summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/reloc-info.cc
blob: a889a8b9c7bfead78f203f9c35b3d1d29a8f4d6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/codegen/reloc-info.h"

#include "src/codegen/assembler-inl.h"
#include "src/codegen/code-reference.h"
#include "src/deoptimizer/deoptimize-reason.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/objects/code-inl.h"
#include "src/snapshot/snapshot.h"

namespace v8 {
namespace internal {

const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";

// -----------------------------------------------------------------------------
// Implementation of RelocInfoWriter and RelocIterator
//
// Relocation information is written backwards in memory, from high addresses
// towards low addresses, byte by byte.  Therefore, in the encodings listed
// below, the first byte listed it at the highest address, and successive
// bytes in the record are at progressively lower addresses.
//
// Encoding
//
// The most common modes are given single-byte encodings.  Also, it is
// easy to identify the type of reloc info and skip unwanted modes in
// an iteration.
//
// The encoding relies on the fact that there are fewer than 14
// different relocation modes using standard non-compact encoding.
//
// The first byte of a relocation record has a tag in its low 2 bits:
// Here are the record schemes, depending on the low tag and optional higher
// tags.
//
// Low tag:
//   00: embedded_object:      [6-bit pc delta] 00
//
//   01: code_target:          [6-bit pc delta] 01
//
//   10: wasm_stub_call:       [6-bit pc delta] 10
//
//   11: long_record           [6 bit reloc mode] 11
//                             followed by pc delta
//                             followed by optional data depending on type.
//
//  If a pc delta exceeds 6 bits, it is split into a remainder that fits into
//  6 bits and a part that does not. The latter is encoded as a long record
//  with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
//  the following record in the usual way. The long pc jump record has variable
//  length:
//               pc-jump:        [PC_JUMP] 11
//                               [7 bits data] 0
//                                  ...
//                               [7 bits data] 1
//               (Bits 6..31 of pc delta, with leading zeroes
//                dropped, and last non-zero chunk tagged with 1.)

const int kTagBits = 2;
const int kTagMask = (1 << kTagBits) - 1;
const int kLongTagBits = 6;

const int kEmbeddedObjectTag = 0;
const int kCodeTargetTag = 1;
const int kWasmStubCallTag = 2;
const int kDefaultTag = 3;

const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;

const int kChunkBits = 7;
const int kChunkMask = (1 << kChunkBits) - 1;
const int kLastChunkTagBits = 1;
const int kLastChunkTagMask = 1;
const int kLastChunkTag = 1;

uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
  // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
  // Otherwise write a variable length PC jump for the bits that do
  // not fit in the kSmallPCDeltaBits bits.
  if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
  WriteMode(RelocInfo::PC_JUMP);
  uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
  DCHECK_GT(pc_jump, 0);
  // Write kChunkBits size chunks of the pc_jump.
  for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
    byte b = pc_jump & kChunkMask;
    *--pos_ = b << kLastChunkTagBits;
  }
  // Tag the last chunk so it can be identified.
  *pos_ = *pos_ | kLastChunkTag;
  // Return the remaining kSmallPCDeltaBits of the pc_delta.
  return pc_delta & kSmallPCDeltaMask;
}

void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
  // Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
  pc_delta = WriteLongPCJump(pc_delta);
  *--pos_ = pc_delta << kTagBits | tag;
}

void RelocInfoWriter::WriteShortData(intptr_t data_delta) {
  *--pos_ = static_cast<byte>(data_delta);
}

void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
  STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
  *--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
}

void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
  // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
  pc_delta = WriteLongPCJump(pc_delta);
  WriteMode(rmode);
  *--pos_ = pc_delta;
}

void RelocInfoWriter::WriteIntData(int number) {
  for (int i = 0; i < kIntSize; i++) {
    *--pos_ = static_cast<byte>(number);
    // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
    number = number >> kBitsPerByte;
  }
}

void RelocInfoWriter::WriteData(intptr_t data_delta) {
  for (int i = 0; i < kIntptrSize; i++) {
    *--pos_ = static_cast<byte>(data_delta);
    // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
    data_delta = data_delta >> kBitsPerByte;
  }
}

void RelocInfoWriter::Write(const RelocInfo* rinfo) {
  RelocInfo::Mode rmode = rinfo->rmode();
#ifdef DEBUG
  byte* begin_pos = pos_;
#endif
  DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
  DCHECK_GE(rinfo->pc() - reinterpret_cast<Address>(last_pc_), 0);
  // Use unsigned delta-encoding for pc.
  uint32_t pc_delta =
      static_cast<uint32_t>(rinfo->pc() - reinterpret_cast<Address>(last_pc_));

  // The two most common modes are given small tags, and usually fit in a byte.
  if (rmode == RelocInfo::FULL_EMBEDDED_OBJECT) {
    WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
  } else if (rmode == RelocInfo::CODE_TARGET) {
    WriteShortTaggedPC(pc_delta, kCodeTargetTag);
    DCHECK_LE(begin_pos - pos_, RelocInfo::kMaxCallSize);
  } else if (rmode == RelocInfo::WASM_STUB_CALL) {
    WriteShortTaggedPC(pc_delta, kWasmStubCallTag);
  } else {
    WriteModeAndPC(pc_delta, rmode);
    if (RelocInfo::IsDeoptReason(rmode)) {
      DCHECK_LT(rinfo->data(), 1 << kBitsPerByte);
      WriteShortData(rinfo->data());
    } else if (RelocInfo::IsConstPool(rmode) ||
               RelocInfo::IsVeneerPool(rmode) || RelocInfo::IsDeoptId(rmode) ||
               RelocInfo::IsDeoptPosition(rmode)) {
      WriteIntData(static_cast<int>(rinfo->data()));
    }
  }
  last_pc_ = reinterpret_cast<byte*>(rinfo->pc());
#ifdef DEBUG
  DCHECK_LE(begin_pos - pos_, kMaxSize);
#endif
}

inline int RelocIterator::AdvanceGetTag() { return *--pos_ & kTagMask; }

inline RelocInfo::Mode RelocIterator::GetMode() {
  return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
                                      ((1 << kLongTagBits) - 1));
}

inline void RelocIterator::ReadShortTaggedPC() {
  rinfo_.pc_ += *pos_ >> kTagBits;
}

inline void RelocIterator::AdvanceReadPC() { rinfo_.pc_ += *--pos_; }

void RelocIterator::AdvanceReadInt() {
  int x = 0;
  for (int i = 0; i < kIntSize; i++) {
    x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
  }
  rinfo_.data_ = x;
}

void RelocIterator::AdvanceReadData() {
  intptr_t x = 0;
  for (int i = 0; i < kIntptrSize; i++) {
    x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
  }
  rinfo_.data_ = x;
}

void RelocIterator::AdvanceReadLongPCJump() {
  // Read the 32-kSmallPCDeltaBits most significant bits of the
  // pc jump in kChunkBits bit chunks and shift them into place.
  // Stop when the last chunk is encountered.
  uint32_t pc_jump = 0;
  for (int i = 0; i < kIntSize; i++) {
    byte pc_jump_part = *--pos_;
    pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
    if ((pc_jump_part & kLastChunkTagMask) == 1) break;
  }
  // The least significant kSmallPCDeltaBits bits will be added
  // later.
  rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
}

inline void RelocIterator::ReadShortData() {
  uint8_t unsigned_b = *pos_;
  rinfo_.data_ = unsigned_b;
}

void RelocIterator::next() {
  DCHECK(!done());
  // Basically, do the opposite of RelocInfoWriter::Write.
  // Reading of data is as far as possible avoided for unwanted modes,
  // but we must always update the pc.
  //
  // We exit this loop by returning when we find a mode we want.
  while (pos_ > end_) {
    int tag = AdvanceGetTag();
    if (tag == kEmbeddedObjectTag) {
      ReadShortTaggedPC();
      if (SetMode(RelocInfo::FULL_EMBEDDED_OBJECT)) return;
    } else if (tag == kCodeTargetTag) {
      ReadShortTaggedPC();
      if (SetMode(RelocInfo::CODE_TARGET)) return;
    } else if (tag == kWasmStubCallTag) {
      ReadShortTaggedPC();
      if (SetMode(RelocInfo::WASM_STUB_CALL)) return;
    } else {
      DCHECK_EQ(tag, kDefaultTag);
      RelocInfo::Mode rmode = GetMode();
      if (rmode == RelocInfo::PC_JUMP) {
        AdvanceReadLongPCJump();
      } else {
        AdvanceReadPC();
        if (RelocInfo::IsDeoptReason(rmode)) {
          Advance();
          if (SetMode(rmode)) {
            ReadShortData();
            return;
          }
        } else if (RelocInfo::IsConstPool(rmode) ||
                   RelocInfo::IsVeneerPool(rmode) ||
                   RelocInfo::IsDeoptId(rmode) ||
                   RelocInfo::IsDeoptPosition(rmode)) {
          if (SetMode(rmode)) {
            AdvanceReadInt();
            return;
          }
          Advance(kIntSize);
        } else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
          return;
        }
      }
    }
  }
  done_ = true;
}

RelocIterator::RelocIterator(Code code, int mode_mask)
    : RelocIterator(code, code.unchecked_relocation_info(), mode_mask) {}

RelocIterator::RelocIterator(Code code, ByteArray relocation_info,
                             int mode_mask)
    : RelocIterator(code, code.raw_instruction_start(), code.constant_pool(),
                    relocation_info.GetDataEndAddress(),
                    relocation_info.GetDataStartAddress(), mode_mask) {}

RelocIterator::RelocIterator(const CodeReference code_reference, int mode_mask)
    : RelocIterator(Code(), code_reference.instruction_start(),
                    code_reference.constant_pool(),
                    code_reference.relocation_end(),
                    code_reference.relocation_start(), mode_mask) {}

RelocIterator::RelocIterator(EmbeddedData* embedded_data, Code code,
                             int mode_mask)
    : RelocIterator(
          code, embedded_data->InstructionStartOfBuiltin(code.builtin_index()),
          code.constant_pool(),
          code.relocation_start() + code.relocation_size(),
          code.relocation_start(), mode_mask) {}

RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
    : RelocIterator(Code(), reinterpret_cast<Address>(desc.buffer), 0,
                    desc.buffer + desc.buffer_size,
                    desc.buffer + desc.buffer_size - desc.reloc_size,
                    mode_mask) {}

RelocIterator::RelocIterator(Vector<byte> instructions,
                             Vector<const byte> reloc_info, Address const_pool,
                             int mode_mask)
    : RelocIterator(Code(), reinterpret_cast<Address>(instructions.begin()),
                    const_pool, reloc_info.begin() + reloc_info.size(),
                    reloc_info.begin(), mode_mask) {}

RelocIterator::RelocIterator(Code host, Address pc, Address constant_pool,
                             const byte* pos, const byte* end, int mode_mask)
    : pos_(pos), end_(end), mode_mask_(mode_mask) {
  // Relocation info is read backwards.
  DCHECK_GE(pos_, end_);
  rinfo_.host_ = host;
  rinfo_.pc_ = pc;
  rinfo_.constant_pool_ = constant_pool;
  if (mode_mask_ == 0) pos_ = end_;
  next();
}

// -----------------------------------------------------------------------------
// Implementation of RelocInfo

// static
bool RelocInfo::OffHeapTargetIsCodedSpecially() {
#if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_ARM64) || \
    defined(V8_TARGET_ARCH_X64)
  return false;
#elif defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_MIPS) || \
    defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) ||  \
    defined(V8_TARGET_ARCH_S390)
  return true;
#endif
}

Address RelocInfo::wasm_call_address() const {
  DCHECK_EQ(rmode_, WASM_CALL);
  return Assembler::target_address_at(pc_, constant_pool_);
}

void RelocInfo::set_wasm_call_address(Address address,
                                      ICacheFlushMode icache_flush_mode) {
  DCHECK_EQ(rmode_, WASM_CALL);
  Assembler::set_target_address_at(pc_, constant_pool_, address,
                                   icache_flush_mode);
}

Address RelocInfo::wasm_stub_call_address() const {
  DCHECK_EQ(rmode_, WASM_STUB_CALL);
  return Assembler::target_address_at(pc_, constant_pool_);
}

void RelocInfo::set_wasm_stub_call_address(Address address,
                                           ICacheFlushMode icache_flush_mode) {
  DCHECK_EQ(rmode_, WASM_STUB_CALL);
  Assembler::set_target_address_at(pc_, constant_pool_, address,
                                   icache_flush_mode);
}

void RelocInfo::set_target_address(Address target,
                                   WriteBarrierMode write_barrier_mode,
                                   ICacheFlushMode icache_flush_mode) {
  DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
         IsWasmCall(rmode_));
  Assembler::set_target_address_at(pc_, constant_pool_, target,
                                   icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
      IsCodeTargetMode(rmode_)) {
    Code target_code = Code::GetCodeFromTargetAddress(target);
    MarkingBarrierForCode(host(), this, target_code);
  }
}

bool RelocInfo::HasTargetAddressAddress() const {
  // TODO(jgruber): Investigate whether WASM_CALL is still appropriate on
  // non-intel platforms now that wasm code is no longer on the heap.
#if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_X64)
  static constexpr int kTargetAddressAddressModeMask =
      ModeMask(CODE_TARGET) | ModeMask(FULL_EMBEDDED_OBJECT) |
      ModeMask(COMPRESSED_EMBEDDED_OBJECT) | ModeMask(EXTERNAL_REFERENCE) |
      ModeMask(OFF_HEAP_TARGET) | ModeMask(RUNTIME_ENTRY) |
      ModeMask(WASM_CALL) | ModeMask(WASM_STUB_CALL);
#else
  static constexpr int kTargetAddressAddressModeMask =
      ModeMask(CODE_TARGET) | ModeMask(RELATIVE_CODE_TARGET) |
      ModeMask(FULL_EMBEDDED_OBJECT) | ModeMask(EXTERNAL_REFERENCE) |
      ModeMask(OFF_HEAP_TARGET) | ModeMask(RUNTIME_ENTRY) | ModeMask(WASM_CALL);
#endif
  return (ModeMask(rmode_) & kTargetAddressAddressModeMask) != 0;
}

bool RelocInfo::RequiresRelocationAfterCodegen(const CodeDesc& desc) {
  RelocIterator it(desc, RelocInfo::PostCodegenRelocationMask());
  return !it.done();
}

bool RelocInfo::RequiresRelocation(Code code) {
  RelocIterator it(code, RelocInfo::kApplyMask);
  return !it.done();
}

#ifdef ENABLE_DISASSEMBLER
const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
  switch (rmode) {
    case NONE:
      return "no reloc";
    case COMPRESSED_EMBEDDED_OBJECT:
      return "compressed embedded object";
    case FULL_EMBEDDED_OBJECT:
      return "full embedded object";
    case CODE_TARGET:
      return "code target";
    case RELATIVE_CODE_TARGET:
      return "relative code target";
    case RUNTIME_ENTRY:
      return "runtime entry";
    case EXTERNAL_REFERENCE:
      return "external reference";
    case INTERNAL_REFERENCE:
      return "internal reference";
    case INTERNAL_REFERENCE_ENCODED:
      return "encoded internal reference";
    case OFF_HEAP_TARGET:
      return "off heap target";
    case DEOPT_SCRIPT_OFFSET:
      return "deopt script offset";
    case DEOPT_INLINING_ID:
      return "deopt inlining id";
    case DEOPT_REASON:
      return "deopt reason";
    case DEOPT_ID:
      return "deopt index";
    case CONST_POOL:
      return "constant pool";
    case VENEER_POOL:
      return "veneer pool";
    case WASM_CALL:
      return "internal wasm call";
    case WASM_STUB_CALL:
      return "wasm stub call";
    case NUMBER_OF_MODES:
    case PC_JUMP:
      UNREACHABLE();
  }
  return "unknown relocation type";
}

void RelocInfo::Print(Isolate* isolate, std::ostream& os) {  // NOLINT
  os << reinterpret_cast<const void*>(pc_) << "  " << RelocModeName(rmode_);
  if (rmode_ == DEOPT_SCRIPT_OFFSET || rmode_ == DEOPT_INLINING_ID) {
    os << "  (" << data() << ")";
  } else if (rmode_ == DEOPT_REASON) {
    os << "  ("
       << DeoptimizeReasonToString(static_cast<DeoptimizeReason>(data_)) << ")";
  } else if (rmode_ == FULL_EMBEDDED_OBJECT) {
    os << "  (" << Brief(target_object()) << ")";
  } else if (rmode_ == COMPRESSED_EMBEDDED_OBJECT) {
    os << "  (" << Brief(target_object()) << " compressed)";
  } else if (rmode_ == EXTERNAL_REFERENCE) {
    if (isolate) {
      ExternalReferenceEncoder ref_encoder(isolate);
      os << " ("
         << ref_encoder.NameOfAddress(isolate, target_external_reference())
         << ") ";
    }
    os << " (" << reinterpret_cast<const void*>(target_external_reference())
       << ")";
  } else if (IsCodeTargetMode(rmode_)) {
    const Address code_target = target_address();
    Code code = Code::GetCodeFromTargetAddress(code_target);
    DCHECK(code.IsCode());
    os << " (" << Code::Kind2String(code.kind());
    if (Builtins::IsBuiltin(code)) {
      os << " " << Builtins::name(code.builtin_index());
    }
    os << ")  (" << reinterpret_cast<const void*>(target_address()) << ")";
  } else if (IsRuntimeEntry(rmode_) && isolate->deoptimizer_data() != nullptr) {
    // Deoptimization bailouts are stored as runtime entries.
    DeoptimizeKind type;
    if (Deoptimizer::IsDeoptimizationEntry(isolate, target_address(), &type)) {
      os << "  (" << Deoptimizer::MessageFor(type)
         << " deoptimization bailout)";
    }
  } else if (IsConstPool(rmode_)) {
    os << " (size " << static_cast<int>(data_) << ")";
  }

  os << "\n";
}
#endif  // ENABLE_DISASSEMBLER

#ifdef VERIFY_HEAP
void RelocInfo::Verify(Isolate* isolate) {
  switch (rmode_) {
    case COMPRESSED_EMBEDDED_OBJECT:
    case FULL_EMBEDDED_OBJECT:
      Object::VerifyPointer(isolate, target_object());
      break;
    case CODE_TARGET:
    case RELATIVE_CODE_TARGET: {
      // convert inline target address to code object
      Address addr = target_address();
      CHECK_NE(addr, kNullAddress);
      // Check that we can find the right code object.
      Code code = Code::GetCodeFromTargetAddress(addr);
      Object found = isolate->FindCodeObject(addr);
      CHECK(found.IsCode());
      CHECK(code.address() == HeapObject::cast(found).address());
      break;
    }
    case INTERNAL_REFERENCE:
    case INTERNAL_REFERENCE_ENCODED: {
      Address target = target_internal_reference();
      Address pc = target_internal_reference_address();
      Code code = Code::cast(isolate->FindCodeObject(pc));
      CHECK(target >= code.InstructionStart());
      CHECK(target <= code.InstructionEnd());
      break;
    }
    case OFF_HEAP_TARGET: {
      Address addr = target_off_heap_target();
      CHECK_NE(addr, kNullAddress);
      CHECK(!InstructionStream::TryLookupCode(isolate, addr).is_null());
      break;
    }
    case RUNTIME_ENTRY:
    case EXTERNAL_REFERENCE:
    case DEOPT_SCRIPT_OFFSET:
    case DEOPT_INLINING_ID:
    case DEOPT_REASON:
    case DEOPT_ID:
    case CONST_POOL:
    case VENEER_POOL:
    case WASM_CALL:
    case WASM_STUB_CALL:
    case NONE:
      break;
    case NUMBER_OF_MODES:
    case PC_JUMP:
      UNREACHABLE();
  }
}
#endif  // VERIFY_HEAP

}  // namespace internal
}  // namespace v8