summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/instruction-scheduler.cc
blob: b612cd1e9e88ceb44b0b56a5e49ab8b84093f126 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/instruction-scheduler.h"

#include "src/base/adapters.h"
#include "src/base/utils/random-number-generator.h"

namespace v8 {
namespace internal {
namespace compiler {

// Compare the two nodes and return true if node1 is a better candidate than
// node2 (i.e. node1 should be scheduled before node2).
bool InstructionScheduler::CriticalPathFirstQueue::CompareNodes(
    ScheduleGraphNode *node1, ScheduleGraphNode *node2) const {
  return node1->total_latency() > node2->total_latency();
}


InstructionScheduler::ScheduleGraphNode*
InstructionScheduler::CriticalPathFirstQueue::PopBestCandidate(int cycle) {
  DCHECK(!IsEmpty());
  auto candidate = nodes_.end();
  for (auto iterator = nodes_.begin(); iterator != nodes_.end(); ++iterator) {
    // We only consider instructions that have all their operands ready and
    // we try to schedule the critical path first.
    if (cycle >= (*iterator)->start_cycle()) {
      if ((candidate == nodes_.end()) || CompareNodes(*iterator, *candidate)) {
        candidate = iterator;
      }
    }
  }

  if (candidate != nodes_.end()) {
    ScheduleGraphNode *result = *candidate;
    nodes_.erase(candidate);
    return result;
  }

  return nullptr;
}


InstructionScheduler::ScheduleGraphNode*
InstructionScheduler::StressSchedulerQueue::PopBestCandidate(int cycle) {
  DCHECK(!IsEmpty());
  // Choose a random element from the ready list.
  auto candidate = nodes_.begin();
  std::advance(candidate, isolate()->random_number_generator()->NextInt(
      static_cast<int>(nodes_.size())));
  ScheduleGraphNode *result = *candidate;
  nodes_.erase(candidate);
  return result;
}


InstructionScheduler::ScheduleGraphNode::ScheduleGraphNode(
    Zone* zone,
    Instruction* instr)
    : instr_(instr),
      successors_(zone),
      unscheduled_predecessors_count_(0),
      latency_(GetInstructionLatency(instr)),
      total_latency_(-1),
      start_cycle_(-1) {
}


void InstructionScheduler::ScheduleGraphNode::AddSuccessor(
    ScheduleGraphNode* node) {
  successors_.push_back(node);
  node->unscheduled_predecessors_count_++;
}


InstructionScheduler::InstructionScheduler(Zone* zone,
                                           InstructionSequence* sequence)
    : zone_(zone),
      sequence_(sequence),
      graph_(zone),
      last_side_effect_instr_(nullptr),
      pending_loads_(zone),
      last_live_in_reg_marker_(nullptr) {
}


void InstructionScheduler::StartBlock(RpoNumber rpo) {
  DCHECK(graph_.empty());
  DCHECK(last_side_effect_instr_ == nullptr);
  DCHECK(pending_loads_.empty());
  DCHECK(last_live_in_reg_marker_ == nullptr);
  sequence()->StartBlock(rpo);
}


void InstructionScheduler::EndBlock(RpoNumber rpo) {
  if (FLAG_turbo_stress_instruction_scheduling) {
    ScheduleBlock<StressSchedulerQueue>();
  } else {
    ScheduleBlock<CriticalPathFirstQueue>();
  }
  sequence()->EndBlock(rpo);
  graph_.clear();
  last_side_effect_instr_ = nullptr;
  pending_loads_.clear();
  last_live_in_reg_marker_ = nullptr;
}


void InstructionScheduler::AddInstruction(Instruction* instr) {
  ScheduleGraphNode* new_node = new (zone()) ScheduleGraphNode(zone(), instr);

  if (IsBlockTerminator(instr)) {
    // Make sure that basic block terminators are not moved by adding them
    // as successor of every instruction.
    for (ScheduleGraphNode* node : graph_) {
      node->AddSuccessor(new_node);
    }
  } else if (IsFixedRegisterParameter(instr)) {
    if (last_live_in_reg_marker_ != nullptr) {
      last_live_in_reg_marker_->AddSuccessor(new_node);
    }
    last_live_in_reg_marker_ = new_node;
  } else {
    if (last_live_in_reg_marker_ != nullptr) {
      last_live_in_reg_marker_->AddSuccessor(new_node);
    }

    // Instructions with side effects and memory operations can't be
    // reordered with respect to each other.
    if (HasSideEffect(instr)) {
      if (last_side_effect_instr_ != nullptr) {
        last_side_effect_instr_->AddSuccessor(new_node);
      }
      for (ScheduleGraphNode* load : pending_loads_) {
        load->AddSuccessor(new_node);
      }
      pending_loads_.clear();
      last_side_effect_instr_ = new_node;
    } else if (IsLoadOperation(instr)) {
      // Load operations can't be reordered with side effects instructions but
      // independent loads can be reordered with respect to each other.
      if (last_side_effect_instr_ != nullptr) {
        last_side_effect_instr_->AddSuccessor(new_node);
      }
      pending_loads_.push_back(new_node);
    }

    // Look for operand dependencies.
    for (ScheduleGraphNode* node : graph_) {
      if (HasOperandDependency(node->instruction(), instr)) {
        node->AddSuccessor(new_node);
      }
    }
  }

  graph_.push_back(new_node);
}


template <typename QueueType>
void InstructionScheduler::ScheduleBlock() {
  QueueType ready_list(this);

  // Compute total latencies so that we can schedule the critical path first.
  ComputeTotalLatencies();

  // Add nodes which don't have dependencies to the ready list.
  for (ScheduleGraphNode* node : graph_) {
    if (!node->HasUnscheduledPredecessor()) {
      ready_list.AddNode(node);
    }
  }

  // Go through the ready list and schedule the instructions.
  int cycle = 0;
  while (!ready_list.IsEmpty()) {
    ScheduleGraphNode* candidate = ready_list.PopBestCandidate(cycle);

    if (candidate != nullptr) {
      sequence()->AddInstruction(candidate->instruction());

      for (ScheduleGraphNode* successor : candidate->successors()) {
        successor->DropUnscheduledPredecessor();
        successor->set_start_cycle(
            std::max(successor->start_cycle(),
                     cycle + candidate->latency()));

        if (!successor->HasUnscheduledPredecessor()) {
          ready_list.AddNode(successor);
        }
      }
    }

    cycle++;
  }
}


int InstructionScheduler::GetInstructionFlags(const Instruction* instr) const {
  switch (instr->arch_opcode()) {
    case kArchNop:
    case kArchFramePointer:
    case kArchParentFramePointer:
    case kArchTruncateDoubleToI:
    case kArchStackSlot:
      return kNoOpcodeFlags;

    case kArchStackPointer:
      // ArchStackPointer instruction loads the current stack pointer value and
      // must not be reordered with instruction with side effects.
      return kIsLoadOperation;

    case kArchPrepareCallCFunction:
    case kArchPrepareTailCall:
    case kArchCallCFunction:
    case kArchCallCodeObject:
    case kArchCallJSFunction:
      return kHasSideEffect;

    case kArchTailCallCodeObjectFromJSFunction:
    case kArchTailCallCodeObject:
    case kArchTailCallJSFunctionFromJSFunction:
    case kArchTailCallJSFunction:
      return kHasSideEffect | kIsBlockTerminator;

    case kArchDeoptimize:
    case kArchJmp:
    case kArchLookupSwitch:
    case kArchTableSwitch:
    case kArchRet:
    case kArchThrowTerminator:
      return kIsBlockTerminator;

    case kCheckedLoadInt8:
    case kCheckedLoadUint8:
    case kCheckedLoadInt16:
    case kCheckedLoadUint16:
    case kCheckedLoadWord32:
    case kCheckedLoadWord64:
    case kCheckedLoadFloat32:
    case kCheckedLoadFloat64:
      return kIsLoadOperation;

    case kCheckedStoreWord8:
    case kCheckedStoreWord16:
    case kCheckedStoreWord32:
    case kCheckedStoreWord64:
    case kCheckedStoreFloat32:
    case kCheckedStoreFloat64:
    case kArchStoreWithWriteBarrier:
      return kHasSideEffect;

#define CASE(Name) case k##Name:
    TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
      return GetTargetInstructionFlags(instr);
  }

  UNREACHABLE();
  return kNoOpcodeFlags;
}


bool InstructionScheduler::HasOperandDependency(
    const Instruction* instr1, const Instruction* instr2) const {
  for (size_t i = 0; i < instr1->OutputCount(); ++i) {
    for (size_t j = 0; j < instr2->InputCount(); ++j) {
      const InstructionOperand* output = instr1->OutputAt(i);
      const InstructionOperand* input = instr2->InputAt(j);

      if (output->IsUnallocated() && input->IsUnallocated() &&
          (UnallocatedOperand::cast(output)->virtual_register() ==
           UnallocatedOperand::cast(input)->virtual_register())) {
        return true;
      }

      if (output->IsConstant() && input->IsUnallocated() &&
          (ConstantOperand::cast(output)->virtual_register() ==
           UnallocatedOperand::cast(input)->virtual_register())) {
        return true;
      }
    }
  }

  // TODO(bafsa): Do we need to look for anti-dependencies/output-dependencies?

  return false;
}


bool InstructionScheduler::IsBlockTerminator(const Instruction* instr) const {
  return ((GetInstructionFlags(instr) & kIsBlockTerminator) ||
          (instr->flags_mode() == kFlags_branch));
}


void InstructionScheduler::ComputeTotalLatencies() {
  for (ScheduleGraphNode* node : base::Reversed(graph_)) {
    int max_latency = 0;

    for (ScheduleGraphNode* successor : node->successors()) {
      DCHECK(successor->total_latency() != -1);
      if (successor->total_latency() > max_latency) {
        max_latency = successor->total_latency();
      }
    }

    node->set_total_latency(max_latency + node->latency());
  }
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8