summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/mips64/macro-assembler-mips64.h
blob: c2b701a5affcaa224066691005ef9565f2a9d2c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif

#ifndef V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
#define V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_

#include "src/codegen/assembler.h"
#include "src/codegen/mips64/assembler-mips64.h"
#include "src/common/globals.h"

namespace v8 {
namespace internal {

// Forward declarations.
enum class AbortReason : uint8_t;

// Reserved Register Usage Summary.
//
// Registers t8, t9, and at are reserved for use by the MacroAssembler.
//
// The programmer should know that the MacroAssembler may clobber these three,
// but won't touch other registers except in special cases.
//
// Per the MIPS ABI, register t9 must be used for indirect function call
// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
// trying to update gp register for position-independent-code. Whenever
// MIPS generated code calls C code, it must be via t9 register.

// Flags used for LeaveExitFrame function.
enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false };

// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT };

// Flags used for the li macro-assembler function.
enum LiFlags {
  // If the constant value can be represented in just 16 bits, then
  // optimize the li to use a single instruction, rather than lui/ori/dsll
  // sequence. A number of other optimizations that emits less than
  // maximum number of instructions exists.
  OPTIMIZE_SIZE = 0,
  // Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4
  // instructions for release 6 (lui/ori/dahi/dati), even if the constant
  // could be loaded with just one, so that this value is patchable later.
  CONSTANT_SIZE = 1,
  // For address loads only 4 instruction are required. Used to mark
  // constant load that will be used as address without relocation
  // information. It ensures predictable code size, so specific sites
  // in code are patchable.
  ADDRESS_LOAD = 2
};

enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };

Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
                                   Register reg3 = no_reg,
                                   Register reg4 = no_reg,
                                   Register reg5 = no_reg,
                                   Register reg6 = no_reg);

// -----------------------------------------------------------------------------
// Static helper functions.

#if defined(V8_TARGET_LITTLE_ENDIAN)
#define SmiWordOffset(offset) (offset + kPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif

inline MemOperand ContextMemOperand(Register context, int index) {
  return MemOperand(context, Context::SlotOffset(index));
}

inline MemOperand NativeContextMemOperand() {
  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
}

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}

// Generate a MemOperand for storing arguments 5..N on the stack
// when calling CallCFunction().
// TODO(plind): Currently ONLY used for O32. Should be fixed for
//              n64, and used in RegExp code, and other places
//              with more than 8 arguments.
inline MemOperand CFunctionArgumentOperand(int index) {
  DCHECK_GT(index, kCArgSlotCount);
  // Argument 5 takes the slot just past the four Arg-slots.
  int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
  return MemOperand(sp, offset);
}

class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
 public:
  using TurboAssemblerBase::TurboAssemblerBase;

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
    // Out-of-line constant pool not implemented on mips.
    UNREACHABLE();
  }
  void LeaveFrame(StackFrame::Type type);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type);
  void Prologue();

  void InitializeRootRegister() {
    ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
    li(kRootRegister, Operand(isolate_root));
  }

  // Jump unconditionally to given label.
  // We NEED a nop in the branch delay slot, as it used by v8, for example in
  // CodeGenerator::ProcessDeferred().
  // Currently the branch delay slot is filled by the MacroAssembler.
  // Use rather b(Label) for code generation.
  void jmp(Label* L) { Branch(L); }

  // -------------------------------------------------------------------------
  // Debugging.

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);

  // Like Assert(), but always enabled.
  void Check(Condition cc, AbortReason reason, Register rs, Operand rt);

  // Print a message to stdout and abort execution.
  void Abort(AbortReason msg);

  // Arguments macros.
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2
#define COND_ARGS cond, r1, r2

  // Cases when relocation is not needed.
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type)                          \
  void Name(target_type target, BranchDelaySlot bd = PROTECT);                \
  inline void Name(BranchDelaySlot bd, target_type target) {                  \
    Name(target, bd);                                                         \
  }                                                                           \
  void Name(target_type target, COND_TYPED_ARGS,                              \
            BranchDelaySlot bd = PROTECT);                                    \
  inline void Name(BranchDelaySlot bd, target_type target, COND_TYPED_ARGS) { \
    Name(target, COND_ARGS, bd);                                              \
  }

#define DECLARE_BRANCH_PROTOTYPES(Name)   \
  DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
  DECLARE_NORELOC_PROTOTYPE(Name, int32_t)

  DECLARE_BRANCH_PROTOTYPES(Branch)
  DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
  DECLARE_BRANCH_PROTOTYPES(BranchShort)

#undef DECLARE_BRANCH_PROTOTYPES
#undef COND_TYPED_ARGS
#undef COND_ARGS

  // Floating point branches
  void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
    CompareF(S, cc, cmp1, cmp2);
  }

  void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) {
    CompareIsNanF(S, cmp1, cmp2);
  }

  void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
    CompareF(D, cc, cmp1, cmp2);
  }

  void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) {
    CompareIsNanF(D, cmp1, cmp2);
  }

  void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT);
  void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT);

  void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT);
  void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT);

  // MSA branches
  void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond,
                 MSARegister wt, BranchDelaySlot bd = PROTECT);

  void Branch(Label* L, Condition cond, Register rs, RootIndex index,
              BranchDelaySlot bdslot = PROTECT);

  static int InstrCountForLi64Bit(int64_t value);
  inline void LiLower32BitHelper(Register rd, Operand j);
  void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
  // Load int32 in the rd register.
  void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
  inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
    li(rd, Operand(j), mode);
  }
  // inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
  //   li(rd, Operand(static_cast<int64_t>(j)), mode);
  // }
  void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE);
  void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
  void li(Register dst, const StringConstantBase* string,
          LiFlags mode = OPTIMIZE_SIZE);

  void LoadFromConstantsTable(Register destination,
                              int constant_index) override;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
  void LoadRootRelative(Register destination, int32_t offset) override;

// Jump, Call, and Ret pseudo instructions implementing inter-working.
#define COND_ARGS                                  \
  Condition cond = al, Register rs = zero_reg,     \
            const Operand &rt = Operand(zero_reg), \
            BranchDelaySlot bd = PROTECT

  void Jump(Register target, COND_ARGS);
  void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
  void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
  void Jump(const ExternalReference& reference) override;
  void Call(Register target, COND_ARGS);
  void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
            COND_ARGS);
  void Call(Label* target);
  void LoadAddress(Register dst, Label* target);

  // Load the builtin given by the Smi in |builtin_index| into the same
  // register.
  void LoadEntryFromBuiltinIndex(Register builtin_index);
  void CallBuiltinByIndex(Register builtin_index) override;

  void LoadCodeObjectEntry(Register destination,
                           Register code_object) override {
    // TODO(mips): Implement.
    UNIMPLEMENTED();
  }
  void CallCodeObject(Register code_object) override {
    // TODO(mips): Implement.
    UNIMPLEMENTED();
  }
  void JumpCodeObject(Register code_object) override {
    // TODO(mips): Implement.
    UNIMPLEMENTED();
  }

  // Generates an instruction sequence s.t. the return address points to the
  // instruction following the call.
  // The return address on the stack is used by frame iteration.
  void StoreReturnAddressAndCall(Register target);

  void CallForDeoptimization(Address target, int deopt_id);

  void Ret(COND_ARGS);
  inline void Ret(BranchDelaySlot bd, Condition cond = al,
                  Register rs = zero_reg,
                  const Operand& rt = Operand(zero_reg)) {
    Ret(cond, rs, rt, bd);
  }

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count, Condition cond = cc_always, Register reg = no_reg,
            const Operand& op = Operand(no_reg));

  // Trivial case of DropAndRet that utilizes the delay slot and only emits
  // 2 instructions.
  void DropAndRet(int drop);

  void DropAndRet(int drop, Condition cond, Register reg, const Operand& op);

  void Ld(Register rd, const MemOperand& rs);
  void Sd(Register rd, const MemOperand& rs);

  void push(Register src) {
    Daddu(sp, sp, Operand(-kPointerSize));
    Sd(src, MemOperand(sp, 0));
  }
  void Push(Register src) { push(src); }
  void Push(Handle<HeapObject> handle);
  void Push(Smi smi);

  // Push two registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2) {
    Dsubu(sp, sp, Operand(2 * kPointerSize));
    Sd(src1, MemOperand(sp, 1 * kPointerSize));
    Sd(src2, MemOperand(sp, 0 * kPointerSize));
  }

  // Push three registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3) {
    Dsubu(sp, sp, Operand(3 * kPointerSize));
    Sd(src1, MemOperand(sp, 2 * kPointerSize));
    Sd(src2, MemOperand(sp, 1 * kPointerSize));
    Sd(src3, MemOperand(sp, 0 * kPointerSize));
  }

  // Push four registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4) {
    Dsubu(sp, sp, Operand(4 * kPointerSize));
    Sd(src1, MemOperand(sp, 3 * kPointerSize));
    Sd(src2, MemOperand(sp, 2 * kPointerSize));
    Sd(src3, MemOperand(sp, 1 * kPointerSize));
    Sd(src4, MemOperand(sp, 0 * kPointerSize));
  }

  // Push five registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Register src5) {
    Dsubu(sp, sp, Operand(5 * kPointerSize));
    Sd(src1, MemOperand(sp, 4 * kPointerSize));
    Sd(src2, MemOperand(sp, 3 * kPointerSize));
    Sd(src3, MemOperand(sp, 2 * kPointerSize));
    Sd(src4, MemOperand(sp, 1 * kPointerSize));
    Sd(src5, MemOperand(sp, 0 * kPointerSize));
  }

  void Push(Register src, Condition cond, Register tst1, Register tst2) {
    // Since we don't have conditional execution we use a Branch.
    Branch(3, cond, tst1, Operand(tst2));
    Dsubu(sp, sp, Operand(kPointerSize));
    Sd(src, MemOperand(sp, 0));
  }

  void SaveRegisters(RegList registers);
  void RestoreRegisters(RegList registers);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode);
  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Address wasm_target);
  void CallEphemeronKeyBarrier(Register object, Register address,
                               SaveFPRegsMode fp_mode);

  // Push multiple registers on the stack.
  // Registers are saved in numerical order, with higher numbered registers
  // saved in higher memory addresses.
  void MultiPush(RegList regs);
  void MultiPushFPU(RegList regs);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);

  void pop(Register dst) {
    Ld(dst, MemOperand(sp, 0));
    Daddu(sp, sp, Operand(kPointerSize));
  }
  void Pop(Register dst) { pop(dst); }

  // Pop two registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2) {
    DCHECK(src1 != src2);
    Ld(src2, MemOperand(sp, 0 * kPointerSize));
    Ld(src1, MemOperand(sp, 1 * kPointerSize));
    Daddu(sp, sp, 2 * kPointerSize);
  }

  // Pop three registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3) {
    Ld(src3, MemOperand(sp, 0 * kPointerSize));
    Ld(src2, MemOperand(sp, 1 * kPointerSize));
    Ld(src1, MemOperand(sp, 2 * kPointerSize));
    Daddu(sp, sp, 3 * kPointerSize);
  }

  void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); }

  // Pops multiple values from the stack and load them in the
  // registers specified in regs. Pop order is the opposite as in MultiPush.
  void MultiPop(RegList regs);
  void MultiPopFPU(RegList regs);

#define DEFINE_INSTRUCTION(instr)                          \
  void instr(Register rd, Register rs, const Operand& rt); \
  void instr(Register rd, Register rs, Register rt) {      \
    instr(rd, rs, Operand(rt));                            \
  }                                                        \
  void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }

#define DEFINE_INSTRUCTION2(instr)                                 \
  void instr(Register rs, const Operand& rt);                      \
  void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
  void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }

  DEFINE_INSTRUCTION(Addu)
  DEFINE_INSTRUCTION(Daddu)
  DEFINE_INSTRUCTION(Div)
  DEFINE_INSTRUCTION(Divu)
  DEFINE_INSTRUCTION(Ddivu)
  DEFINE_INSTRUCTION(Mod)
  DEFINE_INSTRUCTION(Modu)
  DEFINE_INSTRUCTION(Ddiv)
  DEFINE_INSTRUCTION(Subu)
  DEFINE_INSTRUCTION(Dsubu)
  DEFINE_INSTRUCTION(Dmod)
  DEFINE_INSTRUCTION(Dmodu)
  DEFINE_INSTRUCTION(Mul)
  DEFINE_INSTRUCTION(Mulh)
  DEFINE_INSTRUCTION(Mulhu)
  DEFINE_INSTRUCTION(Dmul)
  DEFINE_INSTRUCTION(Dmulh)
  DEFINE_INSTRUCTION2(Mult)
  DEFINE_INSTRUCTION2(Dmult)
  DEFINE_INSTRUCTION2(Multu)
  DEFINE_INSTRUCTION2(Dmultu)
  DEFINE_INSTRUCTION2(Div)
  DEFINE_INSTRUCTION2(Ddiv)
  DEFINE_INSTRUCTION2(Divu)
  DEFINE_INSTRUCTION2(Ddivu)

  DEFINE_INSTRUCTION(And)
  DEFINE_INSTRUCTION(Or)
  DEFINE_INSTRUCTION(Xor)
  DEFINE_INSTRUCTION(Nor)
  DEFINE_INSTRUCTION2(Neg)

  DEFINE_INSTRUCTION(Slt)
  DEFINE_INSTRUCTION(Sltu)
  DEFINE_INSTRUCTION(Sle)
  DEFINE_INSTRUCTION(Sleu)
  DEFINE_INSTRUCTION(Sgt)
  DEFINE_INSTRUCTION(Sgtu)
  DEFINE_INSTRUCTION(Sge)
  DEFINE_INSTRUCTION(Sgeu)

  // MIPS32 R2 instruction macro.
  DEFINE_INSTRUCTION(Ror)
  DEFINE_INSTRUCTION(Dror)

#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
#undef DEFINE_INSTRUCTION3

  void SmiUntag(Register dst, const MemOperand& src);
  void SmiUntag(Register dst, Register src) {
    if (SmiValuesAre32Bits()) {
      dsra32(dst, src, kSmiShift - 32);
    } else {
      DCHECK(SmiValuesAre31Bits());
      sra(dst, src, kSmiShift);
    }
  }

  void SmiUntag(Register reg) { SmiUntag(reg, reg); }

  // Removes current frame and its arguments from the stack preserving
  // the arguments and a return address pushed to the stack for the next call.
  // Both |callee_args_count| and |caller_args_count_reg| do not include
  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
  // is trashed.
  void PrepareForTailCall(const ParameterCount& callee_args_count,
                          Register caller_args_count_reg, Register scratch0,
                          Register scratch1);

  int CalculateStackPassedWords(int num_reg_arguments,
                                int num_double_arguments);

  // Before calling a C-function from generated code, align arguments on stack
  // and add space for the four mips argument slots.
  // After aligning the frame, non-register arguments must be stored on the
  // stack, after the argument-slots using helper: CFunctionArgumentOperand().
  // The argument count assumes all arguments are word sized.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
                            Register scratch);
  void PrepareCallCFunction(int num_reg_arguments, Register scratch);

  // Arguments 1-4 are placed in registers a0 through a3 respectively.
  // Arguments 5..n are stored to stack using following:
  //  Sw(a4, CFunctionArgumentOperand(5));

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);
  void CallCFunction(ExternalReference function, int num_reg_arguments,
                     int num_double_arguments);
  void CallCFunction(Register function, int num_reg_arguments,
                     int num_double_arguments);
  void MovFromFloatResult(DoubleRegister dst);
  void MovFromFloatParameter(DoubleRegister dst);

  // There are two ways of passing double arguments on MIPS, depending on
  // whether soft or hard floating point ABI is used. These functions
  // abstract parameter passing for the three different ways we call
  // C functions from generated code.
  void MovToFloatParameter(DoubleRegister src);
  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
  void MovToFloatResult(DoubleRegister src);

  // See comments at the beginning of Builtins::Generate_CEntry.
  inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
  inline void PrepareCEntryFunction(const ExternalReference& ref) {
    li(a1, ref);
  }

  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met);
#undef COND_ARGS

  // Call a runtime routine. This expects {centry} to contain a fitting CEntry
  // builtin for the target runtime function and uses an indirect call.
  void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
  // Exits with 'result' holding the answer.
  void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
                         DoubleRegister double_input, StubCallMode stub_mode);

  // Conditional move.
  void Movz(Register rd, Register rs, Register rt);
  void Movn(Register rd, Register rs, Register rt);
  void Movt(Register rd, Register rs, uint16_t cc = 0);
  void Movf(Register rd, Register rs, uint16_t cc = 0);

  void LoadZeroIfFPUCondition(Register dest);
  void LoadZeroIfNotFPUCondition(Register dest);

  void LoadZeroIfConditionNotZero(Register dest, Register condition);
  void LoadZeroIfConditionZero(Register dest, Register condition);
  void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt,
                           Condition cond);

  void Clz(Register rd, Register rs);
  void Ctz(Register rd, Register rs);
  void Dctz(Register rd, Register rs);
  void Popcnt(Register rd, Register rs);
  void Dpopcnt(Register rd, Register rs);

  // MIPS64 R2 instruction macro.
  void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
  void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
  void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
  void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
  void ExtractBits(Register dest, Register source, Register pos, int size,
                   bool sign_extend = false);
  void InsertBits(Register dest, Register source, Register pos, int size);
  void Neg_s(FPURegister fd, FPURegister fs);
  void Neg_d(FPURegister fd, FPURegister fs);

  // MIPS64 R6 instruction macros.
  void Bovc(Register rt, Register rs, Label* L);
  void Bnvc(Register rt, Register rs, Label* L);

  // Convert single to unsigned word.
  void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
  void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch);

  // Change endianness
  void ByteSwapSigned(Register dest, Register src, int operand_size);
  void ByteSwapUnsigned(Register dest, Register src, int operand_size);

  void Ulh(Register rd, const MemOperand& rs);
  void Ulhu(Register rd, const MemOperand& rs);
  void Ush(Register rd, const MemOperand& rs, Register scratch);

  void Ulw(Register rd, const MemOperand& rs);
  void Ulwu(Register rd, const MemOperand& rs);
  void Usw(Register rd, const MemOperand& rs);

  void Uld(Register rd, const MemOperand& rs);
  void Usd(Register rd, const MemOperand& rs);

  void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
  void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);

  void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
  void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);

  void Lb(Register rd, const MemOperand& rs);
  void Lbu(Register rd, const MemOperand& rs);
  void Sb(Register rd, const MemOperand& rs);

  void Lh(Register rd, const MemOperand& rs);
  void Lhu(Register rd, const MemOperand& rs);
  void Sh(Register rd, const MemOperand& rs);

  void Lw(Register rd, const MemOperand& rs);
  void Lwu(Register rd, const MemOperand& rs);
  void Sw(Register rd, const MemOperand& rs);

  void Lwc1(FPURegister fd, const MemOperand& src);
  void Swc1(FPURegister fs, const MemOperand& dst);

  void Ldc1(FPURegister fd, const MemOperand& src);
  void Sdc1(FPURegister fs, const MemOperand& dst);

  void Ll(Register rd, const MemOperand& rs);
  void Sc(Register rd, const MemOperand& rs);

  void Lld(Register rd, const MemOperand& rs);
  void Scd(Register rd, const MemOperand& rs);

  // Perform a floating-point min or max operation with the
  // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
  // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
  // handled in out-of-line code. The specific behaviour depends on supported
  // instructions.
  //
  // These functions assume (and assert) that src1!=src2. It is permitted
  // for the result to alias either input register.
  void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
                  Label* out_of_line);
  void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
                  Label* out_of_line);
  void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2,
                  Label* out_of_line);
  void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2,
                  Label* out_of_line);

  // Generate out-of-line cases for the macros above.
  void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
  void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
  void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
  void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);

  bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }

  void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }

  inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); }
  inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); }

  inline void Move(Register dst, Register src) {
    if (dst != src) {
      mov(dst, src);
    }
  }

  inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }

  inline void Move(Register dst_low, Register dst_high, FPURegister src) {
    mfc1(dst_low, src);
    mfhc1(dst_high, src);
  }

  inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }

  inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }

  inline void FmoveHigh(Register dst_high, FPURegister src) {
    mfhc1(dst_high, src);
  }

  inline void FmoveHigh(FPURegister dst, Register src_high) {
    mthc1(src_high, dst);
  }

  inline void FmoveLow(Register dst_low, FPURegister src) {
    mfc1(dst_low, src);
  }

  void FmoveLow(FPURegister dst, Register src_low);

  inline void Move(FPURegister dst, Register src_low, Register src_high) {
    mtc1(src_low, dst);
    mthc1(src_high, dst);
  }

  inline void Move_d(FPURegister dst, FPURegister src) {
    if (dst != src) {
      mov_d(dst, src);
    }
  }

  inline void Move_s(FPURegister dst, FPURegister src) {
    if (dst != src) {
      mov_s(dst, src);
    }
  }

  void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); }
  void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); }
  void Move(FPURegister dst, uint32_t src);
  void Move(FPURegister dst, uint64_t src);

  // DaddOverflow sets overflow register to a negative value if
  // overflow occured, otherwise it is zero or positive
  void DaddOverflow(Register dst, Register left, const Operand& right,
                    Register overflow);
  // DsubOverflow sets overflow register to a negative value if
  // overflow occured, otherwise it is zero or positive
  void DsubOverflow(Register dst, Register left, const Operand& right,
                    Register overflow);
  // MulOverflow sets overflow register to zero if no overflow occured
  void MulOverflow(Register dst, Register left, const Operand& right,
                   Register overflow);

// Number of instructions needed for calculation of switch table entry address
#ifdef _MIPS_ARCH_MIPS64R6
  static const int kSwitchTablePrologueSize = 6;
#else
  static const int kSwitchTablePrologueSize = 11;
#endif

  // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
  // functor/function with 'Label *func(size_t index)' declaration.
  template <typename Func>
  void GenerateSwitchTable(Register index, size_t case_count,
                           Func GetLabelFunction);

  // Load an object from the root table.
  void LoadRoot(Register destination, RootIndex index) override;
  void LoadRoot(Register destination, RootIndex index, Condition cond,
                Register src1, const Operand& src2);

  // If the value is a NaN, canonicalize the value else, do nothing.
  void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);

  // ---------------------------------------------------------------------------
  // FPU macros. These do not handle special cases like NaN or +- inf.

  // Convert unsigned word to double.
  void Cvt_d_uw(FPURegister fd, FPURegister fs);
  void Cvt_d_uw(FPURegister fd, Register rs);

  // Convert unsigned long to double.
  void Cvt_d_ul(FPURegister fd, FPURegister fs);
  void Cvt_d_ul(FPURegister fd, Register rs);

  // Convert unsigned word to float.
  void Cvt_s_uw(FPURegister fd, FPURegister fs);
  void Cvt_s_uw(FPURegister fd, Register rs);

  // Convert unsigned long to float.
  void Cvt_s_ul(FPURegister fd, FPURegister fs);
  void Cvt_s_ul(FPURegister fd, Register rs);

  // Convert double to unsigned word.
  void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
  void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch);

  // Convert double to unsigned long.
  void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
                  Register result = no_reg);
  void Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch,
                  Register result = no_reg);

  // Convert single to unsigned long.
  void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
                  Register result = no_reg);
  void Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch,
                  Register result = no_reg);

  // Round double functions
  void Trunc_d_d(FPURegister fd, FPURegister fs);
  void Round_d_d(FPURegister fd, FPURegister fs);
  void Floor_d_d(FPURegister fd, FPURegister fs);
  void Ceil_d_d(FPURegister fd, FPURegister fs);

  // Round float functions
  void Trunc_s_s(FPURegister fd, FPURegister fs);
  void Round_s_s(FPURegister fd, FPURegister fs);
  void Floor_s_s(FPURegister fd, FPURegister fs);
  void Ceil_s_s(FPURegister fd, FPURegister fs);

  // Jump the register contains a smi.
  void JumpIfSmi(Register value, Label* smi_label, Register scratch = at,
                 BranchDelaySlot bd = PROTECT);

  void JumpIfEqual(Register a, int32_t b, Label* dest) {
    li(kScratchReg, Operand(b));
    Branch(dest, eq, a, Operand(kScratchReg));
  }

  void JumpIfLessThan(Register a, int32_t b, Label* dest) {
    li(kScratchReg, Operand(b));
    Branch(dest, lt, a, Operand(kScratchReg));
  }

  // Push a standard frame, consisting of ra, fp, context and JS function.
  void PushStandardFrame(Register function_reg);

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();

  // Load Scaled Address instructions. Parameter sa (shift argument) must be
  // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
  // may be clobbered.
  void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
           Register scratch = at);
  void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
            Register scratch = at);

  // Compute the start of the generated instruction stream from the current PC.
  // This is an alternative to embedding the {CodeObject} handle as a reference.
  void ComputeCodeStartAddress(Register dst);

  void ResetSpeculationPoisonRegister();

 protected:
  inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
  inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);

 private:
  bool has_double_zero_reg_set_ = false;

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
  // succeeds, otherwise falls through if result is saturated. On return
  // 'result' either holds answer, or is clobbered on fall through.
  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
                                  Label* done);

  void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1,
                FPURegister cmp2);

  void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
                     FPURegister cmp2);

  void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
                      MSARegister wt, BranchDelaySlot bd = PROTECT);

  void CallCFunctionHelper(Register function, int num_reg_arguments,
                           int num_double_arguments);

  bool CalculateOffset(Label* L, int32_t& offset,  // NOLINT(runtime/references)
                       OffsetSize bits);
  bool CalculateOffset(Label* L, int32_t& offset,  // NOLINT(runtime/references)
                       OffsetSize bits,
                       Register& scratch,  // NOLINT(runtime/references)
                       const Operand& rt);

  void BranchShortHelperR6(int32_t offset, Label* L);
  void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
  bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
                           Register rs, const Operand& rt);
  bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
                         const Operand& rt, BranchDelaySlot bdslot);
  bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
                        const Operand& rt, BranchDelaySlot bdslot);

  void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
  void BranchAndLinkShortHelper(int16_t offset, Label* L,
                                BranchDelaySlot bdslot);
  void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
  void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
  bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
                                  Register rs, const Operand& rt);
  bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
                                Register rs, const Operand& rt,
                                BranchDelaySlot bdslot);
  bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
                               Register rs, const Operand& rt,
                               BranchDelaySlot bdslot);
  void BranchLong(Label* L, BranchDelaySlot bdslot);
  void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);

  template <typename RoundFunc>
  void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode,
                   RoundFunc round);

  template <typename RoundFunc>
  void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode,
                  RoundFunc round);

  // Push a fixed frame, consisting of ra, fp.
  void PushCommonFrame(Register marker_reg = no_reg);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Handle<Code> code_target,
                           Address wasm_target);
};

// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
 public:
  using TurboAssembler::TurboAssembler;

  bool IsNear(Label* L, Condition cond, int rs_reg);

  // Swap two registers.  If the scratch register is omitted then a slightly
  // less efficient form using xor instead of mov is emitted.
  void Swap(Register reg1, Register reg2, Register scratch = no_reg);

  void PushRoot(RootIndex index) {
    UseScratchRegisterScope temps(this);
    Register scratch = temps.Acquire();
    LoadRoot(scratch, index);
    Push(scratch);
  }

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
    UseScratchRegisterScope temps(this);
    Register scratch = temps.Acquire();
    LoadRoot(scratch, index);
    Branch(if_equal, eq, with, Operand(scratch));
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
    UseScratchRegisterScope temps(this);
    Register scratch = temps.Acquire();
    LoadRoot(scratch, index);
    Branch(if_not_equal, ne, with, Operand(scratch));
  }

  // Checks if value is in range [lower_limit, higher_limit] using a single
  // comparison.
  void JumpIfIsInRange(Register value, unsigned lower_limit,
                       unsigned higher_limit, Label* on_in_range);

  // ---------------------------------------------------------------------------
  // GC Support

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, Register scratch,
      RAStatus ra_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // For a given |object| notify the garbage collector that the slot |address|
  // has been written.  |value| is the object being stored. The value and
  // address registers are clobbered by the operation.
  void RecordWrite(
      Register object, Register address, Register value, RAStatus ra_status,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  void Pref(int32_t hint, const MemOperand& rs);

  // ---------------------------------------------------------------------------
  // Pseudo-instructions.

  void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
  void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);

  // Convert double to unsigned long.
  void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);

  void Trunc_l_d(FPURegister fd, FPURegister fs);
  void Round_l_d(FPURegister fd, FPURegister fs);
  void Floor_l_d(FPURegister fd, FPURegister fs);
  void Ceil_l_d(FPURegister fd, FPURegister fs);

  void Trunc_w_d(FPURegister fd, FPURegister fs);
  void Round_w_d(FPURegister fd, FPURegister fs);
  void Floor_w_d(FPURegister fd, FPURegister fs);
  void Ceil_w_d(FPURegister fd, FPURegister fs);

  void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
              FPURegister scratch);
  void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
              FPURegister scratch);
  void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
              FPURegister scratch);
  void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
              FPURegister scratch);

  void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
                      MSARegister wt, BranchDelaySlot bd = PROTECT);

  // Truncates a double using a specific rounding mode, and writes the value
  // to the result register.
  // The except_flag will contain any exceptions caused by the instruction.
  // If check_inexact is kDontCheckForInexactConversion, then the inexact
  // exception is masked.
  void EmitFPUTruncate(
      FPURoundingMode rounding_mode, Register result,
      DoubleRegister double_input, Register scratch,
      DoubleRegister double_scratch, Register except_flag,
      CheckForInexactConversion check_inexact = kDontCheckForInexactConversion);

  // Enter exit frame.
  // argc - argument count to be dropped by LeaveExitFrame.
  // save_doubles - saves FPU registers on stack, currently disabled.
  // stack_space - extra stack space.
  void EnterExitFrame(bool save_doubles, int stack_space = 0,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Leave the current exit frame.
  void LeaveExitFrame(bool save_doubles, Register arg_count,
                      bool do_return = NO_EMIT_RETURN,
                      bool argument_count_is_length = false);

  // Make sure the stack is aligned. Only emits code in debug mode.
  void AssertStackIsAligned();

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
  }

  void LoadNativeContextSlot(int index, Register dst);

  // Load the initial map from the global function. The registers
  // function and map can be the same, function is then overwritten.
  void LoadGlobalFunctionInitialMap(Register function, Register map,
                                    Register scratch);

  // -------------------------------------------------------------------------
  // JavaScript invokes.

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          const ParameterCount& expected,
                          const ParameterCount& actual, InvokeFlag flag);

  // On function call, call into the debugger if necessary.
  void CheckDebugHook(Register fun, Register new_target,
                      const ParameterCount& expected,
                      const ParameterCount& actual);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function, Register new_target,
                      const ParameterCount& actual, InvokeFlag flag);

  void InvokeFunction(Register function, const ParameterCount& expected,
                      const ParameterCount& actual, InvokeFlag flag);

  // Frame restart support.
  void MaybeDropFrames();

  // Exception handling.

  // Push a new stack handler and link into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  // Must preserve the result register.
  void PopStackHandler();

  // -------------------------------------------------------------------------
  // Support functions.

  void GetObjectType(Register function, Register map, Register type_reg);

  // -------------------------------------------------------------------------
  // Runtime calls.

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to the builtin routine.
  void JumpToExternalReference(const ExternalReference& builtin,
                               BranchDelaySlot bd = PROTECT,
                               bool builtin_exit_frame = false);

  // Generates a trampoline to jump to the off-heap instruction stream.
  void JumpToInstructionStream(Address entry);

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register out, Register in, Label* target_if_cleared);

  // -------------------------------------------------------------------------
  // StatsCounter support.

  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);

  // -------------------------------------------------------------------------
  // Smi utilities.

  void SmiTag(Register dst, Register src) {
    STATIC_ASSERT(kSmiTag == 0);
    if (SmiValuesAre32Bits()) {
      dsll32(dst, src, 0);
    } else {
      DCHECK(SmiValuesAre31Bits());
      Addu(dst, src, src);
    }
  }

  void SmiTag(Register reg) { SmiTag(reg, reg); }

  // Left-shifted from int32 equivalent of Smi.
  void SmiScale(Register dst, Register src, int scale) {
    if (SmiValuesAre32Bits()) {
      // The int portion is upper 32-bits of 64-bit word.
      dsra(dst, src, kSmiShift - scale);
    } else {
      DCHECK(SmiValuesAre31Bits());
      DCHECK_GE(scale, kSmiTagSize);
      sll(dst, src, scale - kSmiTagSize);
    }
  }

  // Test if the register contains a smi.
  inline void SmiTst(Register value, Register scratch) {
    And(scratch, value, Operand(kSmiTagMask));
  }

  // Jump if the register contains a non-smi.
  void JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch = at,
                    BranchDelaySlot bd = PROTECT);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);
  void AssertSmi(Register object);

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object, Register scratch);

  template <typename Field>
  void DecodeField(Register dst, Register src) {
    Ext(dst, src, Field::kShift, Field::kSize);
  }

  template <typename Field>
  void DecodeField(Register reg) {
    DecodeField<Field>(reg, reg);
  }

 private:
  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual, Label* done,
                      bool* definitely_mismatches, InvokeFlag flag);

  // Compute memory operands for safepoint stack slots.
  static int SafepointRegisterStackIndex(int reg_code);

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class StandardFrame;

  DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};

template <typename Func>
void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
                                         Func GetLabelFunction) {
  // Ensure that dd-ed labels following this instruction use 8 bytes aligned
  // addresses.
  BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
                         kSwitchTablePrologueSize);
  UseScratchRegisterScope temps(this);
  Register scratch = temps.Acquire();
  if (kArchVariant >= kMips64r6) {
    // Opposite of Align(8) as we have odd number of instructions in this case.
    if ((pc_offset() & 7) == 0) {
      nop();
    }
    addiupc(scratch, 5);
    Dlsa(scratch, scratch, index, kPointerSizeLog2);
    Ld(scratch, MemOperand(scratch));
  } else {
    Label here;
    Align(8);
    push(ra);
    bal(&here);
    dsll(scratch, index, kPointerSizeLog2);  // Branch delay slot.
    bind(&here);
    daddu(scratch, scratch, ra);
    pop(ra);
    Ld(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize));
  }
  jr(scratch);
  nop();  // Branch delay slot nop.
  for (size_t index = 0; index < case_count; ++index) {
    dd(GetLabelFunction(index));
  }
}

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_