summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/instruction-selector.h
blob: 75c41c165f109613102729f23046df06dcbe8c86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_COMPILER_INSTRUCTION_SELECTOR_H_
#define V8_COMPILER_INSTRUCTION_SELECTOR_H_

#include <map>

#include "src/compiler/common-operator.h"
#include "src/compiler/instruction-scheduler.h"
#include "src/compiler/instruction.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/globals.h"
#include "src/zone/zone-containers.h"

namespace v8 {
namespace internal {
namespace compiler {

// Forward declarations.
class BasicBlock;
struct CallBuffer;  // TODO(bmeurer): Remove this.
class FlagsContinuation;
class Linkage;
class OperandGenerator;
struct SwitchInfo;
class StateObjectDeduplicator;

// This struct connects nodes of parameters which are going to be pushed on the
// call stack with their parameter index in the call descriptor of the callee.
struct PushParameter {
  PushParameter(Node* n = nullptr,
                LinkageLocation l = LinkageLocation::ForAnyRegister())
      : node(n), location(l) {}

  Node* node;
  LinkageLocation location;
};

enum class FrameStateInputKind { kAny, kStackSlot };

// Instruction selection generates an InstructionSequence for a given Schedule.
class V8_EXPORT_PRIVATE InstructionSelector final {
 public:
  // Forward declarations.
  class Features;

  enum SourcePositionMode { kCallSourcePositions, kAllSourcePositions };
  enum EnableScheduling { kDisableScheduling, kEnableScheduling };
  enum EnableSerialization { kDisableSerialization, kEnableSerialization };

  InstructionSelector(
      Zone* zone, size_t node_count, Linkage* linkage,
      InstructionSequence* sequence, Schedule* schedule,
      SourcePositionTable* source_positions, Frame* frame,
      SourcePositionMode source_position_mode = kCallSourcePositions,
      Features features = SupportedFeatures(),
      EnableScheduling enable_scheduling = FLAG_turbo_instruction_scheduling
                                               ? kEnableScheduling
                                               : kDisableScheduling,
      EnableSerialization enable_serialization = kDisableSerialization);

  // Visit code for the entire graph with the included schedule.
  bool SelectInstructions();

  void StartBlock(RpoNumber rpo);
  void EndBlock(RpoNumber rpo);
  void AddInstruction(Instruction* instr);

  // ===========================================================================
  // ============= Architecture-independent code emission methods. =============
  // ===========================================================================

  Instruction* Emit(InstructionCode opcode, InstructionOperand output,
                    size_t temp_count = 0, InstructionOperand* temps = nullptr);
  Instruction* Emit(InstructionCode opcode, InstructionOperand output,
                    InstructionOperand a, size_t temp_count = 0,
                    InstructionOperand* temps = nullptr);
  Instruction* Emit(InstructionCode opcode, InstructionOperand output,
                    InstructionOperand a, InstructionOperand b,
                    size_t temp_count = 0, InstructionOperand* temps = nullptr);
  Instruction* Emit(InstructionCode opcode, InstructionOperand output,
                    InstructionOperand a, InstructionOperand b,
                    InstructionOperand c, size_t temp_count = 0,
                    InstructionOperand* temps = nullptr);
  Instruction* Emit(InstructionCode opcode, InstructionOperand output,
                    InstructionOperand a, InstructionOperand b,
                    InstructionOperand c, InstructionOperand d,
                    size_t temp_count = 0, InstructionOperand* temps = nullptr);
  Instruction* Emit(InstructionCode opcode, InstructionOperand output,
                    InstructionOperand a, InstructionOperand b,
                    InstructionOperand c, InstructionOperand d,
                    InstructionOperand e, size_t temp_count = 0,
                    InstructionOperand* temps = nullptr);
  Instruction* Emit(InstructionCode opcode, InstructionOperand output,
                    InstructionOperand a, InstructionOperand b,
                    InstructionOperand c, InstructionOperand d,
                    InstructionOperand e, InstructionOperand f,
                    size_t temp_count = 0, InstructionOperand* temps = nullptr);
  Instruction* Emit(InstructionCode opcode, size_t output_count,
                    InstructionOperand* outputs, size_t input_count,
                    InstructionOperand* inputs, size_t temp_count = 0,
                    InstructionOperand* temps = nullptr);
  Instruction* Emit(Instruction* instr);

  // ===========================================================================
  // ===== Architecture-independent deoptimization exit emission methods. ======
  // ===========================================================================

  Instruction* EmitDeoptimize(InstructionCode opcode, InstructionOperand output,
                              InstructionOperand a, DeoptimizeKind kind,
                              DeoptimizeReason reason,
                              VectorSlotPair const& feedback,
                              Node* frame_state);
  Instruction* EmitDeoptimize(InstructionCode opcode, InstructionOperand output,
                              InstructionOperand a, InstructionOperand b,
                              DeoptimizeKind kind, DeoptimizeReason reason,
                              VectorSlotPair const& feedback,
                              Node* frame_state);
  Instruction* EmitDeoptimize(InstructionCode opcode, size_t output_count,
                              InstructionOperand* outputs, size_t input_count,
                              InstructionOperand* inputs, DeoptimizeKind kind,
                              DeoptimizeReason reason,
                              VectorSlotPair const& feedback,
                              Node* frame_state);

  // ===========================================================================
  // ============== Architecture-independent CPU feature methods. ==============
  // ===========================================================================

  class Features final {
   public:
    Features() : bits_(0) {}
    explicit Features(unsigned bits) : bits_(bits) {}
    explicit Features(CpuFeature f) : bits_(1u << f) {}
    Features(CpuFeature f1, CpuFeature f2) : bits_((1u << f1) | (1u << f2)) {}

    bool Contains(CpuFeature f) const { return (bits_ & (1u << f)); }

   private:
    unsigned bits_;
  };

  bool IsSupported(CpuFeature feature) const {
    return features_.Contains(feature);
  }

  // Returns the features supported on the target platform.
  static Features SupportedFeatures() {
    return Features(CpuFeatures::SupportedFeatures());
  }

  // TODO(sigurds) This should take a CpuFeatures argument.
  static MachineOperatorBuilder::Flags SupportedMachineOperatorFlags();

  static MachineOperatorBuilder::AlignmentRequirements AlignmentRequirements();

  // ===========================================================================
  // ============ Architecture-independent graph covering methods. =============
  // ===========================================================================

  // Used in pattern matching during code generation.
  // Check if {node} can be covered while generating code for the current
  // instruction. A node can be covered if the {user} of the node has the only
  // edge and the two are in the same basic block.
  bool CanCover(Node* user, Node* node) const;

  // Used in pattern matching during code generation.
  // This function checks that {node} and {user} are in the same basic block,
  // and that {user} is the only user of {node} in this basic block.  This
  // check guarantees that there are no users of {node} scheduled between
  // {node} and {user}, and thus we can select a single instruction for both
  // nodes, if such an instruction exists. This check can be used for example
  // when selecting instructions for:
  //   n = Int32Add(a, b)
  //   c = Word32Compare(n, 0, cond)
  //   Branch(c, true_label, false_label)
  // Here we can generate a flag-setting add instruction, even if the add has
  // uses in other basic blocks, since the flag-setting add instruction will
  // still generate the result of the addition and not just set the flags.
  // However, if we had uses of the add in the same basic block, we could have:
  //   n = Int32Add(a, b)
  //   o = OtherOp(n, ...)
  //   c = Word32Compare(n, 0, cond)
  //   Branch(c, true_label, false_label)
  // where we cannot select the add and the compare together.  If we were to
  // select a flag-setting add instruction for Word32Compare and Int32Add while
  // visiting Word32Compare, we would then have to select an instruction for
  // OtherOp *afterwards*, which means we would attempt to use the result of
  // the add before we have defined it.
  bool IsOnlyUserOfNodeInSameBlock(Node* user, Node* node) const;

  // Checks if {node} was already defined, and therefore code was already
  // generated for it.
  bool IsDefined(Node* node) const;

  // Checks if {node} has any uses, and therefore code has to be generated for
  // it.
  bool IsUsed(Node* node) const;

  // Checks if {node} is currently live.
  bool IsLive(Node* node) const { return !IsDefined(node) && IsUsed(node); }

  // Gets the effect level of {node}.
  int GetEffectLevel(Node* node) const;

  int GetVirtualRegister(const Node* node);
  const std::map<NodeId, int> GetVirtualRegistersForTesting() const;

  // Check if we can generate loads and stores of ExternalConstants relative
  // to the roots register, i.e. if both a root register is available for this
  // compilation unit and the serializer is disabled.
  bool CanAddressRelativeToRootsRegister() const;
  // Check if we can use the roots register to access GC roots.
  bool CanUseRootsRegister() const;

  Isolate* isolate() const { return sequence()->isolate(); }

 private:
  friend class OperandGenerator;

  bool UseInstructionScheduling() const {
    return (enable_scheduling_ == kEnableScheduling) &&
           InstructionScheduler::SchedulerSupported();
  }

  void EmitTableSwitch(const SwitchInfo& sw, InstructionOperand& index_operand);
  void EmitLookupSwitch(const SwitchInfo& sw,
                        InstructionOperand& value_operand);

  void TryRename(InstructionOperand* op);
  int GetRename(int virtual_register);
  void SetRename(const Node* node, const Node* rename);
  void UpdateRenames(Instruction* instruction);
  void UpdateRenamesInPhi(PhiInstruction* phi);

  // Inform the instruction selection that {node} was just defined.
  void MarkAsDefined(Node* node);

  // Inform the instruction selection that {node} has at least one use and we
  // will need to generate code for it.
  void MarkAsUsed(Node* node);

  // Sets the effect level of {node}.
  void SetEffectLevel(Node* node, int effect_level);

  // Inform the register allocation of the representation of the value produced
  // by {node}.
  void MarkAsRepresentation(MachineRepresentation rep, Node* node);
  void MarkAsWord32(Node* node) {
    MarkAsRepresentation(MachineRepresentation::kWord32, node);
  }
  void MarkAsWord64(Node* node) {
    MarkAsRepresentation(MachineRepresentation::kWord64, node);
  }
  void MarkAsFloat32(Node* node) {
    MarkAsRepresentation(MachineRepresentation::kFloat32, node);
  }
  void MarkAsFloat64(Node* node) {
    MarkAsRepresentation(MachineRepresentation::kFloat64, node);
  }
  void MarkAsSimd128(Node* node) {
    MarkAsRepresentation(MachineRepresentation::kSimd128, node);
  }
  void MarkAsReference(Node* node) {
    MarkAsRepresentation(MachineRepresentation::kTagged, node);
  }

  // Inform the register allocation of the representation of the unallocated
  // operand {op}.
  void MarkAsRepresentation(MachineRepresentation rep,
                            const InstructionOperand& op);

  enum CallBufferFlag {
    kCallCodeImmediate = 1u << 0,
    kCallAddressImmediate = 1u << 1,
    kCallTail = 1u << 2
  };
  typedef base::Flags<CallBufferFlag> CallBufferFlags;

  // Initialize the call buffer with the InstructionOperands, nodes, etc,
  // corresponding
  // to the inputs and outputs of the call.
  // {call_code_immediate} to generate immediate operands to calls of code.
  // {call_address_immediate} to generate immediate operands to address calls.
  void InitializeCallBuffer(Node* call, CallBuffer* buffer,
                            CallBufferFlags flags, bool is_tail_call,
                            int stack_slot_delta = 0);
  bool IsTailCallAddressImmediate();
  int GetTempsCountForTailCallFromJSFunction();

  FrameStateDescriptor* GetFrameStateDescriptor(Node* node);
  size_t AddInputsToFrameStateDescriptor(FrameStateDescriptor* descriptor,
                                         Node* state, OperandGenerator* g,
                                         StateObjectDeduplicator* deduplicator,
                                         InstructionOperandVector* inputs,
                                         FrameStateInputKind kind, Zone* zone);
  size_t AddOperandToStateValueDescriptor(StateValueList* values,
                                          InstructionOperandVector* inputs,
                                          OperandGenerator* g,
                                          StateObjectDeduplicator* deduplicator,
                                          Node* input, MachineType type,
                                          FrameStateInputKind kind, Zone* zone);

  // ===========================================================================
  // ============= Architecture-specific graph covering methods. ===============
  // ===========================================================================

  // Visit nodes in the given block and generate code.
  void VisitBlock(BasicBlock* block);

  // Visit the node for the control flow at the end of the block, generating
  // code if necessary.
  void VisitControl(BasicBlock* block);

  // Visit the node and generate code, if any.
  void VisitNode(Node* node);

  // Visit the node and generate code for IEEE 754 functions.
  void VisitFloat64Ieee754Binop(Node*, InstructionCode code);
  void VisitFloat64Ieee754Unop(Node*, InstructionCode code);

#define DECLARE_GENERATOR(x) void Visit##x(Node* node);
  MACHINE_OP_LIST(DECLARE_GENERATOR)
  MACHINE_SIMD_OP_LIST(DECLARE_GENERATOR)
#undef DECLARE_GENERATOR

  void VisitFinishRegion(Node* node);
  void VisitParameter(Node* node);
  void VisitIfException(Node* node);
  void VisitOsrValue(Node* node);
  void VisitPhi(Node* node);
  void VisitProjection(Node* node);
  void VisitConstant(Node* node);
  void VisitCall(Node* call, BasicBlock* handler = nullptr);
  void VisitCallWithCallerSavedRegisters(Node* call,
                                         BasicBlock* handler = nullptr);
  void VisitDeoptimizeIf(Node* node);
  void VisitDeoptimizeUnless(Node* node);
  void VisitTrapIf(Node* node, Runtime::FunctionId func_id);
  void VisitTrapUnless(Node* node, Runtime::FunctionId func_id);
  void VisitTailCall(Node* call);
  void VisitGoto(BasicBlock* target);
  void VisitBranch(Node* input, BasicBlock* tbranch, BasicBlock* fbranch);
  void VisitSwitch(Node* node, const SwitchInfo& sw);
  void VisitDeoptimize(DeoptimizeKind kind, DeoptimizeReason reason,
                       VectorSlotPair const& feedback, Node* value);
  void VisitReturn(Node* ret);
  void VisitThrow(Node* node);
  void VisitRetain(Node* node);
  void VisitUnreachable(Node* node);
  void VisitDeadValue(Node* node);

  void EmitPrepareArguments(ZoneVector<compiler::PushParameter>* arguments,
                            const CallDescriptor* descriptor, Node* node);
  void EmitPrepareResults(ZoneVector<compiler::PushParameter>* results,
                          const CallDescriptor* descriptor, Node* node);

  void EmitIdentity(Node* node);
  bool CanProduceSignalingNaN(Node* node);

  // ===========================================================================
  // ============= Vector instruction (SIMD) helper fns. =======================
  // ===========================================================================

  // Tries to match a byte shuffle to a scalar splat operation. Returns the
  // index of the lane if successful.
  template <int LANES>
  static bool TryMatchDup(const uint8_t* shuffle, int* index) {
    const int kBytesPerLane = kSimd128Size / LANES;
    // Get the first lane's worth of bytes and check that indices start at a
    // lane boundary and are consecutive.
    uint8_t lane0[kBytesPerLane];
    lane0[0] = shuffle[0];
    if (lane0[0] % kBytesPerLane != 0) return false;
    for (int i = 1; i < kBytesPerLane; ++i) {
      lane0[i] = shuffle[i];
      if (lane0[i] != lane0[0] + i) return false;
    }
    // Now check that the other lanes are identical to lane0.
    for (int i = 1; i < LANES; ++i) {
      for (int j = 0; j < kBytesPerLane; ++j) {
        if (lane0[j] != shuffle[i * kBytesPerLane + j]) return false;
      }
    }
    *index = lane0[0] / kBytesPerLane;
    return true;
  }

  // Tries to match 8x16 byte shuffle to an equivalent 32x4 word shuffle. If
  // successful, it writes the 32x4 shuffle word indices.
  static bool TryMatch32x4Shuffle(const uint8_t* shuffle, uint8_t* shuffle32x4);

  // Tries to match a byte shuffle to a concatenate operation. If successful,
  // it writes the byte offset.
  static bool TryMatchConcat(const uint8_t* shuffle, uint8_t mask,
                             uint8_t* offset);

  // Packs 4 bytes of shuffle into a 32 bit immediate, using a mask from
  // CanonicalizeShuffle to convert unary shuffles.
  static int32_t Pack4Lanes(const uint8_t* shuffle, uint8_t mask);

  // Canonicalize shuffles to make pattern matching simpler. Returns a mask that
  // will ignore the high bit of indices if shuffle is unary.
  uint8_t CanonicalizeShuffle(Node* node);

  // ===========================================================================

  Schedule* schedule() const { return schedule_; }
  Linkage* linkage() const { return linkage_; }
  InstructionSequence* sequence() const { return sequence_; }
  Zone* instruction_zone() const { return sequence()->zone(); }
  Zone* zone() const { return zone_; }

  void set_instruction_selection_failed() {
    instruction_selection_failed_ = true;
  }
  bool instruction_selection_failed() { return instruction_selection_failed_; }

  void MarkPairProjectionsAsWord32(Node* node);
  bool IsSourcePositionUsed(Node* node);
  void VisitAtomicBinaryOperation(Node* node, ArchOpcode int8_op,
                                  ArchOpcode uint8_op, ArchOpcode int16_op,
                                  ArchOpcode uint16_op, ArchOpcode word32_op);

  // ===========================================================================

  Zone* const zone_;
  Linkage* const linkage_;
  InstructionSequence* const sequence_;
  SourcePositionTable* const source_positions_;
  SourcePositionMode const source_position_mode_;
  Features features_;
  Schedule* const schedule_;
  BasicBlock* current_block_;
  ZoneVector<Instruction*> instructions_;
  BoolVector defined_;
  BoolVector used_;
  IntVector effect_level_;
  IntVector virtual_registers_;
  IntVector virtual_register_rename_;
  InstructionScheduler* scheduler_;
  EnableScheduling enable_scheduling_;
  EnableSerialization enable_serialization_;
  Frame* frame_;
  bool instruction_selection_failed_;
};

}  // namespace compiler
}  // namespace internal
}  // namespace v8

#endif  // V8_COMPILER_INSTRUCTION_SELECTOR_H_