summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/instruction.cc
blob: 83ed28fb5374635253fc38a31ffe80752a89974a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/instruction.h"

#include <iomanip>

#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/schedule.h"
#include "src/compiler/state-values-utils.h"
#include "src/source-position.h"

namespace v8 {
namespace internal {
namespace compiler {

const RegisterConfiguration* (*GetRegConfig)() = RegisterConfiguration::Default;

FlagsCondition CommuteFlagsCondition(FlagsCondition condition) {
  switch (condition) {
    case kSignedLessThan:
      return kSignedGreaterThan;
    case kSignedGreaterThanOrEqual:
      return kSignedLessThanOrEqual;
    case kSignedLessThanOrEqual:
      return kSignedGreaterThanOrEqual;
    case kSignedGreaterThan:
      return kSignedLessThan;
    case kUnsignedLessThan:
      return kUnsignedGreaterThan;
    case kUnsignedGreaterThanOrEqual:
      return kUnsignedLessThanOrEqual;
    case kUnsignedLessThanOrEqual:
      return kUnsignedGreaterThanOrEqual;
    case kUnsignedGreaterThan:
      return kUnsignedLessThan;
    case kFloatLessThanOrUnordered:
      return kFloatGreaterThanOrUnordered;
    case kFloatGreaterThanOrEqual:
      return kFloatLessThanOrEqual;
    case kFloatLessThanOrEqual:
      return kFloatGreaterThanOrEqual;
    case kFloatGreaterThanOrUnordered:
      return kFloatLessThanOrUnordered;
    case kFloatLessThan:
      return kFloatGreaterThan;
    case kFloatGreaterThanOrEqualOrUnordered:
      return kFloatLessThanOrEqualOrUnordered;
    case kFloatLessThanOrEqualOrUnordered:
      return kFloatGreaterThanOrEqualOrUnordered;
    case kFloatGreaterThan:
      return kFloatLessThan;
    case kPositiveOrZero:
    case kNegative:
      UNREACHABLE();
      break;
    case kEqual:
    case kNotEqual:
    case kOverflow:
    case kNotOverflow:
    case kUnorderedEqual:
    case kUnorderedNotEqual:
      return condition;
  }
  UNREACHABLE();
}

bool InstructionOperand::InterferesWith(const InstructionOperand& other) const {
  if (kSimpleFPAliasing || !this->IsFPLocationOperand() ||
      !other.IsFPLocationOperand())
    return EqualsCanonicalized(other);
  // Aliasing is complex and both operands are fp locations.
  const LocationOperand& loc = *LocationOperand::cast(this);
  const LocationOperand& other_loc = LocationOperand::cast(other);
  LocationOperand::LocationKind kind = loc.location_kind();
  LocationOperand::LocationKind other_kind = other_loc.location_kind();
  if (kind != other_kind) return false;
  MachineRepresentation rep = loc.representation();
  MachineRepresentation other_rep = other_loc.representation();
  if (rep == other_rep) return EqualsCanonicalized(other);
  if (kind == LocationOperand::REGISTER) {
    // FP register-register interference.
    return GetRegConfig()->AreAliases(rep, loc.register_code(), other_rep,
                                      other_loc.register_code());
  } else {
    // FP slot-slot interference. Slots of different FP reps can alias because
    // the gap resolver may break a move into 2 or 4 equivalent smaller moves.
    DCHECK_EQ(LocationOperand::STACK_SLOT, kind);
    int index_hi = loc.index();
    int index_lo = index_hi - (1 << ElementSizeLog2Of(rep)) / kPointerSize + 1;
    int other_index_hi = other_loc.index();
    int other_index_lo =
        other_index_hi - (1 << ElementSizeLog2Of(other_rep)) / kPointerSize + 1;
    return other_index_hi >= index_lo && index_hi >= other_index_lo;
  }
  return false;
}

bool LocationOperand::IsCompatible(LocationOperand* op) {
  if (IsRegister() || IsStackSlot()) {
    return op->IsRegister() || op->IsStackSlot();
  } else if (kSimpleFPAliasing) {
    // A backend may choose to generate the same instruction sequence regardless
    // of the FP representation. As a result, we can relax the compatibility and
    // allow a Double to be moved in a Float for example. However, this is only
    // allowed if registers do not overlap.
    return (IsFPRegister() || IsFPStackSlot()) &&
           (op->IsFPRegister() || op->IsFPStackSlot());
  } else if (IsFloatRegister() || IsFloatStackSlot()) {
    return op->IsFloatRegister() || op->IsFloatStackSlot();
  } else if (IsDoubleRegister() || IsDoubleStackSlot()) {
    return op->IsDoubleRegister() || op->IsDoubleStackSlot();
  } else {
    return (IsSimd128Register() || IsSimd128StackSlot()) &&
           (op->IsSimd128Register() || op->IsSimd128StackSlot());
  }
}

void InstructionOperand::Print(const RegisterConfiguration* config) const {
  PrintableInstructionOperand wrapper;
  wrapper.register_configuration_ = config;
  wrapper.op_ = *this;
  StdoutStream{} << wrapper << std::endl;
}

void InstructionOperand::Print() const { Print(GetRegConfig()); }

std::ostream& operator<<(std::ostream& os,
                         const PrintableInstructionOperand& printable) {
  const InstructionOperand& op = printable.op_;
  const RegisterConfiguration* conf = printable.register_configuration_;
  switch (op.kind()) {
    case InstructionOperand::UNALLOCATED: {
      const UnallocatedOperand* unalloc = UnallocatedOperand::cast(&op);
      os << "v" << unalloc->virtual_register();
      if (unalloc->basic_policy() == UnallocatedOperand::FIXED_SLOT) {
        return os << "(=" << unalloc->fixed_slot_index() << "S)";
      }
      switch (unalloc->extended_policy()) {
        case UnallocatedOperand::NONE:
          return os;
        case UnallocatedOperand::FIXED_REGISTER:
          return os << "(="
                    << conf->GetGeneralRegisterName(
                           unalloc->fixed_register_index())
                    << ")";
        case UnallocatedOperand::FIXED_FP_REGISTER:
          return os << "(="
                    << conf->GetDoubleRegisterName(
                           unalloc->fixed_register_index())
                    << ")";
        case UnallocatedOperand::MUST_HAVE_REGISTER:
          return os << "(R)";
        case UnallocatedOperand::MUST_HAVE_SLOT:
          return os << "(S)";
        case UnallocatedOperand::SAME_AS_FIRST_INPUT:
          return os << "(1)";
        case UnallocatedOperand::REGISTER_OR_SLOT:
          return os << "(-)";
        case UnallocatedOperand::REGISTER_OR_SLOT_OR_CONSTANT:
          return os << "(*)";
      }
    }
    case InstructionOperand::CONSTANT:
      return os << "[constant:" << ConstantOperand::cast(op).virtual_register()
                << "]";
    case InstructionOperand::IMMEDIATE: {
      ImmediateOperand imm = ImmediateOperand::cast(op);
      switch (imm.type()) {
        case ImmediateOperand::INLINE:
          return os << "#" << imm.inline_value();
        case ImmediateOperand::INDEXED:
          return os << "[immediate:" << imm.indexed_value() << "]";
      }
    }
    case InstructionOperand::EXPLICIT:
    case InstructionOperand::ALLOCATED: {
      LocationOperand allocated = LocationOperand::cast(op);
      if (op.IsStackSlot()) {
        os << "[stack:" << allocated.index();
      } else if (op.IsFPStackSlot()) {
        os << "[fp_stack:" << allocated.index();
      } else if (op.IsRegister()) {
        os << "["
           << GetRegConfig()->GetGeneralOrSpecialRegisterName(
                  allocated.register_code())
           << "|R";
      } else if (op.IsDoubleRegister()) {
        os << "["
           << GetRegConfig()->GetDoubleRegisterName(allocated.register_code())
           << "|R";
      } else if (op.IsFloatRegister()) {
        os << "["
           << GetRegConfig()->GetFloatRegisterName(allocated.register_code())
           << "|R";
      } else {
        DCHECK(op.IsSimd128Register());
        os << "["
           << GetRegConfig()->GetSimd128RegisterName(allocated.register_code())
           << "|R";
      }
      if (allocated.IsExplicit()) {
        os << "|E";
      }
      switch (allocated.representation()) {
        case MachineRepresentation::kNone:
          os << "|-";
          break;
        case MachineRepresentation::kBit:
          os << "|b";
          break;
        case MachineRepresentation::kWord8:
          os << "|w8";
          break;
        case MachineRepresentation::kWord16:
          os << "|w16";
          break;
        case MachineRepresentation::kWord32:
          os << "|w32";
          break;
        case MachineRepresentation::kWord64:
          os << "|w64";
          break;
        case MachineRepresentation::kFloat32:
          os << "|f32";
          break;
        case MachineRepresentation::kFloat64:
          os << "|f64";
          break;
        case MachineRepresentation::kSimd128:
          os << "|s128";
          break;
        case MachineRepresentation::kTaggedSigned:
          os << "|ts";
          break;
        case MachineRepresentation::kTaggedPointer:
          os << "|tp";
          break;
        case MachineRepresentation::kTagged:
          os << "|t";
          break;
      }
      return os << "]";
    }
    case InstructionOperand::INVALID:
      return os << "(x)";
  }
  UNREACHABLE();
}

void MoveOperands::Print(const RegisterConfiguration* config) const {
  StdoutStream os;
  PrintableInstructionOperand wrapper;
  wrapper.register_configuration_ = config;
  wrapper.op_ = destination();
  os << wrapper << " = ";
  wrapper.op_ = source();
  os << wrapper << std::endl;
}

void MoveOperands::Print() const { Print(GetRegConfig()); }

std::ostream& operator<<(std::ostream& os,
                         const PrintableMoveOperands& printable) {
  const MoveOperands& mo = *printable.move_operands_;
  PrintableInstructionOperand printable_op = {printable.register_configuration_,
                                              mo.destination()};
  os << printable_op;
  if (!mo.source().Equals(mo.destination())) {
    printable_op.op_ = mo.source();
    os << " = " << printable_op;
  }
  return os << ";";
}


bool ParallelMove::IsRedundant() const {
  for (MoveOperands* move : *this) {
    if (!move->IsRedundant()) return false;
  }
  return true;
}

void ParallelMove::PrepareInsertAfter(
    MoveOperands* move, ZoneVector<MoveOperands*>* to_eliminate) const {
  bool no_aliasing =
      kSimpleFPAliasing || !move->destination().IsFPLocationOperand();
  MoveOperands* replacement = nullptr;
  MoveOperands* eliminated = nullptr;
  for (MoveOperands* curr : *this) {
    if (curr->IsEliminated()) continue;
    if (curr->destination().EqualsCanonicalized(move->source())) {
      // We must replace move's source with curr's destination in order to
      // insert it into this ParallelMove.
      DCHECK(!replacement);
      replacement = curr;
      if (no_aliasing && eliminated != nullptr) break;
    } else if (curr->destination().InterferesWith(move->destination())) {
      // We can eliminate curr, since move overwrites at least a part of its
      // destination, implying its value is no longer live.
      eliminated = curr;
      to_eliminate->push_back(curr);
      if (no_aliasing && replacement != nullptr) break;
    }
  }
  if (replacement != nullptr) move->set_source(replacement->source());
}

ExplicitOperand::ExplicitOperand(LocationKind kind, MachineRepresentation rep,
                                 int index)
    : LocationOperand(EXPLICIT, kind, rep, index) {
  DCHECK_IMPLIES(kind == REGISTER && !IsFloatingPoint(rep),
                 GetRegConfig()->IsAllocatableGeneralCode(index));
  DCHECK_IMPLIES(kind == REGISTER && rep == MachineRepresentation::kFloat32,
                 GetRegConfig()->IsAllocatableFloatCode(index));
  DCHECK_IMPLIES(kind == REGISTER && (rep == MachineRepresentation::kFloat64),
                 GetRegConfig()->IsAllocatableDoubleCode(index));
}

Instruction::Instruction(InstructionCode opcode)
    : opcode_(opcode),
      bit_field_(OutputCountField::encode(0) | InputCountField::encode(0) |
                 TempCountField::encode(0) | IsCallField::encode(false)),
      reference_map_(nullptr),
      block_(nullptr) {
  parallel_moves_[0] = nullptr;
  parallel_moves_[1] = nullptr;
}

Instruction::Instruction(InstructionCode opcode, size_t output_count,
                         InstructionOperand* outputs, size_t input_count,
                         InstructionOperand* inputs, size_t temp_count,
                         InstructionOperand* temps)
    : opcode_(opcode),
      bit_field_(OutputCountField::encode(output_count) |
                 InputCountField::encode(input_count) |
                 TempCountField::encode(temp_count) |
                 IsCallField::encode(false)),
      reference_map_(nullptr),
      block_(nullptr) {
  parallel_moves_[0] = nullptr;
  parallel_moves_[1] = nullptr;
  size_t offset = 0;
  for (size_t i = 0; i < output_count; ++i) {
    DCHECK(!outputs[i].IsInvalid());
    operands_[offset++] = outputs[i];
  }
  for (size_t i = 0; i < input_count; ++i) {
    DCHECK(!inputs[i].IsInvalid());
    operands_[offset++] = inputs[i];
  }
  for (size_t i = 0; i < temp_count; ++i) {
    DCHECK(!temps[i].IsInvalid());
    operands_[offset++] = temps[i];
  }
}


bool Instruction::AreMovesRedundant() const {
  for (int i = Instruction::FIRST_GAP_POSITION;
       i <= Instruction::LAST_GAP_POSITION; i++) {
    if (parallel_moves_[i] != nullptr && !parallel_moves_[i]->IsRedundant()) {
      return false;
    }
  }
  return true;
}

void Instruction::Print(const RegisterConfiguration* config) const {
  PrintableInstruction wrapper;
  wrapper.instr_ = this;
  wrapper.register_configuration_ = config;
  StdoutStream{} << wrapper << std::endl;
}

void Instruction::Print() const { Print(GetRegConfig()); }

std::ostream& operator<<(std::ostream& os,
                         const PrintableParallelMove& printable) {
  const ParallelMove& pm = *printable.parallel_move_;
  bool first = true;
  for (MoveOperands* move : pm) {
    if (move->IsEliminated()) continue;
    if (!first) os << " ";
    first = false;
    PrintableMoveOperands pmo = {printable.register_configuration_, move};
    os << pmo;
  }
  return os;
}


void ReferenceMap::RecordReference(const AllocatedOperand& op) {
  // Do not record arguments as pointers.
  if (op.IsStackSlot() && LocationOperand::cast(op).index() < 0) return;
  DCHECK(!op.IsFPRegister() && !op.IsFPStackSlot());
  reference_operands_.push_back(op);
}


std::ostream& operator<<(std::ostream& os, const ReferenceMap& pm) {
  os << "{";
  bool first = true;
  PrintableInstructionOperand poi = {GetRegConfig(), InstructionOperand()};
  for (const InstructionOperand& op : pm.reference_operands_) {
    if (!first) {
      os << ";";
    } else {
      first = false;
    }
    poi.op_ = op;
    os << poi;
  }
  return os << "}";
}


std::ostream& operator<<(std::ostream& os, const ArchOpcode& ao) {
  switch (ao) {
#define CASE(Name) \
  case k##Name:    \
    return os << #Name;
    ARCH_OPCODE_LIST(CASE)
#undef CASE
  }
  UNREACHABLE();
}


std::ostream& operator<<(std::ostream& os, const AddressingMode& am) {
  switch (am) {
    case kMode_None:
      return os;
#define CASE(Name)   \
  case kMode_##Name: \
    return os << #Name;
      TARGET_ADDRESSING_MODE_LIST(CASE)
#undef CASE
  }
  UNREACHABLE();
}


std::ostream& operator<<(std::ostream& os, const FlagsMode& fm) {
  switch (fm) {
    case kFlags_none:
      return os;
    case kFlags_branch:
      return os << "branch";
    case kFlags_branch_and_poison:
      return os << "branch_and_poison";
    case kFlags_deoptimize:
      return os << "deoptimize";
    case kFlags_deoptimize_and_poison:
      return os << "deoptimize_and_poison";
    case kFlags_set:
      return os << "set";
    case kFlags_trap:
      return os << "trap";
  }
  UNREACHABLE();
}


std::ostream& operator<<(std::ostream& os, const FlagsCondition& fc) {
  switch (fc) {
    case kEqual:
      return os << "equal";
    case kNotEqual:
      return os << "not equal";
    case kSignedLessThan:
      return os << "signed less than";
    case kSignedGreaterThanOrEqual:
      return os << "signed greater than or equal";
    case kSignedLessThanOrEqual:
      return os << "signed less than or equal";
    case kSignedGreaterThan:
      return os << "signed greater than";
    case kUnsignedLessThan:
      return os << "unsigned less than";
    case kUnsignedGreaterThanOrEqual:
      return os << "unsigned greater than or equal";
    case kUnsignedLessThanOrEqual:
      return os << "unsigned less than or equal";
    case kUnsignedGreaterThan:
      return os << "unsigned greater than";
    case kFloatLessThanOrUnordered:
      return os << "less than or unordered (FP)";
    case kFloatGreaterThanOrEqual:
      return os << "greater than or equal (FP)";
    case kFloatLessThanOrEqual:
      return os << "less than or equal (FP)";
    case kFloatGreaterThanOrUnordered:
      return os << "greater than or unordered (FP)";
    case kFloatLessThan:
      return os << "less than (FP)";
    case kFloatGreaterThanOrEqualOrUnordered:
      return os << "greater than, equal or unordered (FP)";
    case kFloatLessThanOrEqualOrUnordered:
      return os << "less than, equal or unordered (FP)";
    case kFloatGreaterThan:
      return os << "greater than (FP)";
    case kUnorderedEqual:
      return os << "unordered equal";
    case kUnorderedNotEqual:
      return os << "unordered not equal";
    case kOverflow:
      return os << "overflow";
    case kNotOverflow:
      return os << "not overflow";
    case kPositiveOrZero:
      return os << "positive or zero";
    case kNegative:
      return os << "negative";
  }
  UNREACHABLE();
}


std::ostream& operator<<(std::ostream& os,
                         const PrintableInstruction& printable) {
  const Instruction& instr = *printable.instr_;
  PrintableInstructionOperand printable_op = {printable.register_configuration_,
                                              InstructionOperand()};
  os << "gap ";
  for (int i = Instruction::FIRST_GAP_POSITION;
       i <= Instruction::LAST_GAP_POSITION; i++) {
    os << "(";
    if (instr.parallel_moves()[i] != nullptr) {
      PrintableParallelMove ppm = {printable.register_configuration_,
                                   instr.parallel_moves()[i]};
      os << ppm;
    }
    os << ") ";
  }
  os << "\n          ";

  if (instr.OutputCount() > 1) os << "(";
  for (size_t i = 0; i < instr.OutputCount(); i++) {
    if (i > 0) os << ", ";
    printable_op.op_ = *instr.OutputAt(i);
    os << printable_op;
  }

  if (instr.OutputCount() > 1) os << ") = ";
  if (instr.OutputCount() == 1) os << " = ";

  os << ArchOpcodeField::decode(instr.opcode());
  AddressingMode am = AddressingModeField::decode(instr.opcode());
  if (am != kMode_None) {
    os << " : " << AddressingModeField::decode(instr.opcode());
  }
  FlagsMode fm = FlagsModeField::decode(instr.opcode());
  if (fm != kFlags_none) {
    os << " && " << fm << " if " << FlagsConditionField::decode(instr.opcode());
  }
  if (instr.InputCount() > 0) {
    for (size_t i = 0; i < instr.InputCount(); i++) {
      printable_op.op_ = *instr.InputAt(i);
      os << " " << printable_op;
    }
  }
  return os;
}


Constant::Constant(int32_t v) : type_(kInt32), value_(v) {}

Constant::Constant(RelocatablePtrConstantInfo info) {
  if (info.type() == RelocatablePtrConstantInfo::kInt32) {
    type_ = kInt32;
  } else if (info.type() == RelocatablePtrConstantInfo::kInt64) {
    type_ = kInt64;
  } else {
    UNREACHABLE();
  }
  value_ = info.value();
  rmode_ = info.rmode();
}

Handle<HeapObject> Constant::ToHeapObject() const {
  DCHECK_EQ(kHeapObject, type());
  Handle<HeapObject> value(
      bit_cast<HeapObject**>(static_cast<intptr_t>(value_)));
  return value;
}

Handle<Code> Constant::ToCode() const {
  DCHECK_EQ(kHeapObject, type());
  Handle<Code> value(bit_cast<Code**>(static_cast<intptr_t>(value_)));
  return value;
}

std::ostream& operator<<(std::ostream& os, const Constant& constant) {
  switch (constant.type()) {
    case Constant::kInt32:
      return os << constant.ToInt32();
    case Constant::kInt64:
      return os << constant.ToInt64() << "l";
    case Constant::kFloat32:
      return os << constant.ToFloat32() << "f";
    case Constant::kFloat64:
      return os << constant.ToFloat64().value();
    case Constant::kExternalReference:
      return os << constant.ToExternalReference().address();
    case Constant::kHeapObject:
      return os << Brief(*constant.ToHeapObject());
    case Constant::kRpoNumber:
      return os << "RPO" << constant.ToRpoNumber().ToInt();
  }
  UNREACHABLE();
}


PhiInstruction::PhiInstruction(Zone* zone, int virtual_register,
                               size_t input_count)
    : virtual_register_(virtual_register),
      output_(UnallocatedOperand(UnallocatedOperand::NONE, virtual_register)),
      operands_(input_count, InstructionOperand::kInvalidVirtualRegister,
                zone) {}


void PhiInstruction::SetInput(size_t offset, int virtual_register) {
  DCHECK_EQ(InstructionOperand::kInvalidVirtualRegister, operands_[offset]);
  operands_[offset] = virtual_register;
}

void PhiInstruction::RenameInput(size_t offset, int virtual_register) {
  DCHECK_NE(InstructionOperand::kInvalidVirtualRegister, operands_[offset]);
  operands_[offset] = virtual_register;
}

InstructionBlock::InstructionBlock(Zone* zone, RpoNumber rpo_number,
                                   RpoNumber loop_header, RpoNumber loop_end,
                                   bool deferred, bool handler)
    : successors_(zone),
      predecessors_(zone),
      phis_(zone),
      ao_number_(rpo_number),
      rpo_number_(rpo_number),
      loop_header_(loop_header),
      loop_end_(loop_end),
      code_start_(-1),
      code_end_(-1),
      deferred_(deferred),
      handler_(handler),
      needs_frame_(false),
      must_construct_frame_(false),
      must_deconstruct_frame_(false) {}

size_t InstructionBlock::PredecessorIndexOf(RpoNumber rpo_number) const {
  size_t j = 0;
  for (InstructionBlock::Predecessors::const_iterator i = predecessors_.begin();
       i != predecessors_.end(); ++i, ++j) {
    if (*i == rpo_number) break;
  }
  return j;
}


static RpoNumber GetRpo(const BasicBlock* block) {
  if (block == nullptr) return RpoNumber::Invalid();
  return RpoNumber::FromInt(block->rpo_number());
}


static RpoNumber GetLoopEndRpo(const BasicBlock* block) {
  if (!block->IsLoopHeader()) return RpoNumber::Invalid();
  return RpoNumber::FromInt(block->loop_end()->rpo_number());
}


static InstructionBlock* InstructionBlockFor(Zone* zone,
                                             const BasicBlock* block) {
  bool is_handler =
      !block->empty() && block->front()->opcode() == IrOpcode::kIfException;
  InstructionBlock* instr_block = new (zone)
      InstructionBlock(zone, GetRpo(block), GetRpo(block->loop_header()),
                       GetLoopEndRpo(block), block->deferred(), is_handler);
  // Map successors and precessors
  instr_block->successors().reserve(block->SuccessorCount());
  for (BasicBlock* successor : block->successors()) {
    instr_block->successors().push_back(GetRpo(successor));
  }
  instr_block->predecessors().reserve(block->PredecessorCount());
  for (BasicBlock* predecessor : block->predecessors()) {
    instr_block->predecessors().push_back(GetRpo(predecessor));
  }
  return instr_block;
}

std::ostream& operator<<(std::ostream& os,
                         const PrintableInstructionBlock& printable_block) {
  const InstructionBlock* block = printable_block.block_;
  const RegisterConfiguration* config = printable_block.register_configuration_;
  const InstructionSequence* code = printable_block.code_;

  os << "B" << block->rpo_number();
  os << ": AO#" << block->ao_number();
  if (block->IsDeferred()) os << " (deferred)";
  if (!block->needs_frame()) os << " (no frame)";
  if (block->must_construct_frame()) os << " (construct frame)";
  if (block->must_deconstruct_frame()) os << " (deconstruct frame)";
  if (block->IsLoopHeader()) {
    os << " loop blocks: [" << block->rpo_number() << ", " << block->loop_end()
       << ")";
  }
  os << "  instructions: [" << block->code_start() << ", " << block->code_end()
     << ")" << std::endl
     << " predecessors:";

  for (RpoNumber pred : block->predecessors()) {
    os << " B" << pred.ToInt();
  }
  os << std::endl;

  for (const PhiInstruction* phi : block->phis()) {
    PrintableInstructionOperand printable_op = {config, phi->output()};
    os << "     phi: " << printable_op << " =";
    for (int input : phi->operands()) {
      os << " v" << input;
    }
    os << std::endl;
  }

  PrintableInstruction printable_instr;
  printable_instr.register_configuration_ = config;
  for (int j = block->first_instruction_index();
       j <= block->last_instruction_index(); j++) {
    printable_instr.instr_ = code->InstructionAt(j);
    os << "   " << std::setw(5) << j << ": " << printable_instr << std::endl;
  }

  os << " successors:";
  for (RpoNumber succ : block->successors()) {
    os << " B" << succ.ToInt();
  }
  os << std::endl;
  return os;
}

InstructionBlocks* InstructionSequence::InstructionBlocksFor(
    Zone* zone, const Schedule* schedule) {
  InstructionBlocks* blocks = zone->NewArray<InstructionBlocks>(1);
  new (blocks) InstructionBlocks(
      static_cast<int>(schedule->rpo_order()->size()), nullptr, zone);
  size_t rpo_number = 0;
  for (BasicBlockVector::const_iterator it = schedule->rpo_order()->begin();
       it != schedule->rpo_order()->end(); ++it, ++rpo_number) {
    DCHECK(!(*blocks)[rpo_number]);
    DCHECK(GetRpo(*it).ToSize() == rpo_number);
    (*blocks)[rpo_number] = InstructionBlockFor(zone, *it);
  }
  ComputeAssemblyOrder(blocks);
  return blocks;
}

void InstructionSequence::ValidateEdgeSplitForm() const {
  // Validate blocks are in edge-split form: no block with multiple successors
  // has an edge to a block (== a successor) with more than one predecessors.
  for (const InstructionBlock* block : instruction_blocks()) {
    if (block->SuccessorCount() > 1) {
      for (const RpoNumber& successor_id : block->successors()) {
        const InstructionBlock* successor = InstructionBlockAt(successor_id);
        // Expect precisely one predecessor: "block".
        CHECK(successor->PredecessorCount() == 1 &&
              successor->predecessors()[0] == block->rpo_number());
      }
    }
  }
}

void InstructionSequence::ValidateDeferredBlockExitPaths() const {
  // A deferred block with more than one successor must have all its successors
  // deferred.
  for (const InstructionBlock* block : instruction_blocks()) {
    if (!block->IsDeferred() || block->SuccessorCount() <= 1) continue;
    for (RpoNumber successor_id : block->successors()) {
      CHECK(InstructionBlockAt(successor_id)->IsDeferred());
    }
  }
}

void InstructionSequence::ValidateDeferredBlockEntryPaths() const {
  // If a deferred block has multiple predecessors, they have to
  // all be deferred. Otherwise, we can run into a situation where a range
  // that spills only in deferred blocks inserts its spill in the block, but
  // other ranges need moves inserted by ResolveControlFlow in the predecessors,
  // which may clobber the register of this range.
  for (const InstructionBlock* block : instruction_blocks()) {
    if (!block->IsDeferred() || block->PredecessorCount() <= 1) continue;
    for (RpoNumber predecessor_id : block->predecessors()) {
      CHECK(InstructionBlockAt(predecessor_id)->IsDeferred());
    }
  }
}

void InstructionSequence::ValidateSSA() const {
  // TODO(mtrofin): We could use a local zone here instead.
  BitVector definitions(VirtualRegisterCount(), zone());
  for (const Instruction* instruction : *this) {
    for (size_t i = 0; i < instruction->OutputCount(); ++i) {
      const InstructionOperand* output = instruction->OutputAt(i);
      int vreg = (output->IsConstant())
                     ? ConstantOperand::cast(output)->virtual_register()
                     : UnallocatedOperand::cast(output)->virtual_register();
      CHECK(!definitions.Contains(vreg));
      definitions.Add(vreg);
    }
  }
}

void InstructionSequence::ComputeAssemblyOrder(InstructionBlocks* blocks) {
  int ao = 0;
  for (InstructionBlock* const block : *blocks) {
    if (!block->IsDeferred()) {
      block->set_ao_number(RpoNumber::FromInt(ao++));
    }
  }
  for (InstructionBlock* const block : *blocks) {
    if (block->IsDeferred()) {
      block->set_ao_number(RpoNumber::FromInt(ao++));
    }
  }
}

InstructionSequence::InstructionSequence(Isolate* isolate,
                                         Zone* instruction_zone,
                                         InstructionBlocks* instruction_blocks)
    : isolate_(isolate),
      zone_(instruction_zone),
      instruction_blocks_(instruction_blocks),
      source_positions_(zone()),
      constants_(ConstantMap::key_compare(),
                 ConstantMap::allocator_type(zone())),
      immediates_(zone()),
      instructions_(zone()),
      next_virtual_register_(0),
      reference_maps_(zone()),
      representations_(zone()),
      representation_mask_(0),
      deoptimization_entries_(zone()),
      current_block_(nullptr) {}

int InstructionSequence::NextVirtualRegister() {
  int virtual_register = next_virtual_register_++;
  CHECK_NE(virtual_register, InstructionOperand::kInvalidVirtualRegister);
  return virtual_register;
}


Instruction* InstructionSequence::GetBlockStart(RpoNumber rpo) const {
  const InstructionBlock* block = InstructionBlockAt(rpo);
  return InstructionAt(block->code_start());
}


void InstructionSequence::StartBlock(RpoNumber rpo) {
  DCHECK_NULL(current_block_);
  current_block_ = InstructionBlockAt(rpo);
  int code_start = static_cast<int>(instructions_.size());
  current_block_->set_code_start(code_start);
}


void InstructionSequence::EndBlock(RpoNumber rpo) {
  int end = static_cast<int>(instructions_.size());
  DCHECK_EQ(current_block_->rpo_number(), rpo);
  CHECK(current_block_->code_start() >= 0 &&
        current_block_->code_start() < end);
  current_block_->set_code_end(end);
  current_block_ = nullptr;
}


int InstructionSequence::AddInstruction(Instruction* instr) {
  DCHECK_NOT_NULL(current_block_);
  int index = static_cast<int>(instructions_.size());
  instr->set_block(current_block_);
  instructions_.push_back(instr);
  if (instr->NeedsReferenceMap()) {
    DCHECK_NULL(instr->reference_map());
    ReferenceMap* reference_map = new (zone()) ReferenceMap(zone());
    reference_map->set_instruction_position(index);
    instr->set_reference_map(reference_map);
    reference_maps_.push_back(reference_map);
  }
  return index;
}


InstructionBlock* InstructionSequence::GetInstructionBlock(
    int instruction_index) const {
  return instructions()[instruction_index]->block();
}


static MachineRepresentation FilterRepresentation(MachineRepresentation rep) {
  switch (rep) {
    case MachineRepresentation::kBit:
    case MachineRepresentation::kWord8:
    case MachineRepresentation::kWord16:
      return InstructionSequence::DefaultRepresentation();
    case MachineRepresentation::kWord32:
    case MachineRepresentation::kWord64:
    case MachineRepresentation::kTaggedSigned:
    case MachineRepresentation::kTaggedPointer:
    case MachineRepresentation::kTagged:
    case MachineRepresentation::kFloat32:
    case MachineRepresentation::kFloat64:
    case MachineRepresentation::kSimd128:
      return rep;
    case MachineRepresentation::kNone:
      break;
  }

  UNREACHABLE();
}


MachineRepresentation InstructionSequence::GetRepresentation(
    int virtual_register) const {
  DCHECK_LE(0, virtual_register);
  DCHECK_LT(virtual_register, VirtualRegisterCount());
  if (virtual_register >= static_cast<int>(representations_.size())) {
    return DefaultRepresentation();
  }
  return representations_[virtual_register];
}


void InstructionSequence::MarkAsRepresentation(MachineRepresentation rep,
                                               int virtual_register) {
  DCHECK_LE(0, virtual_register);
  DCHECK_LT(virtual_register, VirtualRegisterCount());
  if (virtual_register >= static_cast<int>(representations_.size())) {
    representations_.resize(VirtualRegisterCount(), DefaultRepresentation());
  }
  rep = FilterRepresentation(rep);
  DCHECK_IMPLIES(representations_[virtual_register] != rep,
                 representations_[virtual_register] == DefaultRepresentation());
  representations_[virtual_register] = rep;
  representation_mask_ |= 1 << static_cast<int>(rep);
}

int InstructionSequence::AddDeoptimizationEntry(
    FrameStateDescriptor* descriptor, DeoptimizeKind kind,
    DeoptimizeReason reason, VectorSlotPair const& feedback) {
  int deoptimization_id = static_cast<int>(deoptimization_entries_.size());
  deoptimization_entries_.push_back(
      DeoptimizationEntry(descriptor, kind, reason, feedback));
  return deoptimization_id;
}

DeoptimizationEntry const& InstructionSequence::GetDeoptimizationEntry(
    int state_id) {
  return deoptimization_entries_[state_id];
}


RpoNumber InstructionSequence::InputRpo(Instruction* instr, size_t index) {
  InstructionOperand* operand = instr->InputAt(index);
  Constant constant =
      operand->IsImmediate()
          ? GetImmediate(ImmediateOperand::cast(operand))
          : GetConstant(ConstantOperand::cast(operand)->virtual_register());
  return constant.ToRpoNumber();
}


bool InstructionSequence::GetSourcePosition(const Instruction* instr,
                                            SourcePosition* result) const {
  auto it = source_positions_.find(instr);
  if (it == source_positions_.end()) return false;
  *result = it->second;
  return true;
}


void InstructionSequence::SetSourcePosition(const Instruction* instr,
                                            SourcePosition value) {
  source_positions_.insert(std::make_pair(instr, value));
}

void InstructionSequence::Print(const RegisterConfiguration* config) const {
  PrintableInstructionSequence wrapper;
  wrapper.register_configuration_ = config;
  wrapper.sequence_ = this;
  StdoutStream{} << wrapper << std::endl;
}

void InstructionSequence::Print() const { Print(GetRegConfig()); }

void InstructionSequence::PrintBlock(const RegisterConfiguration* config,
                                     int block_id) const {
  RpoNumber rpo = RpoNumber::FromInt(block_id);
  const InstructionBlock* block = InstructionBlockAt(rpo);
  CHECK(block->rpo_number() == rpo);
  PrintableInstructionBlock printable_block = {config, block, this};
  StdoutStream{} << printable_block << std::endl;
}

void InstructionSequence::PrintBlock(int block_id) const {
  PrintBlock(GetRegConfig(), block_id);
}

const RegisterConfiguration*
    InstructionSequence::registerConfigurationForTesting_ = nullptr;

const RegisterConfiguration*
InstructionSequence::RegisterConfigurationForTesting() {
  DCHECK_NOT_NULL(registerConfigurationForTesting_);
  return registerConfigurationForTesting_;
}

void InstructionSequence::SetRegisterConfigurationForTesting(
    const RegisterConfiguration* regConfig) {
  registerConfigurationForTesting_ = regConfig;
  GetRegConfig = InstructionSequence::RegisterConfigurationForTesting;
}

FrameStateDescriptor::FrameStateDescriptor(
    Zone* zone, FrameStateType type, BailoutId bailout_id,
    OutputFrameStateCombine state_combine, size_t parameters_count,
    size_t locals_count, size_t stack_count,
    MaybeHandle<SharedFunctionInfo> shared_info,
    FrameStateDescriptor* outer_state)
    : type_(type),
      bailout_id_(bailout_id),
      frame_state_combine_(state_combine),
      parameters_count_(parameters_count),
      locals_count_(locals_count),
      stack_count_(stack_count),
      values_(zone),
      shared_info_(shared_info),
      outer_state_(outer_state) {}

size_t FrameStateDescriptor::GetSize() const {
  return 1 + parameters_count() + locals_count() + stack_count() +
         (HasContext() ? 1 : 0);
}


size_t FrameStateDescriptor::GetTotalSize() const {
  size_t total_size = 0;
  for (const FrameStateDescriptor* iter = this; iter != nullptr;
       iter = iter->outer_state_) {
    total_size += iter->GetSize();
  }
  return total_size;
}


size_t FrameStateDescriptor::GetFrameCount() const {
  size_t count = 0;
  for (const FrameStateDescriptor* iter = this; iter != nullptr;
       iter = iter->outer_state_) {
    ++count;
  }
  return count;
}


size_t FrameStateDescriptor::GetJSFrameCount() const {
  size_t count = 0;
  for (const FrameStateDescriptor* iter = this; iter != nullptr;
       iter = iter->outer_state_) {
    if (FrameStateFunctionInfo::IsJSFunctionType(iter->type_)) {
      ++count;
    }
  }
  return count;
}


std::ostream& operator<<(std::ostream& os, const RpoNumber& rpo) {
  return os << rpo.ToSize();
}


std::ostream& operator<<(std::ostream& os,
                         const PrintableInstructionSequence& printable) {
  const InstructionSequence& code = *printable.sequence_;
  for (size_t i = 0; i < code.immediates_.size(); ++i) {
    Constant constant = code.immediates_[i];
    os << "IMM#" << i << ": " << constant << "\n";
  }
  int i = 0;
  for (ConstantMap::const_iterator it = code.constants_.begin();
       it != code.constants_.end(); ++i, ++it) {
    os << "CST#" << i << ": v" << it->first << " = " << it->second << "\n";
  }
  PrintableInstructionBlock printable_block = {
      printable.register_configuration_, nullptr, printable.sequence_};
  for (int i = 0; i < code.InstructionBlockCount(); i++) {
    printable_block.block_ = code.InstructionBlockAt(RpoNumber::FromInt(i));
    os << printable_block;
  }
  return os;
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8