summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/ppc/assembler-ppc.h
blob: 42eda72d4d76d81005a9c1119a40757fbbc5de5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.

// A light-weight PPC Assembler
// Generates user mode instructions for the PPC architecture up

#ifndef V8_CODEGEN_PPC_ASSEMBLER_PPC_H_
#define V8_CODEGEN_PPC_ASSEMBLER_PPC_H_

#include <stdio.h>
#include <memory>
#include <vector>

#include "src/codegen/assembler.h"
#include "src/codegen/constant-pool.h"
#include "src/codegen/external-reference.h"
#include "src/codegen/label.h"
#include "src/codegen/ppc/constants-ppc.h"
#include "src/codegen/ppc/register-ppc.h"
#include "src/numbers/double.h"
#include "src/objects/smi.h"

namespace v8 {
namespace internal {

class SafepointTableBuilder;

// -----------------------------------------------------------------------------
// Machine instruction Operands

// Class Operand represents a shifter operand in data processing instructions
class V8_EXPORT_PRIVATE Operand {
 public:
  // immediate
  V8_INLINE explicit Operand(intptr_t immediate,
                             RelocInfo::Mode rmode = RelocInfo::NONE)
      : rmode_(rmode) {
    value_.immediate = immediate;
  }
  V8_INLINE static Operand Zero() { return Operand(static_cast<intptr_t>(0)); }
  V8_INLINE explicit Operand(const ExternalReference& f)
      : rmode_(RelocInfo::EXTERNAL_REFERENCE) {
    value_.immediate = static_cast<intptr_t>(f.address());
  }
  explicit Operand(Handle<HeapObject> handle);
  V8_INLINE explicit Operand(Smi value) : rmode_(RelocInfo::NONE) {
    value_.immediate = static_cast<intptr_t>(value.ptr());
  }
  // rm
  V8_INLINE explicit Operand(Register rm);

  static Operand EmbeddedNumber(double number);  // Smi or HeapNumber.
  static Operand EmbeddedStringConstant(const StringConstantBase* str);

  // Return true if this is a register operand.
  V8_INLINE bool is_reg() const { return rm_.is_valid(); }

  bool must_output_reloc_info(const Assembler* assembler) const;

  inline intptr_t immediate() const {
    DCHECK(IsImmediate());
    DCHECK(!IsHeapObjectRequest());
    return value_.immediate;
  }
  bool IsImmediate() const { return !rm_.is_valid(); }

  HeapObjectRequest heap_object_request() const {
    DCHECK(IsHeapObjectRequest());
    return value_.heap_object_request;
  }

  Register rm() const { return rm_; }

  bool IsHeapObjectRequest() const {
    DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
    DCHECK_IMPLIES(is_heap_object_request_,
                   rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT ||
                       rmode_ == RelocInfo::CODE_TARGET);
    return is_heap_object_request_;
  }

 private:
  Register rm_ = no_reg;
  union Value {
    Value() {}
    HeapObjectRequest heap_object_request;  // if is_heap_object_request_
    intptr_t immediate;                     // otherwise
  } value_;                                 // valid if rm_ == no_reg
  bool is_heap_object_request_ = false;

  RelocInfo::Mode rmode_;

  friend class Assembler;
  friend class MacroAssembler;
};

// Class MemOperand represents a memory operand in load and store instructions
// On PowerPC we have base register + 16bit signed value
// Alternatively we can have a 16bit signed value immediate
class V8_EXPORT_PRIVATE MemOperand {
 public:
  explicit MemOperand(Register rn, int32_t offset = 0);

  explicit MemOperand(Register ra, Register rb);

  int32_t offset() const { return offset_; }

  // PowerPC - base register
  Register ra() const { return ra_; }

  Register rb() const { return rb_; }

 private:
  Register ra_;     // base
  int32_t offset_;  // offset
  Register rb_;     // index

  friend class Assembler;
};

class DeferredRelocInfo {
 public:
  DeferredRelocInfo() {}
  DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data)
      : position_(position), rmode_(rmode), data_(data) {}

  int position() const { return position_; }
  RelocInfo::Mode rmode() const { return rmode_; }
  intptr_t data() const { return data_; }

 private:
  int position_;
  RelocInfo::Mode rmode_;
  intptr_t data_;
};

class Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is nullptr, the assembler allocates and grows its
  // own buffer. Otherwise it takes ownership of the provided buffer.
  explicit Assembler(const AssemblerOptions&,
                     std::unique_ptr<AssemblerBuffer> = {});

  virtual ~Assembler() {}

  // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
  static constexpr int kNoHandlerTable = 0;
  static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
  void GetCode(Isolate* isolate, CodeDesc* desc,
               SafepointTableBuilder* safepoint_table_builder,
               int handler_table_offset);

  // Convenience wrapper for code without safepoint or handler tables.
  void GetCode(Isolate* isolate, CodeDesc* desc) {
    GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
  }

  void MaybeEmitOutOfLineConstantPool() { EmitConstantPool(); }

  // Label operations & relative jumps (PPUM Appendix D)
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void bind(Label* L);  // binds an unbound label L to the current code position

  // Links a label at the current pc_offset().  If already bound, returns the
  // bound position.  If already linked, returns the position of the prior link.
  // Otherwise, returns the current pc_offset().
  int link(Label* L);

  // Determines if Label is bound and near enough so that a single
  // branch instruction can be used to reach it.
  bool is_near(Label* L, Condition cond);

  // Returns the branch offset to the given label from the current code position
  // Links the label to the current position if it is still unbound
  int branch_offset(Label* L) {
    if (L->is_unused() && !trampoline_emitted_) {
      TrackBranch();
    }
    return link(L) - pc_offset();
  }

  // Puts a labels target address at the given position.
  // The high 8 bits are set to zero.
  void label_at_put(Label* L, int at_offset);

  V8_INLINE static bool IsConstantPoolLoadStart(
      Address pc, ConstantPoolEntry::Access* access = nullptr);
  V8_INLINE static bool IsConstantPoolLoadEnd(
      Address pc, ConstantPoolEntry::Access* access = nullptr);
  V8_INLINE static int GetConstantPoolOffset(Address pc,
                                             ConstantPoolEntry::Access access,
                                             ConstantPoolEntry::Type type);
  V8_INLINE void PatchConstantPoolAccessInstruction(
      int pc_offset, int offset, ConstantPoolEntry::Access access,
      ConstantPoolEntry::Type type);

  // Return the address in the constant pool of the code target address used by
  // the branch/call instruction at pc, or the object in a mov.
  V8_INLINE static Address target_constant_pool_address_at(
      Address pc, Address constant_pool, ConstantPoolEntry::Access access,
      ConstantPoolEntry::Type type);

  // Read/Modify the code target address in the branch/call instruction at pc.
  // The isolate argument is unused (and may be nullptr) when skipping flushing.
  V8_INLINE static Address target_address_at(Address pc, Address constant_pool);
  V8_INLINE static void set_target_address_at(
      Address pc, Address constant_pool, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  // This sets the branch destination.
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(
      Address instruction_payload, Code code, Address target);

  // Get the size of the special target encoded at 'instruction_payload'.
  inline static int deserialization_special_target_size(
      Address instruction_payload);

  // This sets the internal reference at the pc.
  inline static void deserialization_set_target_internal_reference_at(
      Address pc, Address target,
      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);

  // Here we are patching the address in the LUI/ORI instruction pair.
  // These values are used in the serialization process and must be zero for
  // PPC platform, as Code, Embedded Object or External-reference pointers
  // are split across two consecutive instructions and don't exist separately
  // in the code, so the serializer should not step forwards in memory after
  // a target is resolved and written.
  static constexpr int kSpecialTargetSize = 0;

// Number of instructions to load an address via a mov sequence.
#if V8_TARGET_ARCH_PPC64
  static constexpr int kMovInstructionsConstantPool = 1;
  static constexpr int kMovInstructionsNoConstantPool = 5;
#if defined(V8_PPC_TAGGING_OPT)
  static constexpr int kTaggedLoadInstructions = 1;
#else
  static constexpr int kTaggedLoadInstructions = 2;
#endif
#else
  static constexpr int kMovInstructionsConstantPool = 1;
  static constexpr int kMovInstructionsNoConstantPool = 2;
  static constexpr int kTaggedLoadInstructions = 1;
#endif
  static constexpr int kMovInstructions = FLAG_enable_embedded_constant_pool
                                              ? kMovInstructionsConstantPool
                                              : kMovInstructionsNoConstantPool;

  static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) {
    return ((cr.code() * CRWIDTH) + crbit);
  }

#define DECLARE_PPC_X_INSTRUCTIONS_A_FORM(name, instr_name, instr_value)    \
  inline void name(const Register rt, const Register ra, const Register rb, \
                   const RCBit rc = LeaveRC) {                              \
    x_form(instr_name, rt, ra, rb, rc);                                     \
  }

#define DECLARE_PPC_X_INSTRUCTIONS_B_FORM(name, instr_name, instr_value)    \
  inline void name(const Register ra, const Register rs, const Register rb, \
                   const RCBit rc = LeaveRC) {                              \
    x_form(instr_name, rs, ra, rb, rc);                                     \
  }

#define DECLARE_PPC_X_INSTRUCTIONS_C_FORM(name, instr_name, instr_value) \
  inline void name(const Register dst, const Register src,               \
                   const RCBit rc = LeaveRC) {                           \
    x_form(instr_name, src, dst, r0, rc);                                \
  }

#define DECLARE_PPC_X_INSTRUCTIONS_D_FORM(name, instr_name, instr_value) \
  template <class R>                                                     \
  inline void name(const R rt, const Register ra, const Register rb,     \
                   const RCBit rc = LeaveRC) {                           \
    x_form(instr_name, rt.code(), ra.code(), rb.code(), rc);             \
  }                                                                      \
  template <class R>                                                     \
  inline void name(const R dst, const MemOperand& src) {                 \
    name(dst, src.ra(), src.rb());                                       \
  }

#define DECLARE_PPC_X_INSTRUCTIONS_E_FORM(name, instr_name, instr_value) \
  inline void name(const Register dst, const Register src, const int sh, \
                   const RCBit rc = LeaveRC) {                           \
    x_form(instr_name, src.code(), dst.code(), sh, rc);                  \
  }

#define DECLARE_PPC_X_INSTRUCTIONS_F_FORM(name, instr_name, instr_value)    \
  inline void name(const Register src1, const Register src2,                \
                   const CRegister cr = cr7, const RCBit rc = LeaveRC) {    \
    x_form(instr_name, cr, src1, src2, rc);                                 \
  }                                                                         \
  inline void name##w(const Register src1, const Register src2,             \
                      const CRegister cr = cr7, const RCBit rc = LeaveRC) { \
    x_form(instr_name, cr.code() * B2, src1.code(), src2.code(), LeaveRC);  \
  }

#define DECLARE_PPC_X_INSTRUCTIONS_EH_S_FORM(name, instr_name, instr_value) \
  inline void name(const Register dst, const MemOperand& src) {             \
    x_form(instr_name, src.ra(), dst, src.rb(), SetEH);                     \
  }
#define DECLARE_PPC_X_INSTRUCTIONS_EH_L_FORM(name, instr_name, instr_value) \
  inline void name(const Register dst, const MemOperand& src) {             \
    DCHECK(src.ra_ != r0);                                                  \
    x_form(instr_name, src.ra(), dst, src.rb(), SetEH);                     \
  }

  inline void x_form(Instr instr, int f1, int f2, int f3, int rc) {
    emit(instr | f1 * B21 | f2 * B16 | f3 * B11 | rc);
  }
  inline void x_form(Instr instr, Register rs, Register ra, Register rb,
                     RCBit rc) {
    emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | rc);
  }
  inline void x_form(Instr instr, Register ra, Register rs, Register rb,
                     EHBit eh = SetEH) {
    emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | eh);
  }
  inline void x_form(Instr instr, CRegister cr, Register s1, Register s2,
                     RCBit rc) {
#if V8_TARGET_ARCH_PPC64
    int L = 1;
#else
    int L = 0;
#endif
    emit(instr | cr.code() * B23 | L * B21 | s1.code() * B16 | s2.code() * B11 |
         rc);
  }

  PPC_X_OPCODE_A_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_A_FORM)
  PPC_X_OPCODE_B_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_B_FORM)
  PPC_X_OPCODE_C_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_C_FORM)
  PPC_X_OPCODE_D_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_D_FORM)
  PPC_X_OPCODE_E_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_E_FORM)
  PPC_X_OPCODE_F_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_F_FORM)
  PPC_X_OPCODE_EH_S_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_EH_S_FORM)
  PPC_X_OPCODE_EH_L_FORM_LIST(DECLARE_PPC_X_INSTRUCTIONS_EH_L_FORM)

  inline void notx(Register dst, Register src, RCBit rc = LeaveRC) {
    nor(dst, src, src, rc);
  }
  inline void lwax(Register rt, const MemOperand& src) {
#if V8_TARGET_ARCH_PPC64
    Register ra = src.ra();
    Register rb = src.rb();
    DCHECK(ra != r0);
    x_form(LWAX, rt, ra, rb, LeaveRC);
#else
    lwzx(rt, src);
#endif
  }
  inline void extsw(Register rs, Register ra, RCBit rc = LeaveRC) {
#if V8_TARGET_ARCH_PPC64
    emit(EXT2 | EXTSW | ra.code() * B21 | rs.code() * B16 | rc);
#else
    // nop on 32-bit
    DCHECK(rs == ra && rc == LeaveRC);
#endif
  }

#undef DECLARE_PPC_X_INSTRUCTIONS_A_FORM
#undef DECLARE_PPC_X_INSTRUCTIONS_B_FORM
#undef DECLARE_PPC_X_INSTRUCTIONS_C_FORM
#undef DECLARE_PPC_X_INSTRUCTIONS_D_FORM
#undef DECLARE_PPC_X_INSTRUCTIONS_E_FORM
#undef DECLARE_PPC_X_INSTRUCTIONS_F_FORM
#undef DECLARE_PPC_X_INSTRUCTIONS_EH_S_FORM
#undef DECLARE_PPC_X_INSTRUCTIONS_EH_L_FORM

#define DECLARE_PPC_XX3_INSTRUCTIONS(name, instr_name, instr_value)  \
  inline void name(const DoubleRegister rt, const DoubleRegister ra, \
                   const DoubleRegister rb) {                        \
    xx3_form(instr_name, rt, ra, rb);                                \
  }

  inline void xx3_form(Instr instr, DoubleRegister t, DoubleRegister a,
                       DoubleRegister b) {
    int AX = ((a.code() & 0x20) >> 5) & 0x1;
    int BX = ((b.code() & 0x20) >> 5) & 0x1;
    int TX = ((t.code() & 0x20) >> 5) & 0x1;

    emit(instr | (t.code() & 0x1F) * B21 | (a.code() & 0x1F) * B16 |
         (b.code() & 0x1F) * B11 | AX * B2 | BX * B1 | TX);
  }

  PPC_XX3_OPCODE_LIST(DECLARE_PPC_XX3_INSTRUCTIONS)
#undef DECLARE_PPC_XX3_INSTRUCTIONS

  RegList* GetScratchRegisterList() { return &scratch_register_list_; }
  // ---------------------------------------------------------------------------
  // Code generation

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
  // Insert the smallest number of zero bytes possible to align the pc offset
  // to a mulitple of m. m must be a power of 2 (>= 2).
  void DataAlign(int m);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Branch instructions
  void bclr(BOfield bo, int condition_bit, LKBit lk);
  void blr();
  void bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk = LeaveLK);
  void b(int branch_offset, LKBit lk);

  void bcctr(BOfield bo, int condition_bit, LKBit lk);
  void bctr();
  void bctrl();

  // Convenience branch instructions using labels
  void b(Label* L, LKBit lk = LeaveLK) { b(branch_offset(L), lk); }

  inline CRegister cmpi_optimization(CRegister cr) {
    // Check whether the branch is preceded by an optimizable cmpi against 0.
    // The cmpi can be deleted if it is also preceded by an instruction that
    // sets the register used by the compare and supports a dot form.
    unsigned int sradi_mask = kOpcodeMask | kExt2OpcodeVariant2Mask;
    unsigned int srawi_mask = kOpcodeMask | kExt2OpcodeMask;
    int pos = pc_offset();
    int cmpi_pos = pc_offset() - kInstrSize;

    if (cmpi_pos > 0 && optimizable_cmpi_pos_ == cmpi_pos &&
        cmpi_cr_.code() == cr.code() && last_bound_pos_ != pos) {
      int xpos = cmpi_pos - kInstrSize;
      int xinstr = instr_at(xpos);
      int cmpi_ra = (instr_at(cmpi_pos) & 0x1f0000) >> 16;
      // ra is at the same bit position for the three cases below.
      int ra = (xinstr & 0x1f0000) >> 16;
      if (cmpi_ra == ra) {
        if ((xinstr & sradi_mask) == (EXT2 | SRADIX)) {
          cr = cr0;
          instr_at_put(xpos, xinstr | SetRC);
          pc_ -= kInstrSize;
        } else if ((xinstr & srawi_mask) == (EXT2 | SRAWIX)) {
          cr = cr0;
          instr_at_put(xpos, xinstr | SetRC);
          pc_ -= kInstrSize;
        } else if ((xinstr & kOpcodeMask) == ANDIx) {
          cr = cr0;
          pc_ -= kInstrSize;
          // nothing to do here since andi. records.
        }
        // didn't match one of the above, must keep cmpwi.
      }
    }
    return cr;
  }

  void bc_short(Condition cond, Label* L, CRegister cr = cr7,
                LKBit lk = LeaveLK) {
    DCHECK(cond != al);
    DCHECK(cr.code() >= 0 && cr.code() <= 7);

    cr = cmpi_optimization(cr);

    int b_offset = branch_offset(L);

    switch (cond) {
      case eq:
        bc(b_offset, BT, encode_crbit(cr, CR_EQ), lk);
        break;
      case ne:
        bc(b_offset, BF, encode_crbit(cr, CR_EQ), lk);
        break;
      case gt:
        bc(b_offset, BT, encode_crbit(cr, CR_GT), lk);
        break;
      case le:
        bc(b_offset, BF, encode_crbit(cr, CR_GT), lk);
        break;
      case lt:
        bc(b_offset, BT, encode_crbit(cr, CR_LT), lk);
        break;
      case ge:
        bc(b_offset, BF, encode_crbit(cr, CR_LT), lk);
        break;
      case unordered:
        bc(b_offset, BT, encode_crbit(cr, CR_FU), lk);
        break;
      case ordered:
        bc(b_offset, BF, encode_crbit(cr, CR_FU), lk);
        break;
      case overflow:
        bc(b_offset, BT, encode_crbit(cr, CR_SO), lk);
        break;
      case nooverflow:
        bc(b_offset, BF, encode_crbit(cr, CR_SO), lk);
        break;
      default:
        UNIMPLEMENTED();
    }
  }

  void bclr(Condition cond, CRegister cr = cr7, LKBit lk = LeaveLK) {
    DCHECK(cond != al);
    DCHECK(cr.code() >= 0 && cr.code() <= 7);

    cr = cmpi_optimization(cr);

    switch (cond) {
      case eq:
        bclr(BT, encode_crbit(cr, CR_EQ), lk);
        break;
      case ne:
        bclr(BF, encode_crbit(cr, CR_EQ), lk);
        break;
      case gt:
        bclr(BT, encode_crbit(cr, CR_GT), lk);
        break;
      case le:
        bclr(BF, encode_crbit(cr, CR_GT), lk);
        break;
      case lt:
        bclr(BT, encode_crbit(cr, CR_LT), lk);
        break;
      case ge:
        bclr(BF, encode_crbit(cr, CR_LT), lk);
        break;
      case unordered:
        bclr(BT, encode_crbit(cr, CR_FU), lk);
        break;
      case ordered:
        bclr(BF, encode_crbit(cr, CR_FU), lk);
        break;
      case overflow:
        bclr(BT, encode_crbit(cr, CR_SO), lk);
        break;
      case nooverflow:
        bclr(BF, encode_crbit(cr, CR_SO), lk);
        break;
      default:
        UNIMPLEMENTED();
    }
  }

  void isel(Register rt, Register ra, Register rb, int cb);
  void isel(Condition cond, Register rt, Register ra, Register rb,
            CRegister cr = cr7) {
    DCHECK(cond != al);
    DCHECK(cr.code() >= 0 && cr.code() <= 7);

    cr = cmpi_optimization(cr);

    switch (cond) {
      case eq:
        isel(rt, ra, rb, encode_crbit(cr, CR_EQ));
        break;
      case ne:
        isel(rt, rb, ra, encode_crbit(cr, CR_EQ));
        break;
      case gt:
        isel(rt, ra, rb, encode_crbit(cr, CR_GT));
        break;
      case le:
        isel(rt, rb, ra, encode_crbit(cr, CR_GT));
        break;
      case lt:
        isel(rt, ra, rb, encode_crbit(cr, CR_LT));
        break;
      case ge:
        isel(rt, rb, ra, encode_crbit(cr, CR_LT));
        break;
      case unordered:
        isel(rt, ra, rb, encode_crbit(cr, CR_FU));
        break;
      case ordered:
        isel(rt, rb, ra, encode_crbit(cr, CR_FU));
        break;
      case overflow:
        isel(rt, ra, rb, encode_crbit(cr, CR_SO));
        break;
      case nooverflow:
        isel(rt, rb, ra, encode_crbit(cr, CR_SO));
        break;
      default:
        UNIMPLEMENTED();
    }
  }

  void b(Condition cond, Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    if (cond == al) {
      b(L, lk);
      return;
    }

    if ((L->is_bound() && is_near(L, cond)) || !is_trampoline_emitted()) {
      bc_short(cond, L, cr, lk);
      return;
    }

    Label skip;
    Condition neg_cond = NegateCondition(cond);
    bc_short(neg_cond, &skip, cr);
    b(L, lk);
    bind(&skip);
  }

  void bne(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(ne, L, cr, lk);
  }
  void beq(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(eq, L, cr, lk);
  }
  void blt(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(lt, L, cr, lk);
  }
  void bge(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(ge, L, cr, lk);
  }
  void ble(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(le, L, cr, lk);
  }
  void bgt(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(gt, L, cr, lk);
  }
  void bunordered(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(unordered, L, cr, lk);
  }
  void bordered(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
    b(ordered, L, cr, lk);
  }
  void boverflow(Label* L, CRegister cr = cr0, LKBit lk = LeaveLK) {
    b(overflow, L, cr, lk);
  }
  void bnooverflow(Label* L, CRegister cr = cr0, LKBit lk = LeaveLK) {
    b(nooverflow, L, cr, lk);
  }

  // Decrement CTR; branch if CTR != 0
  void bdnz(Label* L, LKBit lk = LeaveLK) {
    bc(branch_offset(L), DCBNZ, 0, lk);
  }

  // Data-processing instructions

  void sub(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
           RCBit r = LeaveRC);

  void subc(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
            RCBit r = LeaveRC);
  void sube(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
            RCBit r = LeaveRC);

  void subfic(Register dst, Register src, const Operand& imm);

  void add(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
           RCBit r = LeaveRC);

  void addc(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
            RCBit r = LeaveRC);
  void adde(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
            RCBit r = LeaveRC);
  void addze(Register dst, Register src1, OEBit o = LeaveOE, RCBit r = LeaveRC);

  void mullw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
             RCBit r = LeaveRC);

  void mulhw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
  void mulhwu(Register dst, Register src1, Register src2, RCBit r = LeaveRC);

  void divw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
            RCBit r = LeaveRC);
  void divwu(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
             RCBit r = LeaveRC);

  void addi(Register dst, Register src, const Operand& imm);
  void addis(Register dst, Register src, const Operand& imm);
  void addic(Register dst, Register src, const Operand& imm);

  void andi(Register ra, Register rs, const Operand& imm);
  void andis(Register ra, Register rs, const Operand& imm);
  void ori(Register dst, Register src, const Operand& imm);
  void oris(Register dst, Register src, const Operand& imm);
  void xori(Register dst, Register src, const Operand& imm);
  void xoris(Register ra, Register rs, const Operand& imm);
  void cmpi(Register src1, const Operand& src2, CRegister cr = cr7);
  void cmpli(Register src1, const Operand& src2, CRegister cr = cr7);
  void cmpwi(Register src1, const Operand& src2, CRegister cr = cr7);
  void cmplwi(Register src1, const Operand& src2, CRegister cr = cr7);
  void li(Register dst, const Operand& src);
  void lis(Register dst, const Operand& imm);
  void mr(Register dst, Register src);

  void lbz(Register dst, const MemOperand& src);
  void lhz(Register dst, const MemOperand& src);
  void lha(Register dst, const MemOperand& src);
  void lwz(Register dst, const MemOperand& src);
  void lwzu(Register dst, const MemOperand& src);
  void lwa(Register dst, const MemOperand& src);
  void stb(Register dst, const MemOperand& src);
  void sth(Register dst, const MemOperand& src);
  void stw(Register dst, const MemOperand& src);
  void stwu(Register dst, const MemOperand& src);
  void neg(Register rt, Register ra, OEBit o = LeaveOE, RCBit c = LeaveRC);

#if V8_TARGET_ARCH_PPC64
  void ld(Register rd, const MemOperand& src);
  void ldu(Register rd, const MemOperand& src);
  void std(Register rs, const MemOperand& src);
  void stdu(Register rs, const MemOperand& src);
  void rldic(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
  void rldicl(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
  void rldcl(Register ra, Register rs, Register rb, int mb, RCBit r = LeaveRC);
  void rldicr(Register dst, Register src, int sh, int me, RCBit r = LeaveRC);
  void rldimi(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
  void sldi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
  void srdi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
  void clrrdi(Register dst, Register src, const Operand& val,
              RCBit rc = LeaveRC);
  void clrldi(Register dst, Register src, const Operand& val,
              RCBit rc = LeaveRC);
  void sradi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
  void rotld(Register ra, Register rs, Register rb, RCBit r = LeaveRC);
  void rotldi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
  void rotrdi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
  void mulld(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
             RCBit r = LeaveRC);
  void divd(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
            RCBit r = LeaveRC);
  void divdu(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
             RCBit r = LeaveRC);
#endif

  void rlwinm(Register ra, Register rs, int sh, int mb, int me,
              RCBit rc = LeaveRC);
  void rlwimi(Register ra, Register rs, int sh, int mb, int me,
              RCBit rc = LeaveRC);
  void rlwnm(Register ra, Register rs, Register rb, int mb, int me,
             RCBit rc = LeaveRC);
  void slwi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
  void srwi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
  void clrrwi(Register dst, Register src, const Operand& val,
              RCBit rc = LeaveRC);
  void clrlwi(Register dst, Register src, const Operand& val,
              RCBit rc = LeaveRC);
  void rotlw(Register ra, Register rs, Register rb, RCBit r = LeaveRC);
  void rotlwi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
  void rotrwi(Register ra, Register rs, int sh, RCBit r = LeaveRC);

  void subi(Register dst, Register src1, const Operand& src2);

  void mov(Register dst, const Operand& src);
  void bitwise_mov(Register dst, intptr_t value);
  void bitwise_mov32(Register dst, int32_t value);
  void bitwise_add32(Register dst, Register src, int32_t value);

  // Load the position of the label relative to the generated code object
  // pointer in a register.
  void mov_label_offset(Register dst, Label* label);

  // dst = base + label position + delta
  void add_label_offset(Register dst, Register base, Label* label,
                        int delta = 0);

  // Load the address of the label in a register and associate with an
  // internal reference relocation.
  void mov_label_addr(Register dst, Label* label);

  // Emit the address of the label (i.e. a jump table entry) and associate with
  // an internal reference relocation.
  void emit_label_addr(Label* label);

  // Multiply instructions
  void mul(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
           RCBit r = LeaveRC);

  // Miscellaneous arithmetic instructions

  // Special register access
  void crxor(int bt, int ba, int bb);
  void crclr(int bt) { crxor(bt, bt, bt); }
  void creqv(int bt, int ba, int bb);
  void crset(int bt) { creqv(bt, bt, bt); }
  void mflr(Register dst);
  void mtlr(Register src);
  void mtctr(Register src);
  void mtxer(Register src);
  void mcrfs(CRegister cr, FPSCRBit bit);
  void mfcr(Register dst);
#if V8_TARGET_ARCH_PPC64
  void mffprd(Register dst, DoubleRegister src);
  void mffprwz(Register dst, DoubleRegister src);
  void mtfprd(DoubleRegister dst, Register src);
  void mtfprwz(DoubleRegister dst, Register src);
  void mtfprwa(DoubleRegister dst, Register src);
#endif

  void function_descriptor();

  // Exception-generating instructions and debugging support
  void stop(Condition cond = al, int32_t code = kDefaultStopCode,
            CRegister cr = cr7);

  void bkpt(uint32_t imm16);  // v5 and above

  void dcbf(Register ra, Register rb);
  void sync();
  void lwsync();
  void icbi(Register ra, Register rb);
  void isync();

  // Support for floating point
  void lfd(const DoubleRegister frt, const MemOperand& src);
  void lfdu(const DoubleRegister frt, const MemOperand& src);
  void lfs(const DoubleRegister frt, const MemOperand& src);
  void lfsu(const DoubleRegister frt, const MemOperand& src);
  void stfd(const DoubleRegister frs, const MemOperand& src);
  void stfdu(const DoubleRegister frs, const MemOperand& src);
  void stfs(const DoubleRegister frs, const MemOperand& src);
  void stfsu(const DoubleRegister frs, const MemOperand& src);

  void fadd(const DoubleRegister frt, const DoubleRegister fra,
            const DoubleRegister frb, RCBit rc = LeaveRC);
  void fsub(const DoubleRegister frt, const DoubleRegister fra,
            const DoubleRegister frb, RCBit rc = LeaveRC);
  void fdiv(const DoubleRegister frt, const DoubleRegister fra,
            const DoubleRegister frb, RCBit rc = LeaveRC);
  void fmul(const DoubleRegister frt, const DoubleRegister fra,
            const DoubleRegister frc, RCBit rc = LeaveRC);
  void fcmpu(const DoubleRegister fra, const DoubleRegister frb,
             CRegister cr = cr7);
  void fmr(const DoubleRegister frt, const DoubleRegister frb,
           RCBit rc = LeaveRC);
  void fctiwz(const DoubleRegister frt, const DoubleRegister frb);
  void fctiw(const DoubleRegister frt, const DoubleRegister frb);
  void frin(const DoubleRegister frt, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void friz(const DoubleRegister frt, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void frip(const DoubleRegister frt, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void frim(const DoubleRegister frt, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void frsp(const DoubleRegister frt, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void fcfid(const DoubleRegister frt, const DoubleRegister frb,
             RCBit rc = LeaveRC);
  void fcfidu(const DoubleRegister frt, const DoubleRegister frb,
              RCBit rc = LeaveRC);
  void fcfidus(const DoubleRegister frt, const DoubleRegister frb,
               RCBit rc = LeaveRC);
  void fcfids(const DoubleRegister frt, const DoubleRegister frb,
              RCBit rc = LeaveRC);
  void fctid(const DoubleRegister frt, const DoubleRegister frb,
             RCBit rc = LeaveRC);
  void fctidz(const DoubleRegister frt, const DoubleRegister frb,
              RCBit rc = LeaveRC);
  void fctidu(const DoubleRegister frt, const DoubleRegister frb,
              RCBit rc = LeaveRC);
  void fctiduz(const DoubleRegister frt, const DoubleRegister frb,
               RCBit rc = LeaveRC);
  void fsel(const DoubleRegister frt, const DoubleRegister fra,
            const DoubleRegister frc, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void fneg(const DoubleRegister frt, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void mtfsb0(FPSCRBit bit, RCBit rc = LeaveRC);
  void mtfsb1(FPSCRBit bit, RCBit rc = LeaveRC);
  void mtfsfi(int bf, int immediate, RCBit rc = LeaveRC);
  void mffs(const DoubleRegister frt, RCBit rc = LeaveRC);
  void mtfsf(const DoubleRegister frb, bool L = 1, int FLM = 0, bool W = 0,
             RCBit rc = LeaveRC);
  void fsqrt(const DoubleRegister frt, const DoubleRegister frb,
             RCBit rc = LeaveRC);
  void fabs(const DoubleRegister frt, const DoubleRegister frb,
            RCBit rc = LeaveRC);
  void fmadd(const DoubleRegister frt, const DoubleRegister fra,
             const DoubleRegister frc, const DoubleRegister frb,
             RCBit rc = LeaveRC);
  void fmsub(const DoubleRegister frt, const DoubleRegister fra,
             const DoubleRegister frc, const DoubleRegister frb,
             RCBit rc = LeaveRC);

  // Pseudo instructions

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    NON_MARKING_NOP = 0,
    GROUP_ENDING_NOP,
    DEBUG_BREAK_NOP,
    // IC markers.
    PROPERTY_ACCESS_INLINED,
    PROPERTY_ACCESS_INLINED_CONTEXT,
    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    // Helper values.
    LAST_CODE_MARKER,
    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
  };

  void nop(int type = 0);  // 0 is the default non-marking type.

  void push(Register src) {
#if V8_TARGET_ARCH_PPC64
    stdu(src, MemOperand(sp, -kPointerSize));
#else
    stwu(src, MemOperand(sp, -kPointerSize));
#endif
  }

  void pop(Register dst) {
#if V8_TARGET_ARCH_PPC64
    ld(dst, MemOperand(sp));
#else
    lwz(dst, MemOperand(sp));
#endif
    addi(sp, sp, Operand(kPointerSize));
  }

  void pop() { addi(sp, sp, Operand(kPointerSize)); }

  // Jump unconditionally to given label.
  void jmp(Label* L) { b(L); }

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Check the number of instructions generated from label to here.
  int InstructionsGeneratedSince(Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstrSize;
  }

  // Class for scoping postponing the trampoline pool generation.
  class BlockTrampolinePoolScope {
   public:
    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockTrampolinePool();
    }
    ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
  };

  // Class for scoping disabling constant pool entry merging
  class BlockConstantPoolEntrySharingScope {
   public:
    explicit BlockConstantPoolEntrySharingScope(Assembler* assem)
        : assem_(assem) {
      assem_->StartBlockConstantPoolEntrySharing();
    }
    ~BlockConstantPoolEntrySharingScope() {
      assem_->EndBlockConstantPoolEntrySharing();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstantPoolEntrySharingScope);
  };

  // Record a deoptimization reason that can be used by a log or cpu profiler.
  // Use --trace-deopt to enable.
  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
                         int id);

  // Writes a single byte or word of data in the code stream.  Used
  // for inline tables, e.g., jump-tables.
  void db(uint8_t data);
  void dd(uint32_t data);
  void dq(uint64_t data);
  void dp(uintptr_t data);

  // Read/patch instructions
  Instr instr_at(int pos) {
    return *reinterpret_cast<Instr*>(buffer_start_ + pos);
  }
  void instr_at_put(int pos, Instr instr) {
    *reinterpret_cast<Instr*>(buffer_start_ + pos) = instr;
  }
  static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); }
  static void instr_at_put(Address pc, Instr instr) {
    *reinterpret_cast<Instr*>(pc) = instr;
  }
  static Condition GetCondition(Instr instr);

  static bool IsLis(Instr instr);
  static bool IsLi(Instr instr);
  static bool IsAddic(Instr instr);
  static bool IsOri(Instr instr);

  static bool IsBranch(Instr instr);
  static Register GetRA(Instr instr);
  static Register GetRB(Instr instr);
#if V8_TARGET_ARCH_PPC64
  static bool Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
                                 Instr instr4, Instr instr5);
#else
  static bool Is32BitLoadIntoR12(Instr instr1, Instr instr2);
#endif

  static bool IsCmpRegister(Instr instr);
  static bool IsCmpImmediate(Instr instr);
  static bool IsRlwinm(Instr instr);
  static bool IsAndi(Instr instr);
#if V8_TARGET_ARCH_PPC64
  static bool IsRldicl(Instr instr);
#endif
  static bool IsCrSet(Instr instr);
  static Register GetCmpImmediateRegister(Instr instr);
  static int GetCmpImmediateRawImmediate(Instr instr);
  static bool IsNop(Instr instr, int type = NON_MARKING_NOP);

  // Postpone the generation of the trampoline pool for the specified number of
  // instructions.
  void BlockTrampolinePoolFor(int instructions);
  void CheckTrampolinePool();

  // For mov.  Return the number of actual instructions required to
  // load the operand into a register.  This can be anywhere from
  // one (constant pool small section) to five instructions (full
  // 64-bit sequence).
  //
  // The value returned is only valid as long as no entries are added to the
  // constant pool between this call and the actual instruction being emitted.
  int instructions_required_for_mov(Register dst, const Operand& src) const;

  // Decide between using the constant pool vs. a mov immediate sequence.
  bool use_constant_pool_for_mov(Register dst, const Operand& src,
                                 bool canOptimize) const;

  // The code currently calls CheckBuffer() too often. This has the side
  // effect of randomly growing the buffer in the middle of multi-instruction
  // sequences.
  //
  // This function allows outside callers to check and grow the buffer
  void EnsureSpaceFor(int space_needed);

  int EmitConstantPool() { return constant_pool_builder_.Emit(this); }

  bool ConstantPoolAccessIsInOverflow() const {
    return constant_pool_builder_.NextAccess(ConstantPoolEntry::INTPTR) ==
           ConstantPoolEntry::OVERFLOWED;
  }

  Label* ConstantPoolPosition() {
    return constant_pool_builder_.EmittedPosition();
  }

  void EmitRelocations();

 protected:
  int buffer_space() const { return reloc_info_writer.pos() - pc_; }

  // Decode instruction(s) at pos and return backchain to previous
  // label reference or kEndOfChain.
  int target_at(int pos);

  // Patch instruction(s) at pos to target target_pos (e.g. branch)
  void target_at_put(int pos, int target_pos, bool* is_branch = nullptr);

  // Record reloc info for current pc_
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
  ConstantPoolEntry::Access ConstantPoolAddEntry(RelocInfo::Mode rmode,
                                                 intptr_t value) {
    bool sharing_ok =
        RelocInfo::IsNone(rmode) ||
        (!options().record_reloc_info_for_serialization &&
         RelocInfo::IsShareableRelocMode(rmode) &&
         !is_constant_pool_entry_sharing_blocked() &&
         // TODO(johnyan): make the following rmode shareable
         !RelocInfo::IsWasmCall(rmode) && !RelocInfo::IsWasmStubCall(rmode));
    return constant_pool_builder_.AddEntry(pc_offset(), value, sharing_ok);
  }
  ConstantPoolEntry::Access ConstantPoolAddEntry(Double value) {
    return constant_pool_builder_.AddEntry(pc_offset(), value);
  }

  // Block the emission of the trampoline pool before pc_offset.
  void BlockTrampolinePoolBefore(int pc_offset) {
    if (no_trampoline_pool_before_ < pc_offset)
      no_trampoline_pool_before_ = pc_offset;
  }

  void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }
  void EndBlockTrampolinePool() {
    int count = --trampoline_pool_blocked_nesting_;
    if (count == 0) CheckTrampolinePoolQuick();
  }
  bool is_trampoline_pool_blocked() const {
    return trampoline_pool_blocked_nesting_ > 0;
  }

  void StartBlockConstantPoolEntrySharing() {
    constant_pool_entry_sharing_blocked_nesting_++;
  }
  void EndBlockConstantPoolEntrySharing() {
    constant_pool_entry_sharing_blocked_nesting_--;
  }
  bool is_constant_pool_entry_sharing_blocked() const {
    return constant_pool_entry_sharing_blocked_nesting_ > 0;
  }

  bool has_exception() const { return internal_trampoline_exception_; }

  bool is_trampoline_emitted() const { return trampoline_emitted_; }

  // Code generation
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries.
  static constexpr int kGap = 32;

  RelocInfoWriter reloc_info_writer;

 private:
  // Avoid overflows for displacements etc.
  static const int kMaximalBufferSize = 512 * MB;

  // Repeated checking whether the trampoline pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated.
  int next_trampoline_check_;  // pc offset of next buffer check.

  // Emission of the trampoline pool may be blocked in some code sequences.
  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_trampoline_pool_before_;  // Block emission before this pc offset.

  // Do not share constant pool entries.
  int constant_pool_entry_sharing_blocked_nesting_;

  // Relocation info generation
  // Each relocation is encoded as a variable size value
  static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  std::vector<DeferredRelocInfo> relocations_;

  // Scratch registers available for use by the Assembler.
  RegList scratch_register_list_;

  // The bound position, before this we cannot do instruction elimination.
  int last_bound_pos_;
  // Optimizable cmpi information.
  int optimizable_cmpi_pos_;
  CRegister cmpi_cr_ = CRegister::no_reg();

  ConstantPoolBuilder constant_pool_builder_;

  void CheckBuffer() {
    if (buffer_space() <= kGap) {
      GrowBuffer();
    }
  }

  void GrowBuffer(int needed = 0);
  // Code emission
  void emit(Instr x) {
    CheckBuffer();
    *reinterpret_cast<Instr*>(pc_) = x;
    pc_ += kInstrSize;
    CheckTrampolinePoolQuick();
  }
  void TrackBranch() {
    DCHECK(!trampoline_emitted_);
    int count = tracked_branch_count_++;
    if (count == 0) {
      // We leave space (kMaxBlockTrampolineSectionSize)
      // for BlockTrampolinePoolScope buffer.
      next_trampoline_check_ =
          pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize;
    } else {
      next_trampoline_check_ -= kTrampolineSlotsSize;
    }
  }

  inline void UntrackBranch();
  void CheckTrampolinePoolQuick() {
    if (pc_offset() >= next_trampoline_check_) {
      CheckTrampolinePool();
    }
  }

  // Instruction generation
  void a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
              DoubleRegister frb, RCBit r);
  void d_form(Instr instr, Register rt, Register ra, const intptr_t val,
              bool signed_disp);
  void xo_form(Instr instr, Register rt, Register ra, Register rb, OEBit o,
               RCBit r);
  void md_form(Instr instr, Register ra, Register rs, int shift, int maskbit,
               RCBit r);
  void mds_form(Instr instr, Register ra, Register rs, Register rb, int maskbit,
                RCBit r);

  // Labels
  void print(Label* L);
  int max_reach_from(int pos);
  void bind_to(Label* L, int pos);
  void next(Label* L);

  class Trampoline {
   public:
    Trampoline() {
      next_slot_ = 0;
      free_slot_count_ = 0;
    }
    Trampoline(int start, int slot_count) {
      next_slot_ = start;
      free_slot_count_ = slot_count;
    }
    int take_slot() {
      int trampoline_slot = kInvalidSlotPos;
      if (free_slot_count_ <= 0) {
        // We have run out of space on trampolines.
        // Make sure we fail in debug mode, so we become aware of each case
        // when this happens.
        DCHECK(0);
        // Internal exception will be caught.
      } else {
        trampoline_slot = next_slot_;
        free_slot_count_--;
        next_slot_ += kTrampolineSlotsSize;
      }
      return trampoline_slot;
    }

   private:
    int next_slot_;
    int free_slot_count_;
  };

  int32_t get_trampoline_entry();
  int tracked_branch_count_;
  // If trampoline is emitted, generated code is becoming large. As
  // this is already a slow case which can possibly break our code
  // generation for the extreme case, we use this information to
  // trigger different mode of branch instruction generation, where we
  // no longer use a single branch instruction.
  bool trampoline_emitted_;
  static constexpr int kTrampolineSlotsSize = kInstrSize;
  static constexpr int kMaxCondBranchReach = (1 << (16 - 1)) - 1;
  static constexpr int kMaxBlockTrampolineSectionSize = 64 * kInstrSize;
  static constexpr int kInvalidSlotPos = -1;

  Trampoline trampoline_;
  bool internal_trampoline_exception_;

  void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);

  int WriteCodeComments();

  friend class RegExpMacroAssemblerPPC;
  friend class RelocInfo;
  friend class BlockTrampolinePoolScope;
  friend class EnsureSpace;
  friend class UseScratchRegisterScope;
};

class EnsureSpace {
 public:
  explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
};

class PatchingAssembler : public Assembler {
 public:
  PatchingAssembler(const AssemblerOptions& options, byte* address,
                    int instructions);
  ~PatchingAssembler();
};

class V8_EXPORT_PRIVATE UseScratchRegisterScope {
 public:
  explicit UseScratchRegisterScope(Assembler* assembler);
  ~UseScratchRegisterScope();

  Register Acquire();

  // Check if we have registers available to acquire.
  bool CanAcquire() const { return *assembler_->GetScratchRegisterList() != 0; }

 private:
  friend class Assembler;
  friend class TurboAssembler;

  Assembler* assembler_;
  RegList old_available_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_PPC_ASSEMBLER_PPC_H_