summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/s390/assembler-s390-inl.h
blob: 5e7b193c8ace4ae0e8c6de0bbde3455ddad9106c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.

#ifndef V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_
#define V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_

#include "src/codegen/s390/assembler-s390.h"

#include "src/codegen/assembler.h"
#include "src/debug/debug.h"
#include "src/objects/objects-inl.h"

namespace v8 {
namespace internal {

bool CpuFeatures::SupportsOptimizer() { return true; }

bool CpuFeatures::SupportsWasmSimd128() { return false; }

void RelocInfo::apply(intptr_t delta) {
  // Absolute code pointer inside code object moves with the code object.
  if (IsInternalReference(rmode_)) {
    // Jump table entry
    Address target = Memory<Address>(pc_);
    Memory<Address>(pc_) = target + delta;
  } else if (IsCodeTarget(rmode_)) {
    SixByteInstr instr =
        Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
    int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2  // halfwords
                  - static_cast<int32_t>(delta);
    instr >>= 32;  // Clear the 4-byte displacement field.
    instr <<= 32;
    instr |= static_cast<uint32_t>(dis / 2);
    Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
                                                  instr);
  } else {
    // mov sequence
    DCHECK(IsInternalReferenceEncoded(rmode_));
    Address target = Assembler::target_address_at(pc_, constant_pool_);
    Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
                                     SKIP_ICACHE_FLUSH);
  }
}

Address RelocInfo::target_internal_reference() {
  if (IsInternalReference(rmode_)) {
    // Jump table entry
    return Memory<Address>(pc_);
  } else {
    // mov sequence
    DCHECK(IsInternalReferenceEncoded(rmode_));
    return Assembler::target_address_at(pc_, constant_pool_);
  }
}

Address RelocInfo::target_internal_reference_address() {
  DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
  return pc_;
}

Address RelocInfo::target_address() {
  DCHECK(IsRelativeCodeTarget(rmode_) || IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
  return Assembler::target_address_at(pc_, constant_pool_);
}

Address RelocInfo::target_address_address() {
  DCHECK(HasTargetAddressAddress());

  // Read the address of the word containing the target_address in an
  // instruction stream.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.
  // For an instruction like LIS/ORI where the target bits are mixed into the
  // instruction bits, the size of the target will be zero, indicating that the
  // serializer should not step forward in memory after a target is resolved
  // and written.
  return pc_;
}

Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }

int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }

Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
  SixByteInstr instr =
      Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
  int index = instr & 0xFFFFFFFF;
  return GetCodeTarget(index);
}

HeapObject RelocInfo::target_object() {
  DCHECK(IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT);
  return HeapObject::cast(
      Object(Assembler::target_address_at(pc_, constant_pool_)));
}

HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
  return target_object();
}

Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
  DCHECK(IsRelativeCodeTarget(rmode_) || IsCodeTarget(rmode_) ||
         rmode_ == FULL_EMBEDDED_OBJECT);
  if (rmode_ == FULL_EMBEDDED_OBJECT) {
    return Handle<HeapObject>(reinterpret_cast<Address*>(
        Assembler::target_address_at(pc_, constant_pool_)));
  } else {
    return Handle<HeapObject>::cast(origin->code_target_object_handle_at(pc_));
  }
}

void RelocInfo::set_target_object(Heap* heap, HeapObject target,
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
  DCHECK(IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT);
  Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
                                   icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null()) {
    WriteBarrierForCode(host(), this, target);
  }
}

Address RelocInfo::target_external_reference() {
  DCHECK(rmode_ == EXTERNAL_REFERENCE);
  return Assembler::target_address_at(pc_, constant_pool_);
}

void RelocInfo::set_target_external_reference(
    Address target, ICacheFlushMode icache_flush_mode) {
  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
  Assembler::set_target_address_at(pc_, constant_pool_, target,
                                   icache_flush_mode);
}

Address RelocInfo::target_runtime_entry(Assembler* origin) {
  DCHECK(IsRuntimeEntry(rmode_));
  return target_address();
}

Address RelocInfo::target_off_heap_target() {
  DCHECK(IsOffHeapTarget(rmode_));
  return Assembler::target_address_at(pc_, constant_pool_);
}

void RelocInfo::set_target_runtime_entry(Address target,
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
  DCHECK(IsRuntimeEntry(rmode_));
  if (target_address() != target)
    set_target_address(target, write_barrier_mode, icache_flush_mode);
}

void RelocInfo::WipeOut() {
  DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
         IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
         IsOffHeapTarget(rmode_));
  if (IsInternalReference(rmode_)) {
    // Jump table entry
    Memory<Address>(pc_) = kNullAddress;
  } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
    // mov sequence
    // Currently used only by deserializer, no need to flush.
    Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
                                     SKIP_ICACHE_FLUSH);
  } else {
    Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
  }
}

// Operand constructors
Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}

// Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
Address Assembler::target_address_at(Address pc, Address constant_pool) {
  // S390 Instruction!
  // We want to check for instructions generated by Asm::mov()
  Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
  SixByteInstr instr_1 =
      Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));

  if (BRASL == op1 || BRCL == op1) {
    int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
    return pc + dis;
  }

#if V8_TARGET_ARCH_S390X
  int instr1_length =
      Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
  Opcode op2 = Instruction::S390OpcodeValue(
      reinterpret_cast<const byte*>(pc + instr1_length));
  SixByteInstr instr_2 = Instruction::InstructionBits(
      reinterpret_cast<const byte*>(pc + instr1_length));
  // IIHF for hi_32, IILF for lo_32
  if (IIHF == op1 && IILF == op2) {
    return static_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
                                ((instr_2 & 0xFFFFFFFF)));
  }
#else
  // IILF loads 32-bits
  if (IILF == op1 || CFI == op1) {
    return static_cast<Address>((instr_1 & 0xFFFFFFFF));
  }
#endif

  UNIMPLEMENTED();
  return 0;
}

// This sets the branch destination (which gets loaded at the call address).
// This is for calls and branches within generated code.  The serializer
// has already deserialized the mov instructions etc.
// There is a FIXED_SEQUENCE assumption here
void Assembler::deserialization_set_special_target_at(
    Address instruction_payload, Code code, Address target) {
  set_target_address_at(instruction_payload,
                        !code.is_null() ? code.constant_pool() : kNullAddress,
                        target);
}

int Assembler::deserialization_special_target_size(
    Address instruction_payload) {
  return kSpecialTargetSize;
}

void Assembler::deserialization_set_target_internal_reference_at(
    Address pc, Address target, RelocInfo::Mode mode) {
  if (RelocInfo::IsInternalReferenceEncoded(mode)) {
    set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
  } else {
    Memory<Address>(pc) = target;
  }
}

// This code assumes the FIXED_SEQUENCE of IIHF/IILF
void Assembler::set_target_address_at(Address pc, Address constant_pool,
                                      Address target,
                                      ICacheFlushMode icache_flush_mode) {
  // Check for instructions generated by Asm::mov()
  Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
  SixByteInstr instr_1 =
      Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
  bool patched = false;

  if (BRASL == op1 || BRCL == op1) {
    instr_1 >>= 32;  // Zero out the lower 32-bits
    instr_1 <<= 32;
    int32_t halfwords = (target - pc) / 2;  // number of halfwords
    instr_1 |= static_cast<uint32_t>(halfwords);
    Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
                                                  instr_1);
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
      FlushInstructionCache(pc, 6);
    }
    patched = true;
  } else {
#if V8_TARGET_ARCH_S390X
    int instr1_length =
        Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
    Opcode op2 = Instruction::S390OpcodeValue(
        reinterpret_cast<const byte*>(pc + instr1_length));
    SixByteInstr instr_2 = Instruction::InstructionBits(
        reinterpret_cast<const byte*>(pc + instr1_length));
    // IIHF for hi_32, IILF for lo_32
    if (IIHF == op1 && IILF == op2) {
      // IIHF
      instr_1 >>= 32;  // Zero out the lower 32-bits
      instr_1 <<= 32;
      instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;

      Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
                                                    instr_1);

      // IILF
      instr_2 >>= 32;
      instr_2 <<= 32;
      instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;

      Instruction::SetInstructionBits<SixByteInstr>(
          reinterpret_cast<byte*>(pc + instr1_length), instr_2);
      if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
        FlushInstructionCache(pc, 12);
      }
      patched = true;
    }
#else
    // IILF loads 32-bits
    if (IILF == op1 || CFI == op1) {
      instr_1 >>= 32;  // Zero out the lower 32-bits
      instr_1 <<= 32;
      instr_1 |= reinterpret_cast<uint32_t>(target);

      Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
                                                    instr_1);
      if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
        FlushInstructionCache(pc, 6);
      }
      patched = true;
    }
#endif
  }
  if (!patched) UNREACHABLE();
}

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_