summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/code-generator.cc
blob: 043582b17eab51271df93402fd494efc22cba6bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/code-generator.h"

#include "src/address-map.h"
#include "src/base/adapters.h"
#include "src/compilation-info.h"
#include "src/compiler/code-generator-impl.h"
#include "src/compiler/linkage.h"
#include "src/compiler/pipeline.h"
#include "src/frames-inl.h"

namespace v8 {
namespace internal {
namespace compiler {

class CodeGenerator::JumpTable final : public ZoneObject {
 public:
  JumpTable(JumpTable* next, Label** targets, size_t target_count)
      : next_(next), targets_(targets), target_count_(target_count) {}

  Label* label() { return &label_; }
  JumpTable* next() const { return next_; }
  Label** targets() const { return targets_; }
  size_t target_count() const { return target_count_; }

 private:
  Label label_;
  JumpTable* const next_;
  Label** const targets_;
  size_t const target_count_;
};

CodeGenerator::CodeGenerator(Frame* frame, Linkage* linkage,
                             InstructionSequence* code, CompilationInfo* info)
    : frame_access_state_(nullptr),
      linkage_(linkage),
      code_(code),
      unwinding_info_writer_(zone()),
      info_(info),
      labels_(zone()->NewArray<Label>(code->InstructionBlockCount())),
      current_block_(RpoNumber::Invalid()),
      current_source_position_(SourcePosition::Unknown()),
      masm_(info->isolate(), nullptr, 0, CodeObjectRequired::kNo),
      resolver_(this),
      safepoints_(code->zone()),
      handlers_(code->zone()),
      deoptimization_exits_(code->zone()),
      deoptimization_states_(code->zone()),
      deoptimization_literals_(code->zone()),
      inlined_function_count_(0),
      translations_(code->zone()),
      last_lazy_deopt_pc_(0),
      jump_tables_(nullptr),
      ools_(nullptr),
      osr_pc_offset_(-1),
      source_position_table_builder_(code->zone(),
                                     info->SourcePositionRecordingMode()) {
  for (int i = 0; i < code->InstructionBlockCount(); ++i) {
    new (&labels_[i]) Label;
  }
  CreateFrameAccessState(frame);
}

Isolate* CodeGenerator::isolate() const { return info_->isolate(); }

void CodeGenerator::CreateFrameAccessState(Frame* frame) {
  FinishFrame(frame);
  frame_access_state_ = new (code()->zone()) FrameAccessState(frame);
}

Handle<Code> CodeGenerator::GenerateCode() {
  CompilationInfo* info = this->info();

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done in AssemblePrologue).
  FrameScope frame_scope(masm(), StackFrame::MANUAL);

  // Place function entry hook if requested to do so.
  if (linkage()->GetIncomingDescriptor()->IsJSFunctionCall()) {
    ProfileEntryHookStub::MaybeCallEntryHook(masm());
  }
  // Architecture-specific, linkage-specific prologue.
  info->set_prologue_offset(masm()->pc_offset());

  // Define deoptimization literals for all inlined functions.
  DCHECK_EQ(0u, deoptimization_literals_.size());
  for (const CompilationInfo::InlinedFunctionHolder& inlined :
       info->inlined_functions()) {
    if (!inlined.shared_info.is_identical_to(info->shared_info())) {
      DefineDeoptimizationLiteral(inlined.shared_info);
    }
  }
  inlined_function_count_ = deoptimization_literals_.size();

  // Define deoptimization literals for all unoptimized code objects of inlined
  // functions. This ensures unoptimized code is kept alive by optimized code.
  for (const CompilationInfo::InlinedFunctionHolder& inlined :
       info->inlined_functions()) {
    if (!inlined.shared_info.is_identical_to(info->shared_info())) {
      DefineDeoptimizationLiteral(inlined.inlined_code_object_root);
    }
  }

  unwinding_info_writer_.SetNumberOfInstructionBlocks(
      code()->InstructionBlockCount());

  // Assemble all non-deferred blocks, followed by deferred ones.
  for (int deferred = 0; deferred < 2; ++deferred) {
    for (const InstructionBlock* block : code()->instruction_blocks()) {
      if (block->IsDeferred() == (deferred == 0)) {
        continue;
      }
      // Align loop headers on 16-byte boundaries.
      if (block->IsLoopHeader()) masm()->Align(16);
      // Ensure lazy deopt doesn't patch handler entry points.
      if (block->IsHandler()) EnsureSpaceForLazyDeopt();
      // Bind a label for a block.
      current_block_ = block->rpo_number();
      unwinding_info_writer_.BeginInstructionBlock(masm()->pc_offset(), block);
      if (FLAG_code_comments) {
        // TODO(titzer): these code comments are a giant memory leak.
        Vector<char> buffer = Vector<char>::New(200);
        char* buffer_start = buffer.start();

        int next = SNPrintF(
            buffer, "-- B%d start%s%s%s%s", block->rpo_number().ToInt(),
            block->IsDeferred() ? " (deferred)" : "",
            block->needs_frame() ? "" : " (no frame)",
            block->must_construct_frame() ? " (construct frame)" : "",
            block->must_deconstruct_frame() ? " (deconstruct frame)" : "");

        buffer = buffer.SubVector(next, buffer.length());

        if (block->IsLoopHeader()) {
          next =
              SNPrintF(buffer, " (loop up to %d)", block->loop_end().ToInt());
          buffer = buffer.SubVector(next, buffer.length());
        }
        if (block->loop_header().IsValid()) {
          next =
              SNPrintF(buffer, " (in loop %d)", block->loop_header().ToInt());
          buffer = buffer.SubVector(next, buffer.length());
        }
        SNPrintF(buffer, " --");
        masm()->RecordComment(buffer_start);
      }

      frame_access_state()->MarkHasFrame(block->needs_frame());

      masm()->bind(GetLabel(current_block_));
      if (block->must_construct_frame()) {
        AssembleConstructFrame();
        // We need to setup the root register after we assemble the prologue, to
        // avoid clobbering callee saved registers in case of C linkage and
        // using the roots.
        // TODO(mtrofin): investigate how we can avoid doing this repeatedly.
        if (linkage()->GetIncomingDescriptor()->InitializeRootRegister()) {
          masm()->InitializeRootRegister();
        }
      }

      CodeGenResult result;
      if (FLAG_enable_embedded_constant_pool && !block->needs_frame()) {
        ConstantPoolUnavailableScope constant_pool_unavailable(masm());
        result = AssembleBlock(block);
      } else {
        result = AssembleBlock(block);
      }
      if (result != kSuccess) return Handle<Code>();
      unwinding_info_writer_.EndInstructionBlock(block);
    }
  }

  // Assemble all out-of-line code.
  if (ools_) {
    masm()->RecordComment("-- Out of line code --");
    for (OutOfLineCode* ool = ools_; ool; ool = ool->next()) {
      masm()->bind(ool->entry());
      ool->Generate();
      if (ool->exit()->is_bound()) masm()->jmp(ool->exit());
    }
  }

  // Assemble all eager deoptimization exits.
  for (DeoptimizationExit* exit : deoptimization_exits_) {
    masm()->bind(exit->label());
    AssembleDeoptimizerCall(exit->deoptimization_id(), Deoptimizer::EAGER,
                            exit->pos());
  }

  // Ensure there is space for lazy deoptimization in the code.
  if (info->ShouldEnsureSpaceForLazyDeopt()) {
    int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
    while (masm()->pc_offset() < target_offset) {
      masm()->nop();
    }
  }

  FinishCode(masm());

  // Emit the jump tables.
  if (jump_tables_) {
    masm()->Align(kPointerSize);
    for (JumpTable* table = jump_tables_; table; table = table->next()) {
      masm()->bind(table->label());
      AssembleJumpTable(table->targets(), table->target_count());
    }
  }

  safepoints()->Emit(masm(), frame()->GetTotalFrameSlotCount());

  unwinding_info_writer_.Finish(masm()->pc_offset());

  Handle<Code> result = v8::internal::CodeGenerator::MakeCodeEpilogue(
      masm(), unwinding_info_writer_.eh_frame_writer(), info, Handle<Object>());
  result->set_is_turbofanned(true);
  result->set_stack_slots(frame()->GetTotalFrameSlotCount());
  result->set_safepoint_table_offset(safepoints()->GetCodeOffset());
  Handle<ByteArray> source_positions =
      source_position_table_builder_.ToSourcePositionTable(
          isolate(), Handle<AbstractCode>::cast(result));
  result->set_source_position_table(*source_positions);

  // Emit exception handler table.
  if (!handlers_.empty()) {
    Handle<HandlerTable> table =
        Handle<HandlerTable>::cast(isolate()->factory()->NewFixedArray(
            HandlerTable::LengthForReturn(static_cast<int>(handlers_.size())),
            TENURED));
    for (size_t i = 0; i < handlers_.size(); ++i) {
      table->SetReturnOffset(static_cast<int>(i), handlers_[i].pc_offset);
      table->SetReturnHandler(static_cast<int>(i), handlers_[i].handler->pos());
    }
    result->set_handler_table(*table);
  }

  PopulateDeoptimizationData(result);

  // Ensure there is space for lazy deoptimization in the relocation info.
  if (info->ShouldEnsureSpaceForLazyDeopt()) {
    Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(result);
  }

  return result;
}


bool CodeGenerator::IsNextInAssemblyOrder(RpoNumber block) const {
  return code()
      ->InstructionBlockAt(current_block_)
      ->ao_number()
      .IsNext(code()->InstructionBlockAt(block)->ao_number());
}


void CodeGenerator::RecordSafepoint(ReferenceMap* references,
                                    Safepoint::Kind kind, int arguments,
                                    Safepoint::DeoptMode deopt_mode) {
  Safepoint safepoint =
      safepoints()->DefineSafepoint(masm(), kind, arguments, deopt_mode);
  int stackSlotToSpillSlotDelta =
      frame()->GetTotalFrameSlotCount() - frame()->GetSpillSlotCount();
  for (const InstructionOperand& operand : references->reference_operands()) {
    if (operand.IsStackSlot()) {
      int index = LocationOperand::cast(operand).index();
      DCHECK(index >= 0);
      // We might index values in the fixed part of the frame (i.e. the
      // closure pointer or the context pointer); these are not spill slots
      // and therefore don't work with the SafepointTable currently, but
      // we also don't need to worry about them, since the GC has special
      // knowledge about those fields anyway.
      if (index < stackSlotToSpillSlotDelta) continue;
      safepoint.DefinePointerSlot(index, zone());
    } else if (operand.IsRegister() && (kind & Safepoint::kWithRegisters)) {
      Register reg = LocationOperand::cast(operand).GetRegister();
      safepoint.DefinePointerRegister(reg, zone());
    }
  }
}

bool CodeGenerator::IsMaterializableFromRoot(
    Handle<HeapObject> object, Heap::RootListIndex* index_return) {
  const CallDescriptor* incoming_descriptor =
      linkage()->GetIncomingDescriptor();
  if (incoming_descriptor->flags() & CallDescriptor::kCanUseRoots) {
    RootIndexMap map(isolate());
    int root_index = map.Lookup(*object);
    if (root_index != RootIndexMap::kInvalidRootIndex) {
      *index_return = static_cast<Heap::RootListIndex>(root_index);
      return true;
    }
  }
  return false;
}

CodeGenerator::CodeGenResult CodeGenerator::AssembleBlock(
    const InstructionBlock* block) {
  for (int i = block->code_start(); i < block->code_end(); ++i) {
    Instruction* instr = code()->InstructionAt(i);
    CodeGenResult result = AssembleInstruction(instr, block);
    if (result != kSuccess) return result;
  }
  return kSuccess;
}

bool CodeGenerator::IsValidPush(InstructionOperand source,
                                CodeGenerator::PushTypeFlags push_type) {
  if (source.IsImmediate() &&
      ((push_type & CodeGenerator::kImmediatePush) != 0)) {
    return true;
  }
  if ((source.IsRegister() || source.IsStackSlot()) &&
      ((push_type & CodeGenerator::kScalarPush) != 0)) {
    return true;
  }
  if ((source.IsFloatRegister() || source.IsFloatStackSlot()) &&
      ((push_type & CodeGenerator::kFloat32Push) != 0)) {
    return true;
  }
  if ((source.IsDoubleRegister() || source.IsFloatStackSlot()) &&
      ((push_type & CodeGenerator::kFloat64Push) != 0)) {
    return true;
  }
  return false;
}

void CodeGenerator::GetPushCompatibleMoves(Instruction* instr,
                                           PushTypeFlags push_type,
                                           ZoneVector<MoveOperands*>* pushes) {
  pushes->clear();
  for (int i = Instruction::FIRST_GAP_POSITION;
       i <= Instruction::LAST_GAP_POSITION; ++i) {
    Instruction::GapPosition inner_pos =
        static_cast<Instruction::GapPosition>(i);
    ParallelMove* parallel_move = instr->GetParallelMove(inner_pos);
    if (parallel_move != nullptr) {
      for (auto move : *parallel_move) {
        InstructionOperand source = move->source();
        InstructionOperand destination = move->destination();
        int first_push_compatible_index =
            V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK ? 1 : 0;
        // If there are any moves from slots that will be overridden by pushes,
        // then the full gap resolver must be used since optimization with
        // pushes don't participate in the parallel move and might clobber
        // values needed for the gap resolve.
        if (source.IsStackSlot() &&
            LocationOperand::cast(source).index() >=
                first_push_compatible_index) {
          pushes->clear();
          return;
        }
        // TODO(danno): Right now, only consider moves from the FIRST gap for
        // pushes. Theoretically, we could extract pushes for both gaps (there
        // are cases where this happens), but the logic for that would also have
        // to check to make sure that non-memory inputs to the pushes from the
        // LAST gap don't get clobbered in the FIRST gap.
        if (i == Instruction::FIRST_GAP_POSITION) {
          if (destination.IsStackSlot() &&
              LocationOperand::cast(destination).index() >=
                  first_push_compatible_index) {
            int index = LocationOperand::cast(destination).index();
            if (IsValidPush(source, push_type)) {
              if (index >= static_cast<int>(pushes->size())) {
                pushes->resize(index + 1);
              }
              (*pushes)[index] = move;
            }
          }
        }
      }
    }
  }

  // For now, only support a set of continuous pushes at the end of the list.
  size_t push_count_upper_bound = pushes->size();
  size_t push_begin = push_count_upper_bound;
  for (auto move : base::Reversed(*pushes)) {
    if (move == nullptr) break;
    push_begin--;
  }
  size_t push_count = pushes->size() - push_begin;
  std::copy(pushes->begin() + push_begin,
            pushes->begin() + push_begin + push_count, pushes->begin());
  pushes->resize(push_count);
}

CodeGenerator::CodeGenResult CodeGenerator::AssembleInstruction(
    Instruction* instr, const InstructionBlock* block) {
  int first_unused_stack_slot;
  bool adjust_stack =
      GetSlotAboveSPBeforeTailCall(instr, &first_unused_stack_slot);
  if (adjust_stack) AssembleTailCallBeforeGap(instr, first_unused_stack_slot);
  AssembleGaps(instr);
  if (adjust_stack) AssembleTailCallAfterGap(instr, first_unused_stack_slot);
  DCHECK_IMPLIES(
      block->must_deconstruct_frame(),
      instr != code()->InstructionAt(block->last_instruction_index()) ||
          instr->IsRet() || instr->IsJump());
  if (instr->IsJump() && block->must_deconstruct_frame()) {
    AssembleDeconstructFrame();
  }
  AssembleSourcePosition(instr);
  // Assemble architecture-specific code for the instruction.
  CodeGenResult result = AssembleArchInstruction(instr);
  if (result != kSuccess) return result;

  FlagsMode mode = FlagsModeField::decode(instr->opcode());
  FlagsCondition condition = FlagsConditionField::decode(instr->opcode());
  switch (mode) {
    case kFlags_branch: {
      // Assemble a branch after this instruction.
      InstructionOperandConverter i(this, instr);
      RpoNumber true_rpo = i.InputRpo(instr->InputCount() - 2);
      RpoNumber false_rpo = i.InputRpo(instr->InputCount() - 1);

      if (true_rpo == false_rpo) {
        // redundant branch.
        if (!IsNextInAssemblyOrder(true_rpo)) {
          AssembleArchJump(true_rpo);
        }
        return kSuccess;
      }
      if (IsNextInAssemblyOrder(true_rpo)) {
        // true block is next, can fall through if condition negated.
        std::swap(true_rpo, false_rpo);
        condition = NegateFlagsCondition(condition);
      }
      BranchInfo branch;
      branch.condition = condition;
      branch.true_label = GetLabel(true_rpo);
      branch.false_label = GetLabel(false_rpo);
      branch.fallthru = IsNextInAssemblyOrder(false_rpo);
      // Assemble architecture-specific branch.
      AssembleArchBranch(instr, &branch);
      break;
    }
    case kFlags_deoptimize: {
      // Assemble a conditional eager deoptimization after this instruction.
      InstructionOperandConverter i(this, instr);
      size_t frame_state_offset = MiscField::decode(instr->opcode());
      DeoptimizationExit* const exit =
          AddDeoptimizationExit(instr, frame_state_offset);
      Label continue_label;
      BranchInfo branch;
      branch.condition = condition;
      branch.true_label = exit->label();
      branch.false_label = &continue_label;
      branch.fallthru = true;
      // Assemble architecture-specific branch.
      AssembleArchBranch(instr, &branch);
      masm()->bind(&continue_label);
      break;
    }
    case kFlags_set: {
      // Assemble a boolean materialization after this instruction.
      AssembleArchBoolean(instr, condition);
      break;
    }
    case kFlags_none: {
      break;
    }
  }
  return kSuccess;
}


void CodeGenerator::AssembleSourcePosition(Instruction* instr) {
  SourcePosition source_position;
  if (!code()->GetSourcePosition(instr, &source_position)) return;
  if (source_position == current_source_position_) return;
  current_source_position_ = source_position;
  if (source_position.IsUnknown()) return;
  int code_pos = source_position.raw();
  source_position_table_builder_.AddPosition(masm()->pc_offset(), code_pos,
                                             false);
  if (FLAG_code_comments) {
    CompilationInfo* info = this->info();
    if (!info->parse_info()) return;
    Vector<char> buffer = Vector<char>::New(256);
    int ln = Script::GetLineNumber(info->script(), code_pos);
    int cn = Script::GetColumnNumber(info->script(), code_pos);
    if (info->script()->name()->IsString()) {
      Handle<String> file(String::cast(info->script()->name()));
      base::OS::SNPrintF(buffer.start(), buffer.length(), "-- %s:%d:%d --",
                         file->ToCString().get(), ln, cn);
    } else {
      base::OS::SNPrintF(buffer.start(), buffer.length(),
                         "-- <unknown>:%d:%d --", ln, cn);
    }
    masm()->RecordComment(buffer.start());
  }
}

bool CodeGenerator::GetSlotAboveSPBeforeTailCall(Instruction* instr,
                                                 int* slot) {
  if (instr->IsTailCall()) {
    InstructionOperandConverter g(this, instr);
    *slot = g.InputInt32(instr->InputCount() - 1);
    return true;
  } else {
    return false;
  }
}

void CodeGenerator::AssembleGaps(Instruction* instr) {
  for (int i = Instruction::FIRST_GAP_POSITION;
       i <= Instruction::LAST_GAP_POSITION; i++) {
    Instruction::GapPosition inner_pos =
        static_cast<Instruction::GapPosition>(i);
    ParallelMove* move = instr->GetParallelMove(inner_pos);
    if (move != nullptr) resolver()->Resolve(move);
  }
}


void CodeGenerator::PopulateDeoptimizationData(Handle<Code> code_object) {
  CompilationInfo* info = this->info();
  int deopt_count = static_cast<int>(deoptimization_states_.size());
  if (deopt_count == 0 && !info->is_osr()) return;
  Handle<DeoptimizationInputData> data =
      DeoptimizationInputData::New(isolate(), deopt_count, TENURED);

  Handle<ByteArray> translation_array =
      translations_.CreateByteArray(isolate()->factory());

  data->SetTranslationByteArray(*translation_array);
  data->SetInlinedFunctionCount(
      Smi::FromInt(static_cast<int>(inlined_function_count_)));
  data->SetOptimizationId(Smi::FromInt(info->optimization_id()));

  if (info->has_shared_info()) {
    data->SetSharedFunctionInfo(*info->shared_info());
  } else {
    data->SetSharedFunctionInfo(Smi::FromInt(0));
  }

  Handle<FixedArray> literals = isolate()->factory()->NewFixedArray(
      static_cast<int>(deoptimization_literals_.size()), TENURED);
  {
    AllowDeferredHandleDereference copy_handles;
    for (unsigned i = 0; i < deoptimization_literals_.size(); i++) {
      literals->set(i, *deoptimization_literals_[i]);
    }
    data->SetLiteralArray(*literals);
  }

  if (info->is_osr()) {
    DCHECK(osr_pc_offset_ >= 0);
    data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
    data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
  } else {
    BailoutId osr_ast_id = BailoutId::None();
    data->SetOsrAstId(Smi::FromInt(osr_ast_id.ToInt()));
    data->SetOsrPcOffset(Smi::FromInt(-1));
  }

  // Populate deoptimization entries.
  for (int i = 0; i < deopt_count; i++) {
    DeoptimizationState* deoptimization_state = deoptimization_states_[i];
    data->SetAstId(i, deoptimization_state->bailout_id());
    CHECK(deoptimization_states_[i]);
    data->SetTranslationIndex(
        i, Smi::FromInt(deoptimization_states_[i]->translation_id()));
    data->SetArgumentsStackHeight(i, Smi::FromInt(0));
    data->SetPc(i, Smi::FromInt(deoptimization_state->pc_offset()));
  }

  code_object->set_deoptimization_data(*data);
}


Label* CodeGenerator::AddJumpTable(Label** targets, size_t target_count) {
  jump_tables_ = new (zone()) JumpTable(jump_tables_, targets, target_count);
  return jump_tables_->label();
}


void CodeGenerator::RecordCallPosition(Instruction* instr) {
  CallDescriptor::Flags flags(MiscField::decode(instr->opcode()));

  bool needs_frame_state = (flags & CallDescriptor::kNeedsFrameState);

  RecordSafepoint(
      instr->reference_map(), Safepoint::kSimple, 0,
      needs_frame_state ? Safepoint::kLazyDeopt : Safepoint::kNoLazyDeopt);

  if (flags & CallDescriptor::kHasExceptionHandler) {
    InstructionOperandConverter i(this, instr);
    RpoNumber handler_rpo = i.InputRpo(instr->InputCount() - 1);
    handlers_.push_back({GetLabel(handler_rpo), masm()->pc_offset()});
  }

  if (needs_frame_state) {
    MarkLazyDeoptSite();
    // If the frame state is present, it starts at argument 1 (just after the
    // code address).
    size_t frame_state_offset = 1;
    FrameStateDescriptor* descriptor =
        GetDeoptimizationEntry(instr, frame_state_offset).descriptor();
    int pc_offset = masm()->pc_offset();
    int deopt_state_id = BuildTranslation(instr, pc_offset, frame_state_offset,
                                          descriptor->state_combine());
    // If the pre-call frame state differs from the post-call one, produce the
    // pre-call frame state, too.
    // TODO(jarin) We might want to avoid building the pre-call frame state
    // because it is only used to get locals and arguments (by the debugger and
    // f.arguments), and those are the same in the pre-call and post-call
    // states.
    if (!descriptor->state_combine().IsOutputIgnored()) {
      deopt_state_id = BuildTranslation(instr, -1, frame_state_offset,
                                        OutputFrameStateCombine::Ignore());
    }
#if DEBUG
    // Make sure all the values live in stack slots or they are immediates.
    // (The values should not live in register because registers are clobbered
    // by calls.)
    for (size_t i = 0; i < descriptor->GetSize(); i++) {
      InstructionOperand* op = instr->InputAt(frame_state_offset + 1 + i);
      CHECK(op->IsStackSlot() || op->IsFPStackSlot() || op->IsImmediate());
    }
#endif
    safepoints()->RecordLazyDeoptimizationIndex(deopt_state_id);
  }
}


int CodeGenerator::DefineDeoptimizationLiteral(Handle<Object> literal) {
  int result = static_cast<int>(deoptimization_literals_.size());
  for (unsigned i = 0; i < deoptimization_literals_.size(); ++i) {
    if (deoptimization_literals_[i].is_identical_to(literal)) return i;
  }
  deoptimization_literals_.push_back(literal);
  return result;
}

DeoptimizationEntry const& CodeGenerator::GetDeoptimizationEntry(
    Instruction* instr, size_t frame_state_offset) {
  InstructionOperandConverter i(this, instr);
  int const state_id = i.InputInt32(frame_state_offset);
  return code()->GetDeoptimizationEntry(state_id);
}

DeoptimizeReason CodeGenerator::GetDeoptimizationReason(
    int deoptimization_id) const {
  size_t const index = static_cast<size_t>(deoptimization_id);
  DCHECK_LT(index, deoptimization_states_.size());
  return deoptimization_states_[index]->reason();
}

void CodeGenerator::TranslateStateValueDescriptor(
    StateValueDescriptor* desc, Translation* translation,
    InstructionOperandIterator* iter) {
  if (desc->IsNested()) {
    translation->BeginCapturedObject(static_cast<int>(desc->size()));
    for (size_t index = 0; index < desc->fields().size(); index++) {
      TranslateStateValueDescriptor(&desc->fields()[index], translation, iter);
    }
  } else if (desc->IsDuplicate()) {
    translation->DuplicateObject(static_cast<int>(desc->id()));
  } else {
    DCHECK(desc->IsPlain());
    AddTranslationForOperand(translation, iter->instruction(), iter->Advance(),
                             desc->type());
  }
}


void CodeGenerator::TranslateFrameStateDescriptorOperands(
    FrameStateDescriptor* desc, InstructionOperandIterator* iter,
    OutputFrameStateCombine combine, Translation* translation) {
  for (size_t index = 0; index < desc->GetSize(combine); index++) {
    switch (combine.kind()) {
      case OutputFrameStateCombine::kPushOutput: {
        DCHECK(combine.GetPushCount() <= iter->instruction()->OutputCount());
        size_t size_without_output =
            desc->GetSize(OutputFrameStateCombine::Ignore());
        // If the index is past the existing stack items in values_.
        if (index >= size_without_output) {
          // Materialize the result of the call instruction in this slot.
          AddTranslationForOperand(
              translation, iter->instruction(),
              iter->instruction()->OutputAt(index - size_without_output),
              MachineType::AnyTagged());
          continue;
        }
        break;
      }
      case OutputFrameStateCombine::kPokeAt:
        // The result of the call should be placed at position
        // [index_from_top] in the stack (overwriting whatever was
        // previously there).
        size_t index_from_top =
            desc->GetSize(combine) - 1 - combine.GetOffsetToPokeAt();
        if (index >= index_from_top &&
            index < index_from_top + iter->instruction()->OutputCount()) {
          AddTranslationForOperand(
              translation, iter->instruction(),
              iter->instruction()->OutputAt(index - index_from_top),
              MachineType::AnyTagged());
          iter->Advance();  // We do not use this input, but we need to
                            // advace, as the input got replaced.
          continue;
        }
        break;
    }
    StateValueDescriptor* value_desc = desc->GetStateValueDescriptor();
    TranslateStateValueDescriptor(&value_desc->fields()[index], translation,
                                  iter);
  }
}


void CodeGenerator::BuildTranslationForFrameStateDescriptor(
    FrameStateDescriptor* descriptor, InstructionOperandIterator* iter,
    Translation* translation, OutputFrameStateCombine state_combine) {
  // Outer-most state must be added to translation first.
  if (descriptor->outer_state() != nullptr) {
    BuildTranslationForFrameStateDescriptor(descriptor->outer_state(), iter,
                                            translation,
                                            OutputFrameStateCombine::Ignore());
  }

  Handle<SharedFunctionInfo> shared_info;
  if (!descriptor->shared_info().ToHandle(&shared_info)) {
    if (!info()->has_shared_info()) {
      return;  // Stub with no SharedFunctionInfo.
    }
    shared_info = info()->shared_info();
  }
  int shared_info_id = DefineDeoptimizationLiteral(shared_info);

  switch (descriptor->type()) {
    case FrameStateType::kJavaScriptFunction:
      translation->BeginJSFrame(
          descriptor->bailout_id(), shared_info_id,
          static_cast<unsigned int>(descriptor->GetSize(state_combine) -
                                    (1 + descriptor->parameters_count())));
      break;
    case FrameStateType::kInterpretedFunction:
      translation->BeginInterpretedFrame(
          descriptor->bailout_id(), shared_info_id,
          static_cast<unsigned int>(descriptor->locals_count() + 1));
      break;
    case FrameStateType::kArgumentsAdaptor:
      translation->BeginArgumentsAdaptorFrame(
          shared_info_id,
          static_cast<unsigned int>(descriptor->parameters_count()));
      break;
    case FrameStateType::kTailCallerFunction:
      translation->BeginTailCallerFrame(shared_info_id);
      break;
    case FrameStateType::kConstructStub:
      translation->BeginConstructStubFrame(
          shared_info_id,
          static_cast<unsigned int>(descriptor->parameters_count()));
      break;
    case FrameStateType::kGetterStub:
      translation->BeginGetterStubFrame(shared_info_id);
      break;
    case FrameStateType::kSetterStub:
      translation->BeginSetterStubFrame(shared_info_id);
      break;
  }

  TranslateFrameStateDescriptorOperands(descriptor, iter, state_combine,
                                        translation);
}


int CodeGenerator::BuildTranslation(Instruction* instr, int pc_offset,
                                    size_t frame_state_offset,
                                    OutputFrameStateCombine state_combine) {
  DeoptimizationEntry const& entry =
      GetDeoptimizationEntry(instr, frame_state_offset);
  FrameStateDescriptor* const descriptor = entry.descriptor();
  frame_state_offset++;

  Translation translation(
      &translations_, static_cast<int>(descriptor->GetFrameCount()),
      static_cast<int>(descriptor->GetJSFrameCount()), zone());
  InstructionOperandIterator iter(instr, frame_state_offset);
  BuildTranslationForFrameStateDescriptor(descriptor, &iter, &translation,
                                          state_combine);

  int deoptimization_id = static_cast<int>(deoptimization_states_.size());

  deoptimization_states_.push_back(new (zone()) DeoptimizationState(
      descriptor->bailout_id(), translation.index(), pc_offset,
      entry.reason()));

  return deoptimization_id;
}


void CodeGenerator::AddTranslationForOperand(Translation* translation,
                                             Instruction* instr,
                                             InstructionOperand* op,
                                             MachineType type) {
  if (op->IsStackSlot()) {
    if (type.representation() == MachineRepresentation::kBit) {
      translation->StoreBoolStackSlot(LocationOperand::cast(op)->index());
    } else if (type == MachineType::Int8() || type == MachineType::Int16() ||
               type == MachineType::Int32()) {
      translation->StoreInt32StackSlot(LocationOperand::cast(op)->index());
    } else if (type == MachineType::Uint8() || type == MachineType::Uint16() ||
               type == MachineType::Uint32()) {
      translation->StoreUint32StackSlot(LocationOperand::cast(op)->index());
    } else if (IsAnyTagged(type.representation())) {
      translation->StoreStackSlot(LocationOperand::cast(op)->index());
    } else {
      CHECK(false);
    }
  } else if (op->IsFPStackSlot()) {
    if (type.representation() == MachineRepresentation::kFloat64) {
      translation->StoreDoubleStackSlot(LocationOperand::cast(op)->index());
    } else {
      DCHECK_EQ(MachineRepresentation::kFloat32, type.representation());
      translation->StoreFloatStackSlot(LocationOperand::cast(op)->index());
    }
  } else if (op->IsRegister()) {
    InstructionOperandConverter converter(this, instr);
    if (type.representation() == MachineRepresentation::kBit) {
      translation->StoreBoolRegister(converter.ToRegister(op));
    } else if (type == MachineType::Int8() || type == MachineType::Int16() ||
               type == MachineType::Int32()) {
      translation->StoreInt32Register(converter.ToRegister(op));
    } else if (type == MachineType::Uint8() || type == MachineType::Uint16() ||
               type == MachineType::Uint32()) {
      translation->StoreUint32Register(converter.ToRegister(op));
    } else if (IsAnyTagged(type.representation())) {
      translation->StoreRegister(converter.ToRegister(op));
    } else {
      CHECK(false);
    }
  } else if (op->IsFPRegister()) {
    InstructionOperandConverter converter(this, instr);
    if (type.representation() == MachineRepresentation::kFloat64) {
      translation->StoreDoubleRegister(converter.ToDoubleRegister(op));
    } else {
      DCHECK_EQ(MachineRepresentation::kFloat32, type.representation());
      translation->StoreFloatRegister(converter.ToFloatRegister(op));
    }
  } else if (op->IsImmediate()) {
    InstructionOperandConverter converter(this, instr);
    Constant constant = converter.ToConstant(op);
    Handle<Object> constant_object;
    switch (constant.type()) {
      case Constant::kInt32:
        if (type.representation() == MachineRepresentation::kTagged ||
            type.representation() == MachineRepresentation::kTaggedSigned) {
          // When pointers are 4 bytes, we can use int32 constants to represent
          // Smis.
          DCHECK_EQ(4, kPointerSize);
          constant_object =
              handle(reinterpret_cast<Smi*>(constant.ToInt32()), isolate());
          DCHECK(constant_object->IsSmi());
        } else {
          DCHECK(type == MachineType::Int32() ||
                 type == MachineType::Uint32() ||
                 type.representation() == MachineRepresentation::kBit ||
                 type.representation() == MachineRepresentation::kNone);
          DCHECK(type.representation() != MachineRepresentation::kNone ||
                 constant.ToInt32() == FrameStateDescriptor::kImpossibleValue);

          constant_object =
              isolate()->factory()->NewNumberFromInt(constant.ToInt32());
        }
        break;
      case Constant::kInt64:
        // When pointers are 8 bytes, we can use int64 constants to represent
        // Smis.
        DCHECK(type.representation() == MachineRepresentation::kTagged ||
               type.representation() == MachineRepresentation::kTaggedSigned);
        DCHECK_EQ(8, kPointerSize);
        constant_object =
            handle(reinterpret_cast<Smi*>(constant.ToInt64()), isolate());
        DCHECK(constant_object->IsSmi());
        break;
      case Constant::kFloat32:
        if (type.representation() == MachineRepresentation::kTaggedSigned) {
          DCHECK(IsSmiDouble(constant.ToFloat32()));
        } else {
          DCHECK(type.representation() == MachineRepresentation::kFloat32 ||
                 CanBeTaggedPointer(type.representation()));
        }
        constant_object = isolate()->factory()->NewNumber(constant.ToFloat32());
        break;
      case Constant::kFloat64:
        if (type.representation() == MachineRepresentation::kTaggedSigned) {
          DCHECK(IsSmiDouble(constant.ToFloat64()));
        } else {
          DCHECK(type.representation() == MachineRepresentation::kFloat64 ||
                 CanBeTaggedPointer(type.representation()));
        }
        constant_object = isolate()->factory()->NewNumber(constant.ToFloat64());
        break;
      case Constant::kHeapObject:
        DCHECK(CanBeTaggedPointer(type.representation()));
        constant_object = constant.ToHeapObject();
        break;
      default:
        CHECK(false);
    }
    if (constant_object.is_identical_to(info()->closure())) {
      translation->StoreJSFrameFunction();
    } else {
      int literal_id = DefineDeoptimizationLiteral(constant_object);
      translation->StoreLiteral(literal_id);
    }
  } else {
    CHECK(false);
  }
}


void CodeGenerator::MarkLazyDeoptSite() {
  last_lazy_deopt_pc_ = masm()->pc_offset();
}

DeoptimizationExit* CodeGenerator::AddDeoptimizationExit(
    Instruction* instr, size_t frame_state_offset) {
  int const deoptimization_id = BuildTranslation(
      instr, -1, frame_state_offset, OutputFrameStateCombine::Ignore());
  DeoptimizationExit* const exit = new (zone())
      DeoptimizationExit(deoptimization_id, current_source_position_);
  deoptimization_exits_.push_back(exit);
  return exit;
}

OutOfLineCode::OutOfLineCode(CodeGenerator* gen)
    : frame_(gen->frame()), masm_(gen->masm()), next_(gen->ools_) {
  gen->ools_ = this;
}


OutOfLineCode::~OutOfLineCode() {}

}  // namespace compiler
}  // namespace internal
}  // namespace v8