summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/backend/code-generator.cc
blob: 43eb4a1f15a5905e9666aef8f31ac295e9d86421 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/backend/code-generator.h"

#include "src/base/iterator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/optimized-compilation-info.h"
#include "src/codegen/string-constants.h"
#include "src/compiler/backend/code-generator-impl.h"
#include "src/compiler/linkage.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/wasm-compiler.h"
#include "src/diagnostics/eh-frame.h"
#include "src/execution/frames.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/objects/smi.h"
#include "src/utils/address-map.h"

namespace v8 {
namespace internal {
namespace compiler {

class CodeGenerator::JumpTable final : public ZoneObject {
 public:
  JumpTable(JumpTable* next, Label** targets, size_t target_count)
      : next_(next), targets_(targets), target_count_(target_count) {}

  Label* label() { return &label_; }
  JumpTable* next() const { return next_; }
  Label** targets() const { return targets_; }
  size_t target_count() const { return target_count_; }

 private:
  Label label_;
  JumpTable* const next_;
  Label** const targets_;
  size_t const target_count_;
};

CodeGenerator::CodeGenerator(
    Zone* codegen_zone, Frame* frame, Linkage* linkage,
    InstructionSequence* instructions, OptimizedCompilationInfo* info,
    Isolate* isolate, base::Optional<OsrHelper> osr_helper,
    int start_source_position, JumpOptimizationInfo* jump_opt,
    PoisoningMitigationLevel poisoning_level, const AssemblerOptions& options,
    int32_t builtin_index, size_t max_unoptimized_frame_height,
    std::unique_ptr<AssemblerBuffer> buffer)
    : zone_(codegen_zone),
      isolate_(isolate),
      frame_access_state_(nullptr),
      linkage_(linkage),
      instructions_(instructions),
      unwinding_info_writer_(zone()),
      info_(info),
      labels_(zone()->NewArray<Label>(instructions->InstructionBlockCount())),
      current_block_(RpoNumber::Invalid()),
      start_source_position_(start_source_position),
      current_source_position_(SourcePosition::Unknown()),
      tasm_(isolate, options, CodeObjectRequired::kNo, std::move(buffer)),
      resolver_(this),
      safepoints_(zone()),
      handlers_(zone()),
      deoptimization_exits_(zone()),
      deoptimization_literals_(zone()),
      translations_(zone()),
      max_unoptimized_frame_height_(max_unoptimized_frame_height),
      caller_registers_saved_(false),
      jump_tables_(nullptr),
      ools_(nullptr),
      osr_helper_(std::move(osr_helper)),
      osr_pc_offset_(-1),
      optimized_out_literal_id_(-1),
      source_position_table_builder_(
          SourcePositionTableBuilder::RECORD_SOURCE_POSITIONS),
      protected_instructions_(zone()),
      result_(kSuccess),
      poisoning_level_(poisoning_level),
      block_starts_(zone()),
      instr_starts_(zone()) {
  for (int i = 0; i < instructions->InstructionBlockCount(); ++i) {
    new (&labels_[i]) Label;
  }
  CreateFrameAccessState(frame);
  CHECK_EQ(info->is_osr(), osr_helper_.has_value());
  tasm_.set_jump_optimization_info(jump_opt);
  Code::Kind code_kind = info->code_kind();
  if (code_kind == Code::WASM_FUNCTION ||
      code_kind == Code::WASM_TO_CAPI_FUNCTION ||
      code_kind == Code::WASM_TO_JS_FUNCTION ||
      code_kind == Code::WASM_INTERPRETER_ENTRY ||
      code_kind == Code::JS_TO_WASM_FUNCTION ||
      (Builtins::IsBuiltinId(builtin_index) &&
       Builtins::IsWasmRuntimeStub(builtin_index))) {
    tasm_.set_abort_hard(true);
  }
  tasm_.set_builtin_index(builtin_index);
}

bool CodeGenerator::wasm_runtime_exception_support() const {
  DCHECK_NOT_NULL(info_);
  return info_->wasm_runtime_exception_support();
}

void CodeGenerator::AddProtectedInstructionLanding(uint32_t instr_offset,
                                                   uint32_t landing_offset) {
  protected_instructions_.push_back({instr_offset, landing_offset});
}

void CodeGenerator::CreateFrameAccessState(Frame* frame) {
  FinishFrame(frame);
  frame_access_state_ = new (zone()) FrameAccessState(frame);
}

CodeGenerator::CodeGenResult CodeGenerator::AssembleDeoptimizerCall(
    DeoptimizationExit* exit) {
  int deoptimization_id = exit->deoptimization_id();
  if (deoptimization_id > Deoptimizer::kMaxNumberOfEntries) {
    return kTooManyDeoptimizationBailouts;
  }

  DeoptimizeKind deopt_kind = exit->kind();
  DeoptimizeReason deoptimization_reason = exit->reason();
  Address deopt_entry =
      Deoptimizer::GetDeoptimizationEntry(tasm()->isolate(), deopt_kind);
  if (info()->is_source_positions_enabled()) {
    tasm()->RecordDeoptReason(deoptimization_reason, exit->pos(),
                              deoptimization_id);
  }
  tasm()->CallForDeoptimization(deopt_entry, deoptimization_id);
  exit->set_emitted();
  return kSuccess;
}

void CodeGenerator::MaybeEmitOutOfLineConstantPool() {
  tasm()->MaybeEmitOutOfLineConstantPool();
}

void CodeGenerator::AssembleCode() {
  OptimizedCompilationInfo* info = this->info();

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done in AssemblePrologue).
  FrameScope frame_scope(tasm(), StackFrame::MANUAL);

  if (info->is_source_positions_enabled()) {
    AssembleSourcePosition(start_source_position());
  }
  offsets_info_.code_start_register_check = tasm()->pc_offset();
  // Check that {kJavaScriptCallCodeStartRegister} has been set correctly.
  if (FLAG_debug_code && (info->code_kind() == Code::OPTIMIZED_FUNCTION ||
                          info->code_kind() == Code::BYTECODE_HANDLER)) {
    tasm()->RecordComment("-- Prologue: check code start register --");
    AssembleCodeStartRegisterCheck();
  }

  offsets_info_.deopt_check = tasm()->pc_offset();
  // We want to bailout only from JS functions, which are the only ones
  // that are optimized.
  if (info->IsOptimizing()) {
    DCHECK(linkage()->GetIncomingDescriptor()->IsJSFunctionCall());
    tasm()->RecordComment("-- Prologue: check for deoptimization --");
    BailoutIfDeoptimized();
  }

  offsets_info_.init_poison = tasm()->pc_offset();
  InitializeSpeculationPoison();

  // Define deoptimization literals for all inlined functions.
  DCHECK_EQ(0u, deoptimization_literals_.size());
  for (OptimizedCompilationInfo::InlinedFunctionHolder& inlined :
       info->inlined_functions()) {
    if (!inlined.shared_info.equals(info->shared_info())) {
      int index = DefineDeoptimizationLiteral(
          DeoptimizationLiteral(inlined.shared_info));
      inlined.RegisterInlinedFunctionId(index);
    }
  }
  inlined_function_count_ = deoptimization_literals_.size();

  // Define deoptimization literals for all BytecodeArrays to which we might
  // deopt to ensure they are strongly held by the optimized code.
  if (info->has_bytecode_array()) {
    DefineDeoptimizationLiteral(DeoptimizationLiteral(info->bytecode_array()));
  }
  for (OptimizedCompilationInfo::InlinedFunctionHolder& inlined :
       info->inlined_functions()) {
    DefineDeoptimizationLiteral(DeoptimizationLiteral(inlined.bytecode_array));
  }

  unwinding_info_writer_.SetNumberOfInstructionBlocks(
      instructions()->InstructionBlockCount());

  if (info->trace_turbo_json_enabled()) {
    block_starts_.assign(instructions()->instruction_blocks().size(), -1);
    instr_starts_.assign(instructions()->instructions().size(), {});
  }
  // Assemble instructions in assembly order.
  offsets_info_.blocks_start = tasm()->pc_offset();
  for (const InstructionBlock* block : instructions()->ao_blocks()) {
    // Align loop headers on vendor recommended boundaries.
    if (block->ShouldAlign() && !tasm()->jump_optimization_info()) {
      tasm()->CodeTargetAlign();
    }
    if (info->trace_turbo_json_enabled()) {
      block_starts_[block->rpo_number().ToInt()] = tasm()->pc_offset();
    }
    // Bind a label for a block.
    current_block_ = block->rpo_number();
    unwinding_info_writer_.BeginInstructionBlock(tasm()->pc_offset(), block);
    if (FLAG_code_comments) {
      std::ostringstream buffer;
      buffer << "-- B" << block->rpo_number().ToInt() << " start";
      if (block->IsDeferred()) buffer << " (deferred)";
      if (!block->needs_frame()) buffer << " (no frame)";
      if (block->must_construct_frame()) buffer << " (construct frame)";
      if (block->must_deconstruct_frame()) buffer << " (deconstruct frame)";

      if (block->IsLoopHeader()) {
        buffer << " (loop up to " << block->loop_end().ToInt() << ")";
      }
      if (block->loop_header().IsValid()) {
        buffer << " (in loop " << block->loop_header().ToInt() << ")";
      }
      buffer << " --";
      tasm()->RecordComment(buffer.str().c_str());
    }

    frame_access_state()->MarkHasFrame(block->needs_frame());

    tasm()->bind(GetLabel(current_block_));

    TryInsertBranchPoisoning(block);

    if (block->must_construct_frame()) {
      AssembleConstructFrame();
      // We need to setup the root register after we assemble the prologue, to
      // avoid clobbering callee saved registers in case of C linkage and
      // using the roots.
      // TODO(mtrofin): investigate how we can avoid doing this repeatedly.
      if (linkage()->GetIncomingDescriptor()->InitializeRootRegister()) {
        tasm()->InitializeRootRegister();
      }
    }

    if (FLAG_enable_embedded_constant_pool && !block->needs_frame()) {
      ConstantPoolUnavailableScope constant_pool_unavailable(tasm());
      result_ = AssembleBlock(block);
    } else {
      result_ = AssembleBlock(block);
    }
    if (result_ != kSuccess) return;
    unwinding_info_writer_.EndInstructionBlock(block);
  }

  // Assemble all out-of-line code.
  offsets_info_.out_of_line_code = tasm()->pc_offset();
  if (ools_) {
    tasm()->RecordComment("-- Out of line code --");
    for (OutOfLineCode* ool = ools_; ool; ool = ool->next()) {
      tasm()->bind(ool->entry());
      ool->Generate();
      if (ool->exit()->is_bound()) tasm()->jmp(ool->exit());
    }
  }

  // This nop operation is needed to ensure that the trampoline is not
  // confused with the pc of the call before deoptimization.
  // The test regress/regress-259 is an example of where we need it.
  tasm()->nop();

  // For some targets, we must make sure that constant and veneer pools are
  // emitted before emitting the deoptimization exits.
  PrepareForDeoptimizationExits(static_cast<int>(deoptimization_exits_.size()));

  if (Deoptimizer::kSupportsFixedDeoptExitSize) {
    deopt_exit_start_offset_ = tasm()->pc_offset();
  }

  // Assemble deoptimization exits.
  offsets_info_.deoptimization_exits = tasm()->pc_offset();
  int last_updated = 0;
  for (DeoptimizationExit* exit : deoptimization_exits_) {
    if (exit->emitted()) continue;
    if (Deoptimizer::kSupportsFixedDeoptExitSize) {
      exit->set_deoptimization_id(next_deoptimization_id_++);
    }
    tasm()->bind(exit->label());

    // UpdateDeoptimizationInfo expects lazy deopts to be visited in pc_offset
    // order, which is always the case since they are added to
    // deoptimization_exits_ in that order.
    if (exit->kind() == DeoptimizeKind::kLazy) {
      int trampoline_pc = tasm()->pc_offset();
      last_updated = safepoints()->UpdateDeoptimizationInfo(
          exit->pc_offset(), trampoline_pc, last_updated,
          exit->deoptimization_id());
    }
    result_ = AssembleDeoptimizerCall(exit);
    if (result_ != kSuccess) return;
  }

  offsets_info_.pools = tasm()->pc_offset();
  // TODO(jgruber): Move all inlined metadata generation into a new,
  // architecture-independent version of FinishCode. Currently, this includes
  // the safepoint table, handler table, constant pool, and code comments, in
  // that order.
  FinishCode();

  offsets_info_.jump_tables = tasm()->pc_offset();
  // Emit the jump tables.
  if (jump_tables_) {
    tasm()->Align(kSystemPointerSize);
    for (JumpTable* table = jump_tables_; table; table = table->next()) {
      tasm()->bind(table->label());
      AssembleJumpTable(table->targets(), table->target_count());
    }
  }

  // The PerfJitLogger logs code up until here, excluding the safepoint
  // table. Resolve the unwinding info now so it is aware of the same code
  // size as reported by perf.
  unwinding_info_writer_.Finish(tasm()->pc_offset());

  safepoints()->Emit(tasm(), frame()->GetTotalFrameSlotCount());

  // Emit the exception handler table.
  if (!handlers_.empty()) {
    handler_table_offset_ = HandlerTable::EmitReturnTableStart(tasm());
    for (size_t i = 0; i < handlers_.size(); ++i) {
      HandlerTable::EmitReturnEntry(tasm(), handlers_[i].pc_offset,
                                    handlers_[i].handler->pos());
    }
  }

  tasm()->MaybeEmitOutOfLineConstantPool();
  tasm()->FinalizeJumpOptimizationInfo();

  result_ = kSuccess;
}

void CodeGenerator::TryInsertBranchPoisoning(const InstructionBlock* block) {
  // See if our predecessor was a basic block terminated by a branch_and_poison
  // instruction. If yes, then perform the masking based on the flags.
  if (block->PredecessorCount() != 1) return;
  RpoNumber pred_rpo = (block->predecessors())[0];
  const InstructionBlock* pred = instructions()->InstructionBlockAt(pred_rpo);
  if (pred->code_start() == pred->code_end()) return;
  Instruction* instr = instructions()->InstructionAt(pred->code_end() - 1);
  FlagsMode mode = FlagsModeField::decode(instr->opcode());
  switch (mode) {
    case kFlags_branch_and_poison: {
      BranchInfo branch;
      RpoNumber target = ComputeBranchInfo(&branch, instr);
      if (!target.IsValid()) {
        // Non-trivial branch, add the masking code.
        FlagsCondition condition = branch.condition;
        if (branch.false_label == GetLabel(block->rpo_number())) {
          condition = NegateFlagsCondition(condition);
        }
        AssembleBranchPoisoning(condition, instr);
      }
      break;
    }
    case kFlags_deoptimize_and_poison: {
      UNREACHABLE();
    }
    default:
      break;
  }
}

void CodeGenerator::AssembleArchBinarySearchSwitchRange(
    Register input, RpoNumber def_block, std::pair<int32_t, Label*>* begin,
    std::pair<int32_t, Label*>* end) {
  if (end - begin < kBinarySearchSwitchMinimalCases) {
    while (begin != end) {
      tasm()->JumpIfEqual(input, begin->first, begin->second);
      ++begin;
    }
    AssembleArchJump(def_block);
    return;
  }
  auto middle = begin + (end - begin) / 2;
  Label less_label;
  tasm()->JumpIfLessThan(input, middle->first, &less_label);
  AssembleArchBinarySearchSwitchRange(input, def_block, middle, end);
  tasm()->bind(&less_label);
  AssembleArchBinarySearchSwitchRange(input, def_block, begin, middle);
}

OwnedVector<byte> CodeGenerator::GetSourcePositionTable() {
  return source_position_table_builder_.ToSourcePositionTableVector();
}

OwnedVector<trap_handler::ProtectedInstructionData>
CodeGenerator::GetProtectedInstructions() {
  return OwnedVector<trap_handler::ProtectedInstructionData>::Of(
      protected_instructions_);
}

MaybeHandle<Code> CodeGenerator::FinalizeCode() {
  if (result_ != kSuccess) {
    tasm()->AbortedCodeGeneration();
    return MaybeHandle<Code>();
  }

  // Allocate the source position table.
  Handle<ByteArray> source_positions =
      source_position_table_builder_.ToSourcePositionTable(isolate());

  // Allocate deoptimization data.
  Handle<DeoptimizationData> deopt_data = GenerateDeoptimizationData();

  // Allocate and install the code.
  CodeDesc desc;
  tasm()->GetCode(isolate(), &desc, safepoints(), handler_table_offset_);

#if defined(V8_OS_WIN64)
  if (Builtins::IsBuiltinId(info_->builtin_index())) {
    isolate_->SetBuiltinUnwindData(info_->builtin_index(),
                                   tasm()->GetUnwindInfo());
  }
#endif  // V8_OS_WIN64

  if (unwinding_info_writer_.eh_frame_writer()) {
    unwinding_info_writer_.eh_frame_writer()->GetEhFrame(&desc);
  }

  MaybeHandle<Code> maybe_code =
      Factory::CodeBuilder(isolate(), desc, info()->code_kind())
          .set_builtin_index(info()->builtin_index())
          .set_source_position_table(source_positions)
          .set_deoptimization_data(deopt_data)
          .set_is_turbofanned()
          .set_stack_slots(frame()->GetTotalFrameSlotCount())
          .TryBuild();

  Handle<Code> code;
  if (!maybe_code.ToHandle(&code)) {
    tasm()->AbortedCodeGeneration();
    return MaybeHandle<Code>();
  }

  isolate()->counters()->total_compiled_code_size()->Increment(
      code->raw_instruction_size());

  LOG_CODE_EVENT(isolate(),
                 CodeLinePosInfoRecordEvent(code->raw_instruction_start(),
                                            *source_positions));

  return code;
}

bool CodeGenerator::IsNextInAssemblyOrder(RpoNumber block) const {
  return instructions()
      ->InstructionBlockAt(current_block_)
      ->ao_number()
      .IsNext(instructions()->InstructionBlockAt(block)->ao_number());
}

void CodeGenerator::RecordSafepoint(ReferenceMap* references,
                                    Safepoint::DeoptMode deopt_mode) {
  Safepoint safepoint = safepoints()->DefineSafepoint(tasm(), deopt_mode);
  int stackSlotToSpillSlotDelta =
      frame()->GetTotalFrameSlotCount() - frame()->GetSpillSlotCount();
  for (const InstructionOperand& operand : references->reference_operands()) {
    if (operand.IsStackSlot()) {
      int index = LocationOperand::cast(operand).index();
      DCHECK_LE(0, index);
      // We might index values in the fixed part of the frame (i.e. the
      // closure pointer or the context pointer); these are not spill slots
      // and therefore don't work with the SafepointTable currently, but
      // we also don't need to worry about them, since the GC has special
      // knowledge about those fields anyway.
      if (index < stackSlotToSpillSlotDelta) continue;
      safepoint.DefinePointerSlot(index);
    }
  }
}

bool CodeGenerator::IsMaterializableFromRoot(Handle<HeapObject> object,
                                             RootIndex* index_return) {
  const CallDescriptor* incoming_descriptor =
      linkage()->GetIncomingDescriptor();
  if (incoming_descriptor->flags() & CallDescriptor::kCanUseRoots) {
    return isolate()->roots_table().IsRootHandle(object, index_return) &&
           RootsTable::IsImmortalImmovable(*index_return);
  }
  return false;
}

CodeGenerator::CodeGenResult CodeGenerator::AssembleBlock(
    const InstructionBlock* block) {
  for (int i = block->code_start(); i < block->code_end(); ++i) {
    CodeGenResult result = AssembleInstruction(i, block);
    if (result != kSuccess) return result;
  }
  return kSuccess;
}

bool CodeGenerator::IsValidPush(InstructionOperand source,
                                CodeGenerator::PushTypeFlags push_type) {
  if (source.IsImmediate() &&
      ((push_type & CodeGenerator::kImmediatePush) != 0)) {
    return true;
  }
  if (source.IsRegister() &&
      ((push_type & CodeGenerator::kRegisterPush) != 0)) {
    return true;
  }
  if (source.IsStackSlot() &&
      ((push_type & CodeGenerator::kStackSlotPush) != 0)) {
    return true;
  }
  return false;
}

void CodeGenerator::GetPushCompatibleMoves(Instruction* instr,
                                           PushTypeFlags push_type,
                                           ZoneVector<MoveOperands*>* pushes) {
  pushes->clear();
  for (int i = Instruction::FIRST_GAP_POSITION;
       i <= Instruction::LAST_GAP_POSITION; ++i) {
    Instruction::GapPosition inner_pos =
        static_cast<Instruction::GapPosition>(i);
    ParallelMove* parallel_move = instr->GetParallelMove(inner_pos);
    if (parallel_move != nullptr) {
      for (auto move : *parallel_move) {
        InstructionOperand source = move->source();
        InstructionOperand destination = move->destination();
        int first_push_compatible_index =
            V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK ? 1 : 0;
        // If there are any moves from slots that will be overridden by pushes,
        // then the full gap resolver must be used since optimization with
        // pushes don't participate in the parallel move and might clobber
        // values needed for the gap resolve.
        if (source.IsStackSlot() && LocationOperand::cast(source).index() >=
                                        first_push_compatible_index) {
          pushes->clear();
          return;
        }
        // TODO(danno): Right now, only consider moves from the FIRST gap for
        // pushes. Theoretically, we could extract pushes for both gaps (there
        // are cases where this happens), but the logic for that would also have
        // to check to make sure that non-memory inputs to the pushes from the
        // LAST gap don't get clobbered in the FIRST gap.
        if (i == Instruction::FIRST_GAP_POSITION) {
          if (destination.IsStackSlot() &&
              LocationOperand::cast(destination).index() >=
                  first_push_compatible_index) {
            int index = LocationOperand::cast(destination).index();
            if (IsValidPush(source, push_type)) {
              if (index >= static_cast<int>(pushes->size())) {
                pushes->resize(index + 1);
              }
              (*pushes)[index] = move;
            }
          }
        }
      }
    }
  }

  // For now, only support a set of continuous pushes at the end of the list.
  size_t push_count_upper_bound = pushes->size();
  size_t push_begin = push_count_upper_bound;
  for (auto move : base::Reversed(*pushes)) {
    if (move == nullptr) break;
    push_begin--;
  }
  size_t push_count = pushes->size() - push_begin;
  std::copy(pushes->begin() + push_begin,
            pushes->begin() + push_begin + push_count, pushes->begin());
  pushes->resize(push_count);
}

CodeGenerator::MoveType::Type CodeGenerator::MoveType::InferMove(
    InstructionOperand* source, InstructionOperand* destination) {
  if (source->IsConstant()) {
    if (destination->IsAnyRegister()) {
      return MoveType::kConstantToRegister;
    } else {
      DCHECK(destination->IsAnyStackSlot());
      return MoveType::kConstantToStack;
    }
  }
  DCHECK(LocationOperand::cast(source)->IsCompatible(
      LocationOperand::cast(destination)));
  if (source->IsAnyRegister()) {
    if (destination->IsAnyRegister()) {
      return MoveType::kRegisterToRegister;
    } else {
      DCHECK(destination->IsAnyStackSlot());
      return MoveType::kRegisterToStack;
    }
  } else {
    DCHECK(source->IsAnyStackSlot());
    if (destination->IsAnyRegister()) {
      return MoveType::kStackToRegister;
    } else {
      DCHECK(destination->IsAnyStackSlot());
      return MoveType::kStackToStack;
    }
  }
}

CodeGenerator::MoveType::Type CodeGenerator::MoveType::InferSwap(
    InstructionOperand* source, InstructionOperand* destination) {
  DCHECK(LocationOperand::cast(source)->IsCompatible(
      LocationOperand::cast(destination)));
  if (source->IsAnyRegister()) {
    if (destination->IsAnyRegister()) {
      return MoveType::kRegisterToRegister;
    } else {
      DCHECK(destination->IsAnyStackSlot());
      return MoveType::kRegisterToStack;
    }
  } else {
    DCHECK(source->IsAnyStackSlot());
    DCHECK(destination->IsAnyStackSlot());
    return MoveType::kStackToStack;
  }
}

RpoNumber CodeGenerator::ComputeBranchInfo(BranchInfo* branch,
                                           Instruction* instr) {
  // Assemble a branch after this instruction.
  InstructionOperandConverter i(this, instr);
  RpoNumber true_rpo = i.InputRpo(instr->InputCount() - 2);
  RpoNumber false_rpo = i.InputRpo(instr->InputCount() - 1);

  if (true_rpo == false_rpo) {
    return true_rpo;
  }
  FlagsCondition condition = FlagsConditionField::decode(instr->opcode());
  if (IsNextInAssemblyOrder(true_rpo)) {
    // true block is next, can fall through if condition negated.
    std::swap(true_rpo, false_rpo);
    condition = NegateFlagsCondition(condition);
  }
  branch->condition = condition;
  branch->true_label = GetLabel(true_rpo);
  branch->false_label = GetLabel(false_rpo);
  branch->fallthru = IsNextInAssemblyOrder(false_rpo);
  return RpoNumber::Invalid();
}

CodeGenerator::CodeGenResult CodeGenerator::AssembleInstruction(
    int instruction_index, const InstructionBlock* block) {
  Instruction* instr = instructions()->InstructionAt(instruction_index);
  if (info()->trace_turbo_json_enabled()) {
    instr_starts_[instruction_index].gap_pc_offset = tasm()->pc_offset();
  }
  int first_unused_stack_slot;
  FlagsMode mode = FlagsModeField::decode(instr->opcode());
  if (mode != kFlags_trap) {
    AssembleSourcePosition(instr);
  }
  bool adjust_stack =
      GetSlotAboveSPBeforeTailCall(instr, &first_unused_stack_slot);
  if (adjust_stack) AssembleTailCallBeforeGap(instr, first_unused_stack_slot);
  AssembleGaps(instr);
  if (adjust_stack) AssembleTailCallAfterGap(instr, first_unused_stack_slot);
  DCHECK_IMPLIES(
      block->must_deconstruct_frame(),
      instr != instructions()->InstructionAt(block->last_instruction_index()) ||
          instr->IsRet() || instr->IsJump());
  if (instr->IsJump() && block->must_deconstruct_frame()) {
    AssembleDeconstructFrame();
  }
  if (info()->trace_turbo_json_enabled()) {
    instr_starts_[instruction_index].arch_instr_pc_offset = tasm()->pc_offset();
  }
  // Assemble architecture-specific code for the instruction.
  CodeGenResult result = AssembleArchInstruction(instr);
  if (result != kSuccess) return result;

  if (info()->trace_turbo_json_enabled()) {
    instr_starts_[instruction_index].condition_pc_offset = tasm()->pc_offset();
  }

  FlagsCondition condition = FlagsConditionField::decode(instr->opcode());
  switch (mode) {
    case kFlags_branch:
    case kFlags_branch_and_poison: {
      BranchInfo branch;
      RpoNumber target = ComputeBranchInfo(&branch, instr);
      if (target.IsValid()) {
        // redundant branch.
        if (!IsNextInAssemblyOrder(target)) {
          AssembleArchJump(target);
        }
        return kSuccess;
      }
      // Assemble architecture-specific branch.
      AssembleArchBranch(instr, &branch);
      break;
    }
    case kFlags_deoptimize:
    case kFlags_deoptimize_and_poison: {
      // Assemble a conditional eager deoptimization after this instruction.
      InstructionOperandConverter i(this, instr);
      size_t frame_state_offset = MiscField::decode(instr->opcode());
      DeoptimizationExit* const exit =
          AddDeoptimizationExit(instr, frame_state_offset);
      Label continue_label;
      BranchInfo branch;
      branch.condition = condition;
      branch.true_label = exit->label();
      branch.false_label = &continue_label;
      branch.fallthru = true;
      // Assemble architecture-specific branch.
      AssembleArchDeoptBranch(instr, &branch);
      tasm()->bind(&continue_label);
      if (mode == kFlags_deoptimize_and_poison) {
        AssembleBranchPoisoning(NegateFlagsCondition(branch.condition), instr);
      }
      break;
    }
    case kFlags_set: {
      // Assemble a boolean materialization after this instruction.
      AssembleArchBoolean(instr, condition);
      break;
    }
    case kFlags_trap: {
      AssembleArchTrap(instr, condition);
      break;
    }
    case kFlags_none: {
      break;
    }
  }

  // TODO(jarin) We should thread the flag through rather than set it.
  if (instr->IsCall()) {
    ResetSpeculationPoison();
  }

  return kSuccess;
}

void CodeGenerator::AssembleSourcePosition(Instruction* instr) {
  SourcePosition source_position = SourcePosition::Unknown();
  if (instr->IsNop() && instr->AreMovesRedundant()) return;
  if (!instructions()->GetSourcePosition(instr, &source_position)) return;
  AssembleSourcePosition(source_position);
}

void CodeGenerator::AssembleSourcePosition(SourcePosition source_position) {
  if (source_position == current_source_position_) return;
  current_source_position_ = source_position;
  if (!source_position.IsKnown()) return;
  source_position_table_builder_.AddPosition(tasm()->pc_offset(),
                                             source_position, false);
  if (FLAG_code_comments) {
    OptimizedCompilationInfo* info = this->info();
    if (info->IsNotOptimizedFunctionOrWasmFunction()) return;
    std::ostringstream buffer;
    buffer << "-- ";
    // Turbolizer only needs the source position, as it can reconstruct
    // the inlining stack from other information.
    if (info->trace_turbo_json_enabled() || !tasm()->isolate() ||
        tasm()->isolate()->concurrent_recompilation_enabled()) {
      buffer << source_position;
    } else {
      AllowHeapAllocation allocation;
      AllowHandleAllocation handles;
      AllowHandleDereference deref;
      buffer << source_position.InliningStack(info);
    }
    buffer << " --";
    tasm()->RecordComment(buffer.str().c_str());
  }
}

bool CodeGenerator::GetSlotAboveSPBeforeTailCall(Instruction* instr,
                                                 int* slot) {
  if (instr->IsTailCall()) {
    InstructionOperandConverter g(this, instr);
    *slot = g.InputInt32(instr->InputCount() - 1);
    return true;
  } else {
    return false;
  }
}

StubCallMode CodeGenerator::DetermineStubCallMode() const {
  Code::Kind code_kind = info()->code_kind();
  return (code_kind == Code::WASM_FUNCTION ||
          code_kind == Code::WASM_TO_CAPI_FUNCTION ||
          code_kind == Code::WASM_TO_JS_FUNCTION)
             ? StubCallMode::kCallWasmRuntimeStub
             : StubCallMode::kCallCodeObject;
}

void CodeGenerator::AssembleGaps(Instruction* instr) {
  for (int i = Instruction::FIRST_GAP_POSITION;
       i <= Instruction::LAST_GAP_POSITION; i++) {
    Instruction::GapPosition inner_pos =
        static_cast<Instruction::GapPosition>(i);
    ParallelMove* move = instr->GetParallelMove(inner_pos);
    if (move != nullptr) resolver()->Resolve(move);
  }
}

namespace {

Handle<PodArray<InliningPosition>> CreateInliningPositions(
    OptimizedCompilationInfo* info, Isolate* isolate) {
  const OptimizedCompilationInfo::InlinedFunctionList& inlined_functions =
      info->inlined_functions();
  if (inlined_functions.size() == 0) {
    return Handle<PodArray<InliningPosition>>::cast(
        isolate->factory()->empty_byte_array());
  }
  Handle<PodArray<InliningPosition>> inl_positions =
      PodArray<InliningPosition>::New(
          isolate, static_cast<int>(inlined_functions.size()),
          AllocationType::kOld);
  for (size_t i = 0; i < inlined_functions.size(); ++i) {
    inl_positions->set(static_cast<int>(i), inlined_functions[i].position);
  }
  return inl_positions;
}

}  // namespace

Handle<DeoptimizationData> CodeGenerator::GenerateDeoptimizationData() {
  OptimizedCompilationInfo* info = this->info();
  int deopt_count = static_cast<int>(deoptimization_exits_.size());
  if (deopt_count == 0 && !info->is_osr()) {
    return DeoptimizationData::Empty(isolate());
  }
  Handle<DeoptimizationData> data =
      DeoptimizationData::New(isolate(), deopt_count, AllocationType::kOld);

  Handle<ByteArray> translation_array =
      translations_.CreateByteArray(isolate()->factory());

  data->SetTranslationByteArray(*translation_array);
  data->SetInlinedFunctionCount(
      Smi::FromInt(static_cast<int>(inlined_function_count_)));
  data->SetOptimizationId(Smi::FromInt(info->optimization_id()));

  data->SetDeoptExitStart(Smi::FromInt(deopt_exit_start_offset_));

  if (info->has_shared_info()) {
    data->SetSharedFunctionInfo(*info->shared_info());
  } else {
    data->SetSharedFunctionInfo(Smi::kZero);
  }

  Handle<FixedArray> literals = isolate()->factory()->NewFixedArray(
      static_cast<int>(deoptimization_literals_.size()), AllocationType::kOld);
  for (unsigned i = 0; i < deoptimization_literals_.size(); i++) {
    Handle<Object> object = deoptimization_literals_[i].Reify(isolate());
    literals->set(i, *object);
  }
  data->SetLiteralArray(*literals);

  Handle<PodArray<InliningPosition>> inl_pos =
      CreateInliningPositions(info, isolate());
  data->SetInliningPositions(*inl_pos);

  if (info->is_osr()) {
    DCHECK_LE(0, osr_pc_offset_);
    data->SetOsrBytecodeOffset(Smi::FromInt(info_->osr_offset().ToInt()));
    data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
  } else {
    BailoutId osr_offset = BailoutId::None();
    data->SetOsrBytecodeOffset(Smi::FromInt(osr_offset.ToInt()));
    data->SetOsrPcOffset(Smi::FromInt(-1));
  }

  // Populate deoptimization entries.
  for (int i = 0; i < deopt_count; i++) {
    DeoptimizationExit* deoptimization_exit = deoptimization_exits_[i];
    CHECK_NOT_NULL(deoptimization_exit);
    DCHECK_EQ(i, deoptimization_exit->deoptimization_id());
    data->SetBytecodeOffset(i, deoptimization_exit->bailout_id());
    data->SetTranslationIndex(
        i, Smi::FromInt(deoptimization_exit->translation_id()));
    data->SetPc(i, Smi::FromInt(deoptimization_exit->pc_offset()));
  }

  return data;
}

Label* CodeGenerator::AddJumpTable(Label** targets, size_t target_count) {
  jump_tables_ = new (zone()) JumpTable(jump_tables_, targets, target_count);
  return jump_tables_->label();
}

void CodeGenerator::RecordCallPosition(Instruction* instr) {
  CallDescriptor::Flags flags(MiscField::decode(instr->opcode()));

  bool needs_frame_state = (flags & CallDescriptor::kNeedsFrameState);

  RecordSafepoint(instr->reference_map(), needs_frame_state
                                              ? Safepoint::kLazyDeopt
                                              : Safepoint::kNoLazyDeopt);

  if (flags & CallDescriptor::kHasExceptionHandler) {
    InstructionOperandConverter i(this, instr);
    RpoNumber handler_rpo = i.InputRpo(instr->InputCount() - 1);
    handlers_.push_back({GetLabel(handler_rpo), tasm()->pc_offset()});
  }

  if (needs_frame_state) {
    MarkLazyDeoptSite();
    // If the frame state is present, it starts at argument 2 - after
    // the code address and the poison-alias index.
    size_t frame_state_offset = 2;
    FrameStateDescriptor* descriptor =
        GetDeoptimizationEntry(instr, frame_state_offset).descriptor();
    int pc_offset = tasm()->pc_offset();
    BuildTranslation(instr, pc_offset, frame_state_offset,
                     descriptor->state_combine());
  }
}

int CodeGenerator::DefineDeoptimizationLiteral(DeoptimizationLiteral literal) {
  int result = static_cast<int>(deoptimization_literals_.size());
  for (unsigned i = 0; i < deoptimization_literals_.size(); ++i) {
    if (deoptimization_literals_[i] == literal) return i;
  }
  deoptimization_literals_.push_back(literal);
  return result;
}

DeoptimizationEntry const& CodeGenerator::GetDeoptimizationEntry(
    Instruction* instr, size_t frame_state_offset) {
  InstructionOperandConverter i(this, instr);
  int const state_id = i.InputInt32(frame_state_offset);
  return instructions()->GetDeoptimizationEntry(state_id);
}

void CodeGenerator::TranslateStateValueDescriptor(
    StateValueDescriptor* desc, StateValueList* nested,
    Translation* translation, InstructionOperandIterator* iter) {
  // Note:
  // If translation is null, we just skip the relevant instruction operands.
  if (desc->IsNested()) {
    if (translation != nullptr) {
      translation->BeginCapturedObject(static_cast<int>(nested->size()));
    }
    for (auto field : *nested) {
      TranslateStateValueDescriptor(field.desc, field.nested, translation,
                                    iter);
    }
  } else if (desc->IsArgumentsElements()) {
    if (translation != nullptr) {
      translation->ArgumentsElements(desc->arguments_type());
    }
  } else if (desc->IsArgumentsLength()) {
    if (translation != nullptr) {
      translation->ArgumentsLength(desc->arguments_type());
    }
  } else if (desc->IsDuplicate()) {
    if (translation != nullptr) {
      translation->DuplicateObject(static_cast<int>(desc->id()));
    }
  } else if (desc->IsPlain()) {
    InstructionOperand* op = iter->Advance();
    if (translation != nullptr) {
      AddTranslationForOperand(translation, iter->instruction(), op,
                               desc->type());
    }
  } else {
    DCHECK(desc->IsOptimizedOut());
    if (translation != nullptr) {
      if (optimized_out_literal_id_ == -1) {
        optimized_out_literal_id_ = DefineDeoptimizationLiteral(
            DeoptimizationLiteral(isolate()->factory()->optimized_out()));
      }
      translation->StoreLiteral(optimized_out_literal_id_);
    }
  }
}

void CodeGenerator::TranslateFrameStateDescriptorOperands(
    FrameStateDescriptor* desc, InstructionOperandIterator* iter,
    Translation* translation) {
  size_t index = 0;
  StateValueList* values = desc->GetStateValueDescriptors();
  for (StateValueList::iterator it = values->begin(); it != values->end();
       ++it, ++index) {
    TranslateStateValueDescriptor((*it).desc, (*it).nested, translation, iter);
  }
  DCHECK_EQ(desc->GetSize(), index);
}

void CodeGenerator::BuildTranslationForFrameStateDescriptor(
    FrameStateDescriptor* descriptor, InstructionOperandIterator* iter,
    Translation* translation, OutputFrameStateCombine state_combine) {
  // Outer-most state must be added to translation first.
  if (descriptor->outer_state() != nullptr) {
    BuildTranslationForFrameStateDescriptor(descriptor->outer_state(), iter,
                                            translation, state_combine);
  }

  Handle<SharedFunctionInfo> shared_info;
  if (!descriptor->shared_info().ToHandle(&shared_info)) {
    if (!info()->has_shared_info()) {
      return;  // Stub with no SharedFunctionInfo.
    }
    shared_info = info()->shared_info();
  }

  const BailoutId bailout_id = descriptor->bailout_id();
  const int shared_info_id =
      DefineDeoptimizationLiteral(DeoptimizationLiteral(shared_info));
  const unsigned int height =
      static_cast<unsigned int>(descriptor->GetHeight());

  switch (descriptor->type()) {
    case FrameStateType::kInterpretedFunction: {
      int return_offset = 0;
      int return_count = 0;
      if (!state_combine.IsOutputIgnored()) {
        return_offset = static_cast<int>(state_combine.GetOffsetToPokeAt());
        return_count = static_cast<int>(iter->instruction()->OutputCount());
      }
      translation->BeginInterpretedFrame(bailout_id, shared_info_id, height,
                                         return_offset, return_count);
      break;
    }
    case FrameStateType::kArgumentsAdaptor:
      translation->BeginArgumentsAdaptorFrame(shared_info_id, height);
      break;
    case FrameStateType::kConstructStub:
      DCHECK(bailout_id.IsValidForConstructStub());
      translation->BeginConstructStubFrame(bailout_id, shared_info_id, height);
      break;
    case FrameStateType::kBuiltinContinuation: {
      translation->BeginBuiltinContinuationFrame(bailout_id, shared_info_id,
                                                 height);
      break;
    }
    case FrameStateType::kJavaScriptBuiltinContinuation: {
      translation->BeginJavaScriptBuiltinContinuationFrame(
          bailout_id, shared_info_id, height);
      break;
    }
    case FrameStateType::kJavaScriptBuiltinContinuationWithCatch: {
      translation->BeginJavaScriptBuiltinContinuationWithCatchFrame(
          bailout_id, shared_info_id, height);
      break;
    }
  }

  TranslateFrameStateDescriptorOperands(descriptor, iter, translation);
}

DeoptimizationExit* CodeGenerator::BuildTranslation(
    Instruction* instr, int pc_offset, size_t frame_state_offset,
    OutputFrameStateCombine state_combine) {
  DeoptimizationEntry const& entry =
      GetDeoptimizationEntry(instr, frame_state_offset);
  FrameStateDescriptor* const descriptor = entry.descriptor();
  frame_state_offset++;

  int update_feedback_count = entry.feedback().IsValid() ? 1 : 0;
  Translation translation(&translations_,
                          static_cast<int>(descriptor->GetFrameCount()),
                          static_cast<int>(descriptor->GetJSFrameCount()),
                          update_feedback_count, zone());
  if (entry.feedback().IsValid()) {
    DeoptimizationLiteral literal =
        DeoptimizationLiteral(entry.feedback().vector);
    int literal_id = DefineDeoptimizationLiteral(literal);
    translation.AddUpdateFeedback(literal_id, entry.feedback().slot.ToInt());
  }
  InstructionOperandIterator iter(instr, frame_state_offset);
  BuildTranslationForFrameStateDescriptor(descriptor, &iter, &translation,
                                          state_combine);

  DeoptimizationExit* const exit = new (zone()) DeoptimizationExit(
      current_source_position_, descriptor->bailout_id(), translation.index(),
      pc_offset, entry.kind(), entry.reason());

  if (!Deoptimizer::kSupportsFixedDeoptExitSize) {
    exit->set_deoptimization_id(next_deoptimization_id_++);
  }

  deoptimization_exits_.push_back(exit);
  return exit;
}

void CodeGenerator::AddTranslationForOperand(Translation* translation,
                                             Instruction* instr,
                                             InstructionOperand* op,
                                             MachineType type) {
  if (op->IsStackSlot()) {
    if (type.representation() == MachineRepresentation::kBit) {
      translation->StoreBoolStackSlot(LocationOperand::cast(op)->index());
    } else if (type == MachineType::Int8() || type == MachineType::Int16() ||
               type == MachineType::Int32()) {
      translation->StoreInt32StackSlot(LocationOperand::cast(op)->index());
    } else if (type == MachineType::Uint8() || type == MachineType::Uint16() ||
               type == MachineType::Uint32()) {
      translation->StoreUint32StackSlot(LocationOperand::cast(op)->index());
    } else if (type == MachineType::Int64()) {
      translation->StoreInt64StackSlot(LocationOperand::cast(op)->index());
    } else {
#if defined(V8_COMPRESS_POINTERS)
      CHECK(MachineRepresentation::kTagged == type.representation() ||
            MachineRepresentation::kCompressed == type.representation());
#else
      CHECK(MachineRepresentation::kTagged == type.representation());
#endif
      translation->StoreStackSlot(LocationOperand::cast(op)->index());
    }
  } else if (op->IsFPStackSlot()) {
    if (type.representation() == MachineRepresentation::kFloat64) {
      translation->StoreDoubleStackSlot(LocationOperand::cast(op)->index());
    } else {
      CHECK_EQ(MachineRepresentation::kFloat32, type.representation());
      translation->StoreFloatStackSlot(LocationOperand::cast(op)->index());
    }
  } else if (op->IsRegister()) {
    InstructionOperandConverter converter(this, instr);
    if (type.representation() == MachineRepresentation::kBit) {
      translation->StoreBoolRegister(converter.ToRegister(op));
    } else if (type == MachineType::Int8() || type == MachineType::Int16() ||
               type == MachineType::Int32()) {
      translation->StoreInt32Register(converter.ToRegister(op));
    } else if (type == MachineType::Uint8() || type == MachineType::Uint16() ||
               type == MachineType::Uint32()) {
      translation->StoreUint32Register(converter.ToRegister(op));
    } else if (type == MachineType::Int64()) {
      translation->StoreInt64Register(converter.ToRegister(op));
    } else {
#if defined(V8_COMPRESS_POINTERS)
      CHECK(MachineRepresentation::kTagged == type.representation() ||
            MachineRepresentation::kCompressed == type.representation());
#else
      CHECK(MachineRepresentation::kTagged == type.representation());
#endif
      translation->StoreRegister(converter.ToRegister(op));
    }
  } else if (op->IsFPRegister()) {
    InstructionOperandConverter converter(this, instr);
    if (type.representation() == MachineRepresentation::kFloat64) {
      translation->StoreDoubleRegister(converter.ToDoubleRegister(op));
    } else {
      CHECK_EQ(MachineRepresentation::kFloat32, type.representation());
      translation->StoreFloatRegister(converter.ToFloatRegister(op));
    }
  } else {
    CHECK(op->IsImmediate());
    InstructionOperandConverter converter(this, instr);
    Constant constant = converter.ToConstant(op);
    DeoptimizationLiteral literal;
    switch (constant.type()) {
      case Constant::kInt32:
        if (type.representation() == MachineRepresentation::kTagged) {
          // When pointers are 4 bytes, we can use int32 constants to represent
          // Smis.
          DCHECK_EQ(4, kSystemPointerSize);
          Smi smi(static_cast<Address>(constant.ToInt32()));
          DCHECK(smi.IsSmi());
          literal = DeoptimizationLiteral(smi.value());
        } else if (type.representation() == MachineRepresentation::kBit) {
          if (constant.ToInt32() == 0) {
            literal =
                DeoptimizationLiteral(isolate()->factory()->false_value());
          } else {
            DCHECK_EQ(1, constant.ToInt32());
            literal = DeoptimizationLiteral(isolate()->factory()->true_value());
          }
        } else {
          DCHECK(type == MachineType::Int32() ||
                 type == MachineType::Uint32() ||
                 type.representation() == MachineRepresentation::kWord32 ||
                 type.representation() == MachineRepresentation::kNone);
          DCHECK(type.representation() != MachineRepresentation::kNone ||
                 constant.ToInt32() == FrameStateDescriptor::kImpossibleValue);
          if (type == MachineType::Uint32()) {
            literal = DeoptimizationLiteral(
                static_cast<uint32_t>(constant.ToInt32()));
          } else {
            literal = DeoptimizationLiteral(constant.ToInt32());
          }
        }
        break;
      case Constant::kInt64:
        DCHECK_EQ(8, kSystemPointerSize);
        if (type.representation() == MachineRepresentation::kWord64) {
          literal =
              DeoptimizationLiteral(static_cast<double>(constant.ToInt64()));
        } else {
          // When pointers are 8 bytes, we can use int64 constants to represent
          // Smis.
          DCHECK_EQ(MachineRepresentation::kTagged, type.representation());
          Smi smi(static_cast<Address>(constant.ToInt64()));
          DCHECK(smi.IsSmi());
          literal = DeoptimizationLiteral(smi.value());
        }
        break;
      case Constant::kFloat32:
        DCHECK(type.representation() == MachineRepresentation::kFloat32 ||
               type.representation() == MachineRepresentation::kTagged);
        literal = DeoptimizationLiteral(constant.ToFloat32());
        break;
      case Constant::kFloat64:
        DCHECK(type.representation() == MachineRepresentation::kFloat64 ||
               type.representation() == MachineRepresentation::kTagged);
        literal = DeoptimizationLiteral(constant.ToFloat64().value());
        break;
      case Constant::kHeapObject:
        DCHECK_EQ(MachineRepresentation::kTagged, type.representation());
        literal = DeoptimizationLiteral(constant.ToHeapObject());
        break;
      case Constant::kCompressedHeapObject:
        DCHECK_EQ(MachineRepresentation::kCompressed, type.representation());
        literal = DeoptimizationLiteral(constant.ToHeapObject());
        break;
      case Constant::kDelayedStringConstant:
        DCHECK_EQ(MachineRepresentation::kTagged, type.representation());
        literal = DeoptimizationLiteral(constant.ToDelayedStringConstant());
        break;
      default:
        UNREACHABLE();
    }
    if (literal.object().equals(info()->closure())) {
      translation->StoreJSFrameFunction();
    } else {
      int literal_id = DefineDeoptimizationLiteral(literal);
      translation->StoreLiteral(literal_id);
    }
  }
}

void CodeGenerator::MarkLazyDeoptSite() {
  last_lazy_deopt_pc_ = tasm()->pc_offset();
}

DeoptimizationExit* CodeGenerator::AddDeoptimizationExit(
    Instruction* instr, size_t frame_state_offset) {
  return BuildTranslation(instr, -1, frame_state_offset,
                          OutputFrameStateCombine::Ignore());
}

void CodeGenerator::InitializeSpeculationPoison() {
  if (poisoning_level_ == PoisoningMitigationLevel::kDontPoison) return;

  // Initialize {kSpeculationPoisonRegister} either by comparing the expected
  // with the actual call target, or by unconditionally using {-1} initially.
  // Masking register arguments with it only makes sense in the first case.
  if (info()->called_with_code_start_register()) {
    tasm()->RecordComment("-- Prologue: generate speculation poison --");
    GenerateSpeculationPoisonFromCodeStartRegister();
    if (info()->is_poisoning_register_arguments()) {
      AssembleRegisterArgumentPoisoning();
    }
  } else {
    ResetSpeculationPoison();
  }
}

void CodeGenerator::ResetSpeculationPoison() {
  if (poisoning_level_ != PoisoningMitigationLevel::kDontPoison) {
    tasm()->ResetSpeculationPoisonRegister();
  }
}

OutOfLineCode::OutOfLineCode(CodeGenerator* gen)
    : frame_(gen->frame()), tasm_(gen->tasm()), next_(gen->ools_) {
  gen->ools_ = this;
}

OutOfLineCode::~OutOfLineCode() = default;

Handle<Object> DeoptimizationLiteral::Reify(Isolate* isolate) const {
  switch (kind_) {
    case DeoptimizationLiteralKind::kObject: {
      return object_;
    }
    case DeoptimizationLiteralKind::kNumber: {
      return isolate->factory()->NewNumber(number_);
    }
    case DeoptimizationLiteralKind::kString: {
      return string_->AllocateStringConstant(isolate);
    }
  }
  UNREACHABLE();
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8