODO(2206): Make comparison be based on underlying SharedFunctionInfo
    // instead of the target JSFunction reference directly.
    Node* target = jsgraph()->HeapConstant(candidate.functions[i]);
    if (i != (num_calls - 1)) {
      Node* check =
          graph()->NewNode(simplified()->ReferenceEqual(), callee, target);
      Node* branch =
          graph()->NewNode(common()->Branch(), check, fallthrough_control);
      fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
      if_successes[i] = graph()->NewNode(common()->IfTrue(), branch);
    } else {
      if_successes[i] = fallthrough_control;
    }

    // The first input to the call is the actual target (which we specialize
    // to the known {target}); the last input is the control dependency.
    inputs[0] = target;
    inputs[input_count - 1] = if_successes[i];
    calls[i] = if_successes[i] =
        graph()->NewNode(node->op(), input_count, inputs);
  }

  // Check if we have an exception projection for the call {node}.
  Node* if_exception = nullptr;
  if (NodeProperties::IsExceptionalCall(node, &if_exception)) {
    Node* if_exceptions[kMaxCallPolymorphism + 1];
    for (int i = 0; i < num_calls; ++i) {
      if_successes[i] = graph()->NewNode(common()->IfSuccess(), calls[i]);
      if_exceptions[i] =
          graph()->NewNode(common()->IfException(), calls[i], calls[i]);
    }

    // Morph the {if_exception} projection into a join.
    Node* exception_control =
        graph()->NewNode(common()->Merge(num_calls), num_calls, if_exceptions);
    if_exceptions[num_calls] = exception_control;
    Node* exception_effect = graph()->NewNode(common()->EffectPhi(num_calls),
                                              num_calls + 1, if_exceptions);
    Node* exception_value = graph()->NewNode(
        common()->Phi(MachineRepresentation::kTagged, num_calls), num_calls + 1,
        if_exceptions);
    ReplaceWithValue(if_exception, exception_value, exception_effect,
                     exception_control);
  }

  // Morph the original call site into a join of the dispatched call sites.
  Node* control =
      graph()->NewNode(common()->Merge(num_calls), num_calls, if_successes);
  calls[num_calls] = control;
  Node* effect =
      graph()->NewNode(common()->EffectPhi(num_calls), num_calls + 1, calls);
  Node* value =
      graph()->NewNode(common()->Phi(MachineRepresentation::kTagged, num_calls),
                       num_calls + 1, calls);
  ReplaceWithValue(node, value, effect, control);

  // Inline the individual, cloned call sites.
  for (int i = 0; i < num_calls; ++i) {
    Handle<JSFunction> function = candidate.functions[i];
    Node* node = calls[i];
    Reduction const reduction = inliner_.ReduceJSCall(node);
    if (reduction.Changed()) {
      // Killing the call node is not strictly necessary, but it is safer to
      // make sure we do not resurrect the node.
      node->Kill();
      cumulative_count_ += function->shared()->ast_node_count();
    }
  }

  return Replace(value);
}

bool JSInliningHeuristic::CandidateCompare::operator()(
    const Candidate& left, const Candidate& right) const {
  if (left.frequency > right.frequency) {
    return true;
  } else if (left.frequency < right.frequency) {
    return false;
  } else {
    return left.node->id() > right.node->id();
  }
}

void JSInliningHeuristic::PrintCandidates() {
  PrintF("Candidates for inlining (size=%zu):\n", candidates_.size());
  for (const Candidate& candidate : candidates_) {
    PrintF("  #%d:%s, frequency:%g\n", candidate.node->id(),
           candidate.node->op()->mnemonic(), candidate.frequency);
    for (int i = 0; i < candidate.num_functions; ++i) {
      Handle<SharedFunctionInfo> shared =
          candidate.functions[i].is_null()
              ? candidate.shared_info
              : handle(candidate.functions[i]->shared());
      PrintF("  - size:%d, name: %s\n", shared->ast_node_count(),
             shared->DebugName()->ToCString().get());
    }
  }
}

Graph* JSInliningHeuristic::graph() const { return jsgraph()->graph(); }

CommonOperatorBuilder* JSInliningHeuristic::common() const {
  return jsgraph()->common();
}

SimplifiedOperatorBuilder* JSInliningHeuristic::simplified() const {
  return jsgraph()->simplified();
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8