summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/mips64/assembler-mips64.h
blob: 9695aa652486ff377678af0f7abc6bfd9ccb8da9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

#ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
#define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_

#include <stdio.h>

#include <set>

#include "src/codegen/assembler.h"
#include "src/codegen/external-reference.h"
#include "src/codegen/label.h"
#include "src/codegen/mips64/constants-mips64.h"
#include "src/codegen/mips64/register-mips64.h"
#include "src/objects/contexts.h"
#include "src/objects/smi.h"

namespace v8 {
namespace internal {

class SafepointTableBuilder;

// -----------------------------------------------------------------------------
// Machine instruction Operands.
constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
constexpr uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
// Class Operand represents a shifter operand in data processing instructions.
class Operand {
 public:
  // Immediate.
  V8_INLINE explicit Operand(int64_t immediate,
                             RelocInfo::Mode rmode = RelocInfo::NONE)
      : rm_(no_reg), rmode_(rmode) {
    value_.immediate = immediate;
  }
  V8_INLINE explicit Operand(const ExternalReference& f)
      : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) {
    value_.immediate = static_cast<int64_t>(f.address());
  }
  V8_INLINE explicit Operand(const char* s);
  explicit Operand(Handle<HeapObject> handle);
  V8_INLINE explicit Operand(Smi value) : rm_(no_reg), rmode_(RelocInfo::NONE) {
    value_.immediate = static_cast<intptr_t>(value.ptr());
  }

  static Operand EmbeddedNumber(double number);  // Smi or HeapNumber.
  static Operand EmbeddedStringConstant(const StringConstantBase* str);

  // Register.
  V8_INLINE explicit Operand(Register rm) : rm_(rm) {}

  // Return true if this is a register operand.
  V8_INLINE bool is_reg() const;

  inline int64_t immediate() const;

  bool IsImmediate() const { return !rm_.is_valid(); }

  HeapObjectRequest heap_object_request() const {
    DCHECK(IsHeapObjectRequest());
    return value_.heap_object_request;
  }

  bool IsHeapObjectRequest() const {
    DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
    DCHECK_IMPLIES(is_heap_object_request_,
                   rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT ||
                       rmode_ == RelocInfo::CODE_TARGET);
    return is_heap_object_request_;
  }

  Register rm() const { return rm_; }

  RelocInfo::Mode rmode() const { return rmode_; }

 private:
  Register rm_;
  union Value {
    Value() {}
    HeapObjectRequest heap_object_request;  // if is_heap_object_request_
    int64_t immediate;                      // otherwise
  } value_;                                 // valid if rm_ == no_reg
  bool is_heap_object_request_ = false;
  RelocInfo::Mode rmode_;

  friend class Assembler;
  friend class MacroAssembler;
};

// On MIPS we have only one addressing mode with base_reg + offset.
// Class MemOperand represents a memory operand in load and store instructions.
class V8_EXPORT_PRIVATE  MemOperand : public Operand {
 public:
  // Immediate value attached to offset.
  enum OffsetAddend { offset_minus_one = -1, offset_zero = 0 };

  explicit MemOperand(Register rn, int32_t offset = 0);
  explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
                      OffsetAddend offset_addend = offset_zero);
  int32_t offset() const { return offset_; }

  bool OffsetIsInt16Encodable() const { return is_int16(offset_); }

 private:
  int32_t offset_;

  friend class Assembler;
};

class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is nullptr, the assembler allocates and grows its
  // own buffer. Otherwise it takes ownership of the provided buffer.
  explicit Assembler(const AssemblerOptions&,
                     std::unique_ptr<AssemblerBuffer> = {});

  virtual ~Assembler() {}

  // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
  static constexpr int kNoHandlerTable = 0;
  static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
  void GetCode(Isolate* isolate, CodeDesc* desc,
               SafepointTableBuilder* safepoint_table_builder,
               int handler_table_offset);

  // Convenience wrapper for code without safepoint or handler tables.
  void GetCode(Isolate* isolate, CodeDesc* desc) {
    GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
  }

  // Unused on this architecture.
  void MaybeEmitOutOfLineConstantPool() {}

  // Label operations & relative jumps (PPUM Appendix D).
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.
  void bind(Label* L);  // Binds an unbound label L to current code position.

  enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };

  // Determines if Label is bound and near enough so that branch instruction
  // can be used to reach it, instead of jump instruction.
  bool is_near(Label* L);
  bool is_near(Label* L, OffsetSize bits);
  bool is_near_branch(Label* L);
  inline bool is_near_pre_r6(Label* L) {
    DCHECK(!(kArchVariant == kMips64r6));
    return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
  }
  inline bool is_near_r6(Label* L) {
    DCHECK_EQ(kArchVariant, kMips64r6);
    return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
  }

  int BranchOffset(Instr instr);

  // Returns the branch offset to the given label from the current code
  // position. Links the label to the current position if it is still unbound.
  // Manages the jump elimination optimization if the second parameter is true.
  int32_t branch_offset_helper(Label* L, OffsetSize bits);
  inline int32_t branch_offset(Label* L) {
    return branch_offset_helper(L, OffsetSize::kOffset16);
  }
  inline int32_t branch_offset21(Label* L) {
    return branch_offset_helper(L, OffsetSize::kOffset21);
  }
  inline int32_t branch_offset26(Label* L) {
    return branch_offset_helper(L, OffsetSize::kOffset26);
  }
  inline int32_t shifted_branch_offset(Label* L) {
    return branch_offset(L) >> 2;
  }
  inline int32_t shifted_branch_offset21(Label* L) {
    return branch_offset21(L) >> 2;
  }
  inline int32_t shifted_branch_offset26(Label* L) {
    return branch_offset26(L) >> 2;
  }
  uint64_t jump_address(Label* L);
  uint64_t jump_offset(Label* L);
  uint64_t branch_long_offset(Label* L);

  // Puts a labels target address at the given position.
  // The high 8 bits are set to zero.
  void label_at_put(Label* L, int at_offset);

  // Read/Modify the code target address in the branch/call instruction at pc.
  // The isolate argument is unused (and may be nullptr) when skipping flushing.
  static Address target_address_at(Address pc);
  V8_INLINE static void set_target_address_at(
      Address pc, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
    set_target_value_at(pc, target, icache_flush_mode);
  }
  // On MIPS there is no Constant Pool so we skip that parameter.
  V8_INLINE static Address target_address_at(Address pc,
                                             Address constant_pool) {
    return target_address_at(pc);
  }
  V8_INLINE static void set_target_address_at(
      Address pc, Address constant_pool, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
    set_target_address_at(pc, target, icache_flush_mode);
  }

  static void set_target_value_at(
      Address pc, uint64_t target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  static void JumpLabelToJumpRegister(Address pc);

  // This sets the branch destination (which gets loaded at the call address).
  // This is for calls and branches within generated code.  The serializer
  // has already deserialized the lui/ori instructions etc.
  inline static void deserialization_set_special_target_at(
      Address instruction_payload, Code code, Address target);

  // Get the size of the special target encoded at 'instruction_payload'.
  inline static int deserialization_special_target_size(
      Address instruction_payload);

  // This sets the internal reference at the pc.
  inline static void deserialization_set_target_internal_reference_at(
      Address pc, Address target,
      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);

  // Difference between address of current opcode and target address offset.
  static constexpr int kBranchPCOffset = kInstrSize;

  // Difference between address of current opcode and target address offset,
  // when we are generatinga sequence of instructions for long relative PC
  // branches
  static constexpr int kLongBranchPCOffset = 3 * kInstrSize;

  // Adjust ra register in branch delay slot of bal instruction so to skip
  // instructions not needed after optimization of PIC in
  // TurboAssembler::BranchAndLink method.

  static constexpr int kOptimizedBranchAndLinkLongReturnOffset = 4 * kInstrSize;

  // Here we are patching the address in the LUI/ORI instruction pair.
  // These values are used in the serialization process and must be zero for
  // MIPS platform, as Code, Embedded Object or External-reference pointers
  // are split across two consecutive instructions and don't exist separately
  // in the code, so the serializer should not step forwards in memory after
  // a target is resolved and written.
  static constexpr int kSpecialTargetSize = 0;

  // Number of consecutive instructions used to store 32bit/64bit constant.
  // This constant was used in RelocInfo::target_address_address() function
  // to tell serializer address of the instruction that follows
  // LUI/ORI instruction pair.
  static constexpr int kInstructionsFor32BitConstant = 2;
  static constexpr int kInstructionsFor64BitConstant = 4;

  // Difference between address of current opcode and value read from pc
  // register.
  static constexpr int kPcLoadDelta = 4;

  // Max offset for instructions with 16-bit offset field
  static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1;

  // Max offset for compact branch instructions with 26-bit offset field
  static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;

  static constexpr int kTrampolineSlotsSize =
      kArchVariant == kMips64r6 ? 2 * kInstrSize : 7 * kInstrSize;

  RegList* GetScratchRegisterList() { return &scratch_register_list_; }

  // ---------------------------------------------------------------------------
  // Code generation.

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
  // Insert the smallest number of zero bytes possible to align the pc offset
  // to a mulitple of m. m must be a power of 2 (>= 2).
  void DataAlign(int m);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    NON_MARKING_NOP = 0,
    DEBUG_BREAK_NOP,
    // IC markers.
    PROPERTY_ACCESS_INLINED,
    PROPERTY_ACCESS_INLINED_CONTEXT,
    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    // Helper values.
    LAST_CODE_MARKER,
    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
  };

  // Type == 0 is the default non-marking nop. For mips this is a
  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
  // marking, to avoid conflict with ssnop and ehb instructions.
  void nop(unsigned int type = 0) {
    DCHECK_LT(type, 32);
    Register nop_rt_reg = (type == 0) ? zero_reg : at;
    sll(zero_reg, nop_rt_reg, type, true);
  }

  // --------Branch-and-jump-instructions----------
  // We don't use likely variant of instructions.
  void b(int16_t offset);
  inline void b(Label* L) { b(shifted_branch_offset(L)); }
  void bal(int16_t offset);
  inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
  void bc(int32_t offset);
  inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
  void balc(int32_t offset);
  inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }

  void beq(Register rs, Register rt, int16_t offset);
  inline void beq(Register rs, Register rt, Label* L) {
    beq(rs, rt, shifted_branch_offset(L));
  }
  void bgez(Register rs, int16_t offset);
  void bgezc(Register rt, int16_t offset);
  inline void bgezc(Register rt, Label* L) {
    bgezc(rt, shifted_branch_offset(L));
  }
  void bgeuc(Register rs, Register rt, int16_t offset);
  inline void bgeuc(Register rs, Register rt, Label* L) {
    bgeuc(rs, rt, shifted_branch_offset(L));
  }
  void bgec(Register rs, Register rt, int16_t offset);
  inline void bgec(Register rs, Register rt, Label* L) {
    bgec(rs, rt, shifted_branch_offset(L));
  }
  void bgezal(Register rs, int16_t offset);
  void bgezalc(Register rt, int16_t offset);
  inline void bgezalc(Register rt, Label* L) {
    bgezalc(rt, shifted_branch_offset(L));
  }
  void bgezall(Register rs, int16_t offset);
  inline void bgezall(Register rs, Label* L) {
    bgezall(rs, branch_offset(L) >> 2);
  }
  void bgtz(Register rs, int16_t offset);
  void bgtzc(Register rt, int16_t offset);
  inline void bgtzc(Register rt, Label* L) {
    bgtzc(rt, shifted_branch_offset(L));
  }
  void blez(Register rs, int16_t offset);
  void blezc(Register rt, int16_t offset);
  inline void blezc(Register rt, Label* L) {
    blezc(rt, shifted_branch_offset(L));
  }
  void bltz(Register rs, int16_t offset);
  void bltzc(Register rt, int16_t offset);
  inline void bltzc(Register rt, Label* L) {
    bltzc(rt, shifted_branch_offset(L));
  }
  void bltuc(Register rs, Register rt, int16_t offset);
  inline void bltuc(Register rs, Register rt, Label* L) {
    bltuc(rs, rt, shifted_branch_offset(L));
  }
  void bltc(Register rs, Register rt, int16_t offset);
  inline void bltc(Register rs, Register rt, Label* L) {
    bltc(rs, rt, shifted_branch_offset(L));
  }
  void bltzal(Register rs, int16_t offset);
  void nal() { bltzal(zero_reg, 0); }
  void blezalc(Register rt, int16_t offset);
  inline void blezalc(Register rt, Label* L) {
    blezalc(rt, shifted_branch_offset(L));
  }
  void bltzalc(Register rt, int16_t offset);
  inline void bltzalc(Register rt, Label* L) {
    bltzalc(rt, shifted_branch_offset(L));
  }
  void bgtzalc(Register rt, int16_t offset);
  inline void bgtzalc(Register rt, Label* L) {
    bgtzalc(rt, shifted_branch_offset(L));
  }
  void beqzalc(Register rt, int16_t offset);
  inline void beqzalc(Register rt, Label* L) {
    beqzalc(rt, shifted_branch_offset(L));
  }
  void beqc(Register rs, Register rt, int16_t offset);
  inline void beqc(Register rs, Register rt, Label* L) {
    beqc(rs, rt, shifted_branch_offset(L));
  }
  void beqzc(Register rs, int32_t offset);
  inline void beqzc(Register rs, Label* L) {
    beqzc(rs, shifted_branch_offset21(L));
  }
  void bnezalc(Register rt, int16_t offset);
  inline void bnezalc(Register rt, Label* L) {
    bnezalc(rt, shifted_branch_offset(L));
  }
  void bnec(Register rs, Register rt, int16_t offset);
  inline void bnec(Register rs, Register rt, Label* L) {
    bnec(rs, rt, shifted_branch_offset(L));
  }
  void bnezc(Register rt, int32_t offset);
  inline void bnezc(Register rt, Label* L) {
    bnezc(rt, shifted_branch_offset21(L));
  }
  void bne(Register rs, Register rt, int16_t offset);
  inline void bne(Register rs, Register rt, Label* L) {
    bne(rs, rt, shifted_branch_offset(L));
  }
  void bovc(Register rs, Register rt, int16_t offset);
  inline void bovc(Register rs, Register rt, Label* L) {
    bovc(rs, rt, shifted_branch_offset(L));
  }
  void bnvc(Register rs, Register rt, int16_t offset);
  inline void bnvc(Register rs, Register rt, Label* L) {
    bnvc(rs, rt, shifted_branch_offset(L));
  }

  // Never use the int16_t b(l)cond version with a branch offset
  // instead of using the Label* version.

  void jalr(Register rs, Register rd = ra);
  void jr(Register target);
  void jic(Register rt, int16_t offset);
  void jialc(Register rt, int16_t offset);

  // Following instructions are deprecated and require 256 MB
  // code alignment. Use PC-relative instructions instead.
  void j(int64_t target);
  void jal(int64_t target);
  void j(Label* target);
  void jal(Label* target);

  // -------Data-processing-instructions---------

  // Arithmetic.
  void addu(Register rd, Register rs, Register rt);
  void subu(Register rd, Register rs, Register rt);

  void div(Register rs, Register rt);
  void divu(Register rs, Register rt);
  void ddiv(Register rs, Register rt);
  void ddivu(Register rs, Register rt);
  void div(Register rd, Register rs, Register rt);
  void divu(Register rd, Register rs, Register rt);
  void ddiv(Register rd, Register rs, Register rt);
  void ddivu(Register rd, Register rs, Register rt);
  void mod(Register rd, Register rs, Register rt);
  void modu(Register rd, Register rs, Register rt);
  void dmod(Register rd, Register rs, Register rt);
  void dmodu(Register rd, Register rs, Register rt);

  void mul(Register rd, Register rs, Register rt);
  void muh(Register rd, Register rs, Register rt);
  void mulu(Register rd, Register rs, Register rt);
  void muhu(Register rd, Register rs, Register rt);
  void mult(Register rs, Register rt);
  void multu(Register rs, Register rt);
  void dmul(Register rd, Register rs, Register rt);
  void dmuh(Register rd, Register rs, Register rt);
  void dmulu(Register rd, Register rs, Register rt);
  void dmuhu(Register rd, Register rs, Register rt);
  void daddu(Register rd, Register rs, Register rt);
  void dsubu(Register rd, Register rs, Register rt);
  void dmult(Register rs, Register rt);
  void dmultu(Register rs, Register rt);

  void addiu(Register rd, Register rs, int32_t j);
  void daddiu(Register rd, Register rs, int32_t j);

  // Logical.
  void and_(Register rd, Register rs, Register rt);
  void or_(Register rd, Register rs, Register rt);
  void xor_(Register rd, Register rs, Register rt);
  void nor(Register rd, Register rs, Register rt);

  void andi(Register rd, Register rs, int32_t j);
  void ori(Register rd, Register rs, int32_t j);
  void xori(Register rd, Register rs, int32_t j);
  void lui(Register rd, int32_t j);
  void aui(Register rt, Register rs, int32_t j);
  void daui(Register rt, Register rs, int32_t j);
  void dahi(Register rs, int32_t j);
  void dati(Register rs, int32_t j);

  // Shifts.
  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
  // and may cause problems in normal code. coming_from_nop makes sure this
  // doesn't happen.
  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
  void sllv(Register rd, Register rt, Register rs);
  void srl(Register rd, Register rt, uint16_t sa);
  void srlv(Register rd, Register rt, Register rs);
  void sra(Register rt, Register rd, uint16_t sa);
  void srav(Register rt, Register rd, Register rs);
  void rotr(Register rd, Register rt, uint16_t sa);
  void rotrv(Register rd, Register rt, Register rs);
  void dsll(Register rd, Register rt, uint16_t sa);
  void dsllv(Register rd, Register rt, Register rs);
  void dsrl(Register rd, Register rt, uint16_t sa);
  void dsrlv(Register rd, Register rt, Register rs);
  void drotr(Register rd, Register rt, uint16_t sa);
  void drotr32(Register rd, Register rt, uint16_t sa);
  void drotrv(Register rd, Register rt, Register rs);
  void dsra(Register rt, Register rd, uint16_t sa);
  void dsrav(Register rd, Register rt, Register rs);
  void dsll32(Register rt, Register rd, uint16_t sa);
  void dsrl32(Register rt, Register rd, uint16_t sa);
  void dsra32(Register rt, Register rd, uint16_t sa);

  // ------------Memory-instructions-------------

  void lb(Register rd, const MemOperand& rs);
  void lbu(Register rd, const MemOperand& rs);
  void lh(Register rd, const MemOperand& rs);
  void lhu(Register rd, const MemOperand& rs);
  void lw(Register rd, const MemOperand& rs);
  void lwu(Register rd, const MemOperand& rs);
  void lwl(Register rd, const MemOperand& rs);
  void lwr(Register rd, const MemOperand& rs);
  void sb(Register rd, const MemOperand& rs);
  void sh(Register rd, const MemOperand& rs);
  void sw(Register rd, const MemOperand& rs);
  void swl(Register rd, const MemOperand& rs);
  void swr(Register rd, const MemOperand& rs);
  void ldl(Register rd, const MemOperand& rs);
  void ldr(Register rd, const MemOperand& rs);
  void sdl(Register rd, const MemOperand& rs);
  void sdr(Register rd, const MemOperand& rs);
  void ld(Register rd, const MemOperand& rs);
  void sd(Register rd, const MemOperand& rs);

  // ----------Atomic instructions--------------

  void ll(Register rd, const MemOperand& rs);
  void sc(Register rd, const MemOperand& rs);
  void lld(Register rd, const MemOperand& rs);
  void scd(Register rd, const MemOperand& rs);

  // ---------PC-Relative-instructions-----------

  void addiupc(Register rs, int32_t imm19);
  void lwpc(Register rs, int32_t offset19);
  void lwupc(Register rs, int32_t offset19);
  void ldpc(Register rs, int32_t offset18);
  void auipc(Register rs, int16_t imm16);
  void aluipc(Register rs, int16_t imm16);

  // ----------------Prefetch--------------------

  void pref(int32_t hint, const MemOperand& rs);

  // -------------Misc-instructions--------------

  // Break / Trap instructions.
  void break_(uint32_t code, bool break_as_stop = false);
  void stop(uint32_t code = kMaxStopCode);
  void tge(Register rs, Register rt, uint16_t code);
  void tgeu(Register rs, Register rt, uint16_t code);
  void tlt(Register rs, Register rt, uint16_t code);
  void tltu(Register rs, Register rt, uint16_t code);
  void teq(Register rs, Register rt, uint16_t code);
  void tne(Register rs, Register rt, uint16_t code);

  // Memory barrier instruction.
  void sync();

  // Move from HI/LO register.
  void mfhi(Register rd);
  void mflo(Register rd);

  // Set on less than.
  void slt(Register rd, Register rs, Register rt);
  void sltu(Register rd, Register rs, Register rt);
  void slti(Register rd, Register rs, int32_t j);
  void sltiu(Register rd, Register rs, int32_t j);

  // Conditional move.
  void movz(Register rd, Register rs, Register rt);
  void movn(Register rd, Register rs, Register rt);
  void movt(Register rd, Register rs, uint16_t cc = 0);
  void movf(Register rd, Register rs, uint16_t cc = 0);

  void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
  void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void seleqz(Register rd, Register rs, Register rt);
  void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
              FPURegister ft);
  void selnez(Register rs, Register rt, Register rd);
  void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
              FPURegister ft);
  void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);

  void movz_s(FPURegister fd, FPURegister fs, Register rt);
  void movz_d(FPURegister fd, FPURegister fs, Register rt);
  void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
  void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
  void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
  void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
  void movn_s(FPURegister fd, FPURegister fs, Register rt);
  void movn_d(FPURegister fd, FPURegister fs, Register rt);
  // Bit twiddling.
  void clz(Register rd, Register rs);
  void dclz(Register rd, Register rs);
  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void dextm_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void dextu_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size);
  void bitswap(Register rd, Register rt);
  void dbitswap(Register rd, Register rt);
  void align(Register rd, Register rs, Register rt, uint8_t bp);
  void dalign(Register rd, Register rs, Register rt, uint8_t bp);

  void wsbh(Register rd, Register rt);
  void dsbh(Register rd, Register rt);
  void dshd(Register rd, Register rt);
  void seh(Register rd, Register rt);
  void seb(Register rd, Register rt);

  // --------Coprocessor-instructions----------------

  // Load, store, and move.
  void lwc1(FPURegister fd, const MemOperand& src);
  void ldc1(FPURegister fd, const MemOperand& src);

  void swc1(FPURegister fs, const MemOperand& dst);
  void sdc1(FPURegister fs, const MemOperand& dst);

  void mtc1(Register rt, FPURegister fs);
  void mthc1(Register rt, FPURegister fs);
  void dmtc1(Register rt, FPURegister fs);

  void mfc1(Register rt, FPURegister fs);
  void mfhc1(Register rt, FPURegister fs);
  void dmfc1(Register rt, FPURegister fs);

  void ctc1(Register rt, FPUControlRegister fs);
  void cfc1(Register rt, FPUControlRegister fs);

  // Arithmetic.
  void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void abs_s(FPURegister fd, FPURegister fs);
  void abs_d(FPURegister fd, FPURegister fs);
  void mov_d(FPURegister fd, FPURegister fs);
  void mov_s(FPURegister fd, FPURegister fs);
  void neg_s(FPURegister fd, FPURegister fs);
  void neg_d(FPURegister fd, FPURegister fs);
  void sqrt_s(FPURegister fd, FPURegister fs);
  void sqrt_d(FPURegister fd, FPURegister fs);
  void rsqrt_s(FPURegister fd, FPURegister fs);
  void rsqrt_d(FPURegister fd, FPURegister fs);
  void recip_d(FPURegister fd, FPURegister fs);
  void recip_s(FPURegister fd, FPURegister fs);

  // Conversion.
  void cvt_w_s(FPURegister fd, FPURegister fs);
  void cvt_w_d(FPURegister fd, FPURegister fs);
  void trunc_w_s(FPURegister fd, FPURegister fs);
  void trunc_w_d(FPURegister fd, FPURegister fs);
  void round_w_s(FPURegister fd, FPURegister fs);
  void round_w_d(FPURegister fd, FPURegister fs);
  void floor_w_s(FPURegister fd, FPURegister fs);
  void floor_w_d(FPURegister fd, FPURegister fs);
  void ceil_w_s(FPURegister fd, FPURegister fs);
  void ceil_w_d(FPURegister fd, FPURegister fs);
  void rint_s(FPURegister fd, FPURegister fs);
  void rint_d(FPURegister fd, FPURegister fs);
  void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);

  void cvt_l_s(FPURegister fd, FPURegister fs);
  void cvt_l_d(FPURegister fd, FPURegister fs);
  void trunc_l_s(FPURegister fd, FPURegister fs);
  void trunc_l_d(FPURegister fd, FPURegister fs);
  void round_l_s(FPURegister fd, FPURegister fs);
  void round_l_d(FPURegister fd, FPURegister fs);
  void floor_l_s(FPURegister fd, FPURegister fs);
  void floor_l_d(FPURegister fd, FPURegister fs);
  void ceil_l_s(FPURegister fd, FPURegister fs);
  void ceil_l_d(FPURegister fd, FPURegister fs);

  void class_s(FPURegister fd, FPURegister fs);
  void class_d(FPURegister fd, FPURegister fs);

  void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
  void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
  void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
  void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
  void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
  void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
  void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);

  void cvt_s_w(FPURegister fd, FPURegister fs);
  void cvt_s_l(FPURegister fd, FPURegister fs);
  void cvt_s_d(FPURegister fd, FPURegister fs);

  void cvt_d_w(FPURegister fd, FPURegister fs);
  void cvt_d_l(FPURegister fd, FPURegister fs);
  void cvt_d_s(FPURegister fd, FPURegister fs);

  // Conditions and branches for MIPSr6.
  void cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
           FPURegister ft, FPURegister fs);
  void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
  void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);

  void bc1eqz(int16_t offset, FPURegister ft);
  inline void bc1eqz(Label* L, FPURegister ft) {
    bc1eqz(shifted_branch_offset(L), ft);
  }
  void bc1nez(int16_t offset, FPURegister ft);
  inline void bc1nez(Label* L, FPURegister ft) {
    bc1nez(shifted_branch_offset(L), ft);
  }

  // Conditions and branches for non MIPSr6.
  void c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs,
         uint16_t cc = 0);
  void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
  void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);

  void bc1f(int16_t offset, uint16_t cc = 0);
  inline void bc1f(Label* L, uint16_t cc = 0) {
    bc1f(shifted_branch_offset(L), cc);
  }
  void bc1t(int16_t offset, uint16_t cc = 0);
  inline void bc1t(Label* L, uint16_t cc = 0) {
    bc1t(shifted_branch_offset(L), cc);
  }
  void fcmp(FPURegister src1, const double src2, FPUCondition cond);

  // MSA instructions
  void bz_v(MSARegister wt, int16_t offset);
  inline void bz_v(MSARegister wt, Label* L) {
    bz_v(wt, shifted_branch_offset(L));
  }
  void bz_b(MSARegister wt, int16_t offset);
  inline void bz_b(MSARegister wt, Label* L) {
    bz_b(wt, shifted_branch_offset(L));
  }
  void bz_h(MSARegister wt, int16_t offset);
  inline void bz_h(MSARegister wt, Label* L) {
    bz_h(wt, shifted_branch_offset(L));
  }
  void bz_w(MSARegister wt, int16_t offset);
  inline void bz_w(MSARegister wt, Label* L) {
    bz_w(wt, shifted_branch_offset(L));
  }
  void bz_d(MSARegister wt, int16_t offset);
  inline void bz_d(MSARegister wt, Label* L) {
    bz_d(wt, shifted_branch_offset(L));
  }
  void bnz_v(MSARegister wt, int16_t offset);
  inline void bnz_v(MSARegister wt, Label* L) {
    bnz_v(wt, shifted_branch_offset(L));
  }
  void bnz_b(MSARegister wt, int16_t offset);
  inline void bnz_b(MSARegister wt, Label* L) {
    bnz_b(wt, shifted_branch_offset(L));
  }
  void bnz_h(MSARegister wt, int16_t offset);
  inline void bnz_h(MSARegister wt, Label* L) {
    bnz_h(wt, shifted_branch_offset(L));
  }
  void bnz_w(MSARegister wt, int16_t offset);
  inline void bnz_w(MSARegister wt, Label* L) {
    bnz_w(wt, shifted_branch_offset(L));
  }
  void bnz_d(MSARegister wt, int16_t offset);
  inline void bnz_d(MSARegister wt, Label* L) {
    bnz_d(wt, shifted_branch_offset(L));
  }

  void ld_b(MSARegister wd, const MemOperand& rs);
  void ld_h(MSARegister wd, const MemOperand& rs);
  void ld_w(MSARegister wd, const MemOperand& rs);
  void ld_d(MSARegister wd, const MemOperand& rs);
  void st_b(MSARegister wd, const MemOperand& rs);
  void st_h(MSARegister wd, const MemOperand& rs);
  void st_w(MSARegister wd, const MemOperand& rs);
  void st_d(MSARegister wd, const MemOperand& rs);

  void ldi_b(MSARegister wd, int32_t imm10);
  void ldi_h(MSARegister wd, int32_t imm10);
  void ldi_w(MSARegister wd, int32_t imm10);
  void ldi_d(MSARegister wd, int32_t imm10);

  void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
  void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);

  void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8);
  void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8);
  void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8);

  void and_v(MSARegister wd, MSARegister ws, MSARegister wt);
  void or_v(MSARegister wd, MSARegister ws, MSARegister wt);
  void nor_v(MSARegister wd, MSARegister ws, MSARegister wt);
  void xor_v(MSARegister wd, MSARegister ws, MSARegister wt);
  void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt);
  void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt);
  void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt);

  void fill_b(MSARegister wd, Register rs);
  void fill_h(MSARegister wd, Register rs);
  void fill_w(MSARegister wd, Register rs);
  void fill_d(MSARegister wd, Register rs);
  void pcnt_b(MSARegister wd, MSARegister ws);
  void pcnt_h(MSARegister wd, MSARegister ws);
  void pcnt_w(MSARegister wd, MSARegister ws);
  void pcnt_d(MSARegister wd, MSARegister ws);
  void nloc_b(MSARegister wd, MSARegister ws);
  void nloc_h(MSARegister wd, MSARegister ws);
  void nloc_w(MSARegister wd, MSARegister ws);
  void nloc_d(MSARegister wd, MSARegister ws);
  void nlzc_b(MSARegister wd, MSARegister ws);
  void nlzc_h(MSARegister wd, MSARegister ws);
  void nlzc_w(MSARegister wd, MSARegister ws);
  void nlzc_d(MSARegister wd, MSARegister ws);

  void fclass_w(MSARegister wd, MSARegister ws);
  void fclass_d(MSARegister wd, MSARegister ws);
  void ftrunc_s_w(MSARegister wd, MSARegister ws);
  void ftrunc_s_d(MSARegister wd, MSARegister ws);
  void ftrunc_u_w(MSARegister wd, MSARegister ws);
  void ftrunc_u_d(MSARegister wd, MSARegister ws);
  void fsqrt_w(MSARegister wd, MSARegister ws);
  void fsqrt_d(MSARegister wd, MSARegister ws);
  void frsqrt_w(MSARegister wd, MSARegister ws);
  void frsqrt_d(MSARegister wd, MSARegister ws);
  void frcp_w(MSARegister wd, MSARegister ws);
  void frcp_d(MSARegister wd, MSARegister ws);
  void frint_w(MSARegister wd, MSARegister ws);
  void frint_d(MSARegister wd, MSARegister ws);
  void flog2_w(MSARegister wd, MSARegister ws);
  void flog2_d(MSARegister wd, MSARegister ws);
  void fexupl_w(MSARegister wd, MSARegister ws);
  void fexupl_d(MSARegister wd, MSARegister ws);
  void fexupr_w(MSARegister wd, MSARegister ws);
  void fexupr_d(MSARegister wd, MSARegister ws);
  void ffql_w(MSARegister wd, MSARegister ws);
  void ffql_d(MSARegister wd, MSARegister ws);
  void ffqr_w(MSARegister wd, MSARegister ws);
  void ffqr_d(MSARegister wd, MSARegister ws);
  void ftint_s_w(MSARegister wd, MSARegister ws);
  void ftint_s_d(MSARegister wd, MSARegister ws);
  void ftint_u_w(MSARegister wd, MSARegister ws);
  void ftint_u_d(MSARegister wd, MSARegister ws);
  void ffint_s_w(MSARegister wd, MSARegister ws);
  void ffint_s_d(MSARegister wd, MSARegister ws);
  void ffint_u_w(MSARegister wd, MSARegister ws);
  void ffint_u_d(MSARegister wd, MSARegister ws);

  void sll_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void sll_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void sll_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void sll_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void sra_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void sra_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void sra_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void sra_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void srl_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void srl_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void srl_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void srl_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void bset_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void bset_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void bset_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void bset_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void addv_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void addv_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void addv_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void addv_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void subv_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void subv_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void subv_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void subv_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void sld_b(MSARegister wd, MSARegister ws, Register rt);
  void sld_h(MSARegister wd, MSARegister ws, Register rt);
  void sld_w(MSARegister wd, MSARegister ws, Register rt);
  void sld_d(MSARegister wd, MSARegister ws, Register rt);
  void splat_b(MSARegister wd, MSARegister ws, Register rt);
  void splat_h(MSARegister wd, MSARegister ws, Register rt);
  void splat_w(MSARegister wd, MSARegister ws, Register rt);
  void splat_d(MSARegister wd, MSARegister ws, Register rt);
  void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void srar_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void srar_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void srar_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void srar_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);

  void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt);
  void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
  void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
  void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);

  void sldi_b(MSARegister wd, MSARegister ws, uint32_t n);
  void sldi_h(MSARegister wd, MSARegister ws, uint32_t n);
  void sldi_w(MSARegister wd, MSARegister ws, uint32_t n);
  void sldi_d(MSARegister wd, MSARegister ws, uint32_t n);
  void splati_b(MSARegister wd, MSARegister ws, uint32_t n);
  void splati_h(MSARegister wd, MSARegister ws, uint32_t n);
  void splati_w(MSARegister wd, MSARegister ws, uint32_t n);
  void splati_d(MSARegister wd, MSARegister ws, uint32_t n);
  void copy_s_b(Register rd, MSARegister ws, uint32_t n);
  void copy_s_h(Register rd, MSARegister ws, uint32_t n);
  void copy_s_w(Register rd, MSARegister ws, uint32_t n);
  void copy_s_d(Register rd, MSARegister ws, uint32_t n);
  void copy_u_b(Register rd, MSARegister ws, uint32_t n);
  void copy_u_h(Register rd, MSARegister ws, uint32_t n);
  void copy_u_w(Register rd, MSARegister ws, uint32_t n);
  void insert_b(MSARegister wd, uint32_t n, Register rs);
  void insert_h(MSARegister wd, uint32_t n, Register rs);
  void insert_w(MSARegister wd, uint32_t n, Register rs);
  void insert_d(MSARegister wd, uint32_t n, Register rs);
  void insve_b(MSARegister wd, uint32_t n, MSARegister ws);
  void insve_h(MSARegister wd, uint32_t n, MSARegister ws);
  void insve_w(MSARegister wd, uint32_t n, MSARegister ws);
  void insve_d(MSARegister wd, uint32_t n, MSARegister ws);
  void move_v(MSARegister wd, MSARegister ws);
  void ctcmsa(MSAControlRegister cd, Register rs);
  void cfcmsa(Register rd, MSAControlRegister cs);

  void slli_b(MSARegister wd, MSARegister ws, uint32_t m);
  void slli_h(MSARegister wd, MSARegister ws, uint32_t m);
  void slli_w(MSARegister wd, MSARegister ws, uint32_t m);
  void slli_d(MSARegister wd, MSARegister ws, uint32_t m);
  void srai_b(MSARegister wd, MSARegister ws, uint32_t m);
  void srai_h(MSARegister wd, MSARegister ws, uint32_t m);
  void srai_w(MSARegister wd, MSARegister ws, uint32_t m);
  void srai_d(MSARegister wd, MSARegister ws, uint32_t m);
  void srli_b(MSARegister wd, MSARegister ws, uint32_t m);
  void srli_h(MSARegister wd, MSARegister ws, uint32_t m);
  void srli_w(MSARegister wd, MSARegister ws, uint32_t m);
  void srli_d(MSARegister wd, MSARegister ws, uint32_t m);
  void bclri_b(MSARegister wd, MSARegister ws, uint32_t m);
  void bclri_h(MSARegister wd, MSARegister ws, uint32_t m);
  void bclri_w(MSARegister wd, MSARegister ws, uint32_t m);
  void bclri_d(MSARegister wd, MSARegister ws, uint32_t m);
  void bseti_b(MSARegister wd, MSARegister ws, uint32_t m);
  void bseti_h(MSARegister wd, MSARegister ws, uint32_t m);
  void bseti_w(MSARegister wd, MSARegister ws, uint32_t m);
  void bseti_d(MSARegister wd, MSARegister ws, uint32_t m);
  void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m);
  void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m);
  void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m);
  void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m);
  void binsli_b(MSARegister wd, MSARegister ws, uint32_t m);
  void binsli_h(MSARegister wd, MSARegister ws, uint32_t m);
  void binsli_w(MSARegister wd, MSARegister ws, uint32_t m);
  void binsli_d(MSARegister wd, MSARegister ws, uint32_t m);
  void binsri_b(MSARegister wd, MSARegister ws, uint32_t m);
  void binsri_h(MSARegister wd, MSARegister ws, uint32_t m);
  void binsri_w(MSARegister wd, MSARegister ws, uint32_t m);
  void binsri_d(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m);
  void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m);
  void srari_b(MSARegister wd, MSARegister ws, uint32_t m);
  void srari_h(MSARegister wd, MSARegister ws, uint32_t m);
  void srari_w(MSARegister wd, MSARegister ws, uint32_t m);
  void srari_d(MSARegister wd, MSARegister ws, uint32_t m);
  void srlri_b(MSARegister wd, MSARegister ws, uint32_t m);
  void srlri_h(MSARegister wd, MSARegister ws, uint32_t m);
  void srlri_w(MSARegister wd, MSARegister ws, uint32_t m);
  void srlri_d(MSARegister wd, MSARegister ws, uint32_t m);

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Check the number of instructions generated from label to here.
  int InstructionsGeneratedSince(Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstrSize;
  }

  // Class for scoping postponing the trampoline pool generation.
  class BlockTrampolinePoolScope {
   public:
    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockTrampolinePool();
    }
    ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
  };

  // Class for postponing the assembly buffer growth. Typically used for
  // sequences of instructions that must be emitted as a unit, before
  // buffer growth (and relocation) can occur.
  // This blocking scope is not nestable.
  class BlockGrowBufferScope {
   public:
    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockGrowBuffer();
    }
    ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
  };

  // Record a deoptimization reason that can be used by a log or cpu profiler.
  // Use --trace-deopt to enable.
  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
                         int id);

  static int RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
                                       intptr_t pc_delta);

  // Writes a single byte or word of data in the code stream.  Used for
  // inline tables, e.g., jump-tables.
  void db(uint8_t data);
  void dd(uint32_t data);
  void dq(uint64_t data);
  void dp(uintptr_t data) { dq(data); }
  void dd(Label* label);

  // Postpone the generation of the trampoline pool for the specified number of
  // instructions.
  void BlockTrampolinePoolFor(int instructions);

  // Check if there is less than kGap bytes available in the buffer.
  // If this is the case, we need to grow the buffer before emitting
  // an instruction or relocation information.
  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }

  // Get the number of bytes available in the buffer.
  inline intptr_t available_space() const {
    return reloc_info_writer.pos() - pc_;
  }

  // Read/patch instructions.
  static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); }
  static void instr_at_put(Address pc, Instr instr) {
    *reinterpret_cast<Instr*>(pc) = instr;
  }
  Instr instr_at(int pos) {
    return *reinterpret_cast<Instr*>(buffer_start_ + pos);
  }
  void instr_at_put(int pos, Instr instr) {
    *reinterpret_cast<Instr*>(buffer_start_ + pos) = instr;
  }

  // Check if an instruction is a branch of some kind.
  static bool IsBranch(Instr instr);
  static bool IsMsaBranch(Instr instr);
  static bool IsBc(Instr instr);
  static bool IsNal(Instr instr);
  static bool IsBzc(Instr instr);

  static bool IsBeq(Instr instr);
  static bool IsBne(Instr instr);
  static bool IsBeqzc(Instr instr);
  static bool IsBnezc(Instr instr);
  static bool IsBeqc(Instr instr);
  static bool IsBnec(Instr instr);

  static bool IsJump(Instr instr);
  static bool IsJ(Instr instr);
  static bool IsLui(Instr instr);
  static bool IsOri(Instr instr);
  static bool IsMov(Instr instr, Register rd, Register rs);

  static bool IsJal(Instr instr);
  static bool IsJr(Instr instr);
  static bool IsJalr(Instr instr);

  static bool IsNop(Instr instr, unsigned int type);
  static bool IsPop(Instr instr);
  static bool IsPush(Instr instr);
  static bool IsLwRegFpOffset(Instr instr);
  static bool IsSwRegFpOffset(Instr instr);
  static bool IsLwRegFpNegOffset(Instr instr);
  static bool IsSwRegFpNegOffset(Instr instr);

  static Register GetRtReg(Instr instr);
  static Register GetRsReg(Instr instr);
  static Register GetRdReg(Instr instr);

  static uint32_t GetRt(Instr instr);
  static uint32_t GetRtField(Instr instr);
  static uint32_t GetRs(Instr instr);
  static uint32_t GetRsField(Instr instr);
  static uint32_t GetRd(Instr instr);
  static uint32_t GetRdField(Instr instr);
  static uint32_t GetSa(Instr instr);
  static uint32_t GetSaField(Instr instr);
  static uint32_t GetOpcodeField(Instr instr);
  static uint32_t GetFunction(Instr instr);
  static uint32_t GetFunctionField(Instr instr);
  static uint32_t GetImmediate16(Instr instr);
  static uint32_t GetLabelConst(Instr instr);

  static int32_t GetBranchOffset(Instr instr);
  static bool IsLw(Instr instr);
  static int16_t GetLwOffset(Instr instr);
  static Instr SetLwOffset(Instr instr, int16_t offset);

  static bool IsSw(Instr instr);
  static Instr SetSwOffset(Instr instr, int16_t offset);
  static bool IsAddImmediate(Instr instr);
  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);

  static bool IsAndImmediate(Instr instr);
  static bool IsEmittedConstant(Instr instr);

  void CheckTrampolinePool();

  bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
  static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; }

  inline int UnboundLabelsCount() { return unbound_labels_count_; }

 protected:
  // Load Scaled Address instructions.
  void lsa(Register rd, Register rt, Register rs, uint8_t sa);
  void dlsa(Register rd, Register rt, Register rs, uint8_t sa);

  // Readable constants for base and offset adjustment helper, these indicate if
  // aside from offset, another value like offset + 4 should fit into int16.
  enum class OffsetAccessType : bool {
    SINGLE_ACCESS = false,
    TWO_ACCESSES = true
  };

  // Helper function for memory load/store using base register and offset.
  void AdjustBaseAndOffset(
      MemOperand& src,  // NOLINT(runtime/references)
      OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS,
      int second_access_add_to_offset = 4);

  inline static void set_target_internal_reference_encoded_at(Address pc,
                                                              Address target);

  int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }

  // Decode branch instruction at pos and return branch target pos.
  int target_at(int pos, bool is_internal);

  // Patch branch instruction at pos to branch to given branch target pos.
  void target_at_put(int pos, int target_pos, bool is_internal);

  // Say if we need to relocate with this mode.
  bool MustUseReg(RelocInfo::Mode rmode);

  // Record reloc info for current pc_.
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);

  // Block the emission of the trampoline pool before pc_offset.
  void BlockTrampolinePoolBefore(int pc_offset) {
    if (no_trampoline_pool_before_ < pc_offset)
      no_trampoline_pool_before_ = pc_offset;
  }

  void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }

  void EndBlockTrampolinePool() {
    trampoline_pool_blocked_nesting_--;
    if (trampoline_pool_blocked_nesting_ == 0) {
      CheckTrampolinePoolQuick(1);
    }
  }

  bool is_trampoline_pool_blocked() const {
    return trampoline_pool_blocked_nesting_ > 0;
  }

  bool has_exception() const { return internal_trampoline_exception_; }

  bool is_trampoline_emitted() const { return trampoline_emitted_; }

  // Temporarily block automatic assembly buffer growth.
  void StartBlockGrowBuffer() {
    DCHECK(!block_buffer_growth_);
    block_buffer_growth_ = true;
  }

  void EndBlockGrowBuffer() {
    DCHECK(block_buffer_growth_);
    block_buffer_growth_ = false;
  }

  bool is_buffer_growth_blocked() const { return block_buffer_growth_; }

  void EmitForbiddenSlotInstruction() {
    if (IsPrevInstrCompactBranch()) {
      nop();
    }
  }

  void CheckTrampolinePoolQuick(int extra_instructions = 0) {
    if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
      CheckTrampolinePool();
    }
  }

 private:
  // Avoid overflows for displacements etc.
  static const int kMaximalBufferSize = 512 * MB;

  // Buffer size and constant pool distance are checked together at regular
  // intervals of kBufferCheckInterval emitted bytes.
  static constexpr int kBufferCheckInterval = 1 * KB / 2;

  // Code generation.
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries.
  static constexpr int kGap = 128;

  // Repeated checking whether the trampoline pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated.
  static constexpr int kCheckConstIntervalInst = 32;
  static constexpr int kCheckConstInterval =
      kCheckConstIntervalInst * kInstrSize;

  int next_buffer_check_;  // pc offset of next buffer check.

  // Emission of the trampoline pool may be blocked in some code sequences.
  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_trampoline_pool_before_;  // Block emission before this pc offset.

  // Keep track of the last emitted pool to guarantee a maximal distance.
  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.

  // Automatic growth of the assembly buffer may be blocked for some sequences.
  bool block_buffer_growth_;  // Block growth when true.

  // Relocation information generation.
  // Each relocation is encoded as a variable size value.
  static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;

  // The bound position, before this we cannot do instruction elimination.
  int last_bound_pos_;

  // Readable constants for compact branch handling in emit()
  enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };

  // Code emission.
  inline void CheckBuffer();
  void GrowBuffer();
  inline void emit(Instr x,
                   CompactBranchType is_compact_branch = CompactBranchType::NO);
  inline void emit(uint64_t x);
  inline void CheckForEmitInForbiddenSlot();
  template <typename T>
  inline void EmitHelper(T x);
  inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);

  // Instruction generation.
  // We have 3 different kind of encoding layout on MIPS.
  // However due to many different types of objects encoded in the same fields
  // we have quite a few aliases for each mode.
  // Using the same structure to refer to Register and FPURegister would spare a
  // few aliases, but mixing both does not look clean to me.
  // Anyway we could surely implement this differently.

  void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd,
                        uint16_t sa = 0, SecondaryField func = nullptrSF);

  void GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb,
                        uint16_t lsb, SecondaryField func);

  void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft,
                        FPURegister fs, FPURegister fd,
                        SecondaryField func = nullptrSF);

  void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
                        FPURegister fs, FPURegister fd,
                        SecondaryField func = nullptrSF);

  void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
                        FPURegister fs, FPURegister fd,
                        SecondaryField func = nullptrSF);

  void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
                        FPUControlRegister fs, SecondaryField func = nullptrSF);

  void GenInstrImmediate(
      Opcode opcode, Register rs, Register rt, int32_t j,
      CompactBranchType is_compact_branch = CompactBranchType::NO);
  void GenInstrImmediate(
      Opcode opcode, Register rs, SecondaryField SF, int32_t j,
      CompactBranchType is_compact_branch = CompactBranchType::NO);
  void GenInstrImmediate(
      Opcode opcode, Register r1, FPURegister r2, int32_t j,
      CompactBranchType is_compact_branch = CompactBranchType::NO);
  void GenInstrImmediate(Opcode opcode, Register base, Register rt,
                         int32_t offset9, int bit6, SecondaryField func);
  void GenInstrImmediate(
      Opcode opcode, Register rs, int32_t offset21,
      CompactBranchType is_compact_branch = CompactBranchType::NO);
  void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
  void GenInstrImmediate(
      Opcode opcode, int32_t offset26,
      CompactBranchType is_compact_branch = CompactBranchType::NO);

  void GenInstrJump(Opcode opcode, uint32_t address);

  // MSA
  void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws,
                     MSARegister wd);

  void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5,
                     MSARegister ws, MSARegister wd);

  void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m,
                      MSARegister ws, MSARegister wd);

  void GenInstrMsaI10(SecondaryField operation, SecondaryField df,
                      int32_t imm10, MSARegister wd);

  template <typename RegType>
  void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t,
                     MSARegister ws, MSARegister wd);

  template <typename DstType, typename SrcType>
  void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n,
                      SrcType src, DstType dst);

  void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt,
                      MSARegister ws, MSARegister wd);

  void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws,
                      MSARegister wd);

  void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs,
                       MSARegister wd);

  void GenInstrMsa2R(SecondaryField operation, SecondaryField df,
                     MSARegister ws, MSARegister wd);

  void GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
                      MSARegister ws, MSARegister wd);

  void GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
                         int32_t offset16);

  inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) {
    switch (bit_df) {
      case BIT_DF_b:
        return is_uint3(m);
      case BIT_DF_h:
        return is_uint4(m);
      case BIT_DF_w:
        return is_uint5(m);
      case BIT_DF_d:
        return is_uint6(m);
      default:
        return false;
    }
  }

  inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) {
    switch (elm_df) {
      case ELM_DF_B:
        return is_uint4(n);
      case ELM_DF_H:
        return is_uint3(n);
      case ELM_DF_W:
        return is_uint2(n);
      case ELM_DF_D:
        return is_uint1(n);
      default:
        return false;
    }
  }

  // Labels.
  void print(const Label* L);
  void bind_to(Label* L, int pos);
  void next(Label* L, bool is_internal);

  // One trampoline consists of:
  // - space for trampoline slots,
  // - space for labels.
  //
  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
  // Space for trampoline slots precedes space for labels. Each label is of one
  // instruction size, so total amount for labels is equal to
  // label_count *  kInstrSize.
  class Trampoline {
   public:
    Trampoline() {
      start_ = 0;
      next_slot_ = 0;
      free_slot_count_ = 0;
      end_ = 0;
    }
    Trampoline(int start, int slot_count) {
      start_ = start;
      next_slot_ = start;
      free_slot_count_ = slot_count;
      end_ = start + slot_count * kTrampolineSlotsSize;
    }
    int start() { return start_; }
    int end() { return end_; }
    int take_slot() {
      int trampoline_slot = kInvalidSlotPos;
      if (free_slot_count_ <= 0) {
        // We have run out of space on trampolines.
        // Make sure we fail in debug mode, so we become aware of each case
        // when this happens.
        DCHECK(0);
        // Internal exception will be caught.
      } else {
        trampoline_slot = next_slot_;
        free_slot_count_--;
        next_slot_ += kTrampolineSlotsSize;
      }
      return trampoline_slot;
    }

   private:
    int start_;
    int end_;
    int next_slot_;
    int free_slot_count_;
  };

  int32_t get_trampoline_entry(int32_t pos);
  int unbound_labels_count_;
  // After trampoline is emitted, long branches are used in generated code for
  // the forward branches whose target offsets could be beyond reach of branch
  // instruction. We use this information to trigger different mode of
  // branch instruction generation, where we use jump instructions rather
  // than regular branch instructions.
  bool trampoline_emitted_;
  static constexpr int kInvalidSlotPos = -1;

  // Internal reference positions, required for unbounded internal reference
  // labels.
  std::set<int64_t> internal_reference_positions_;
  bool is_internal_reference(Label* L) {
    return internal_reference_positions_.find(L->pos()) !=
           internal_reference_positions_.end();
  }

  void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
  void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
  bool prev_instr_compact_branch_ = false;

  Trampoline trampoline_;
  bool internal_trampoline_exception_;

  RegList scratch_register_list_;

 private:
  void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);

  int WriteCodeComments();

  friend class RegExpMacroAssemblerMIPS;
  friend class RelocInfo;
  friend class BlockTrampolinePoolScope;
  friend class EnsureSpace;
};

class EnsureSpace {
 public:
  explicit inline EnsureSpace(Assembler* assembler);
};

class V8_EXPORT_PRIVATE UseScratchRegisterScope {
 public:
  explicit UseScratchRegisterScope(Assembler* assembler);
  ~UseScratchRegisterScope();

  Register Acquire();
  bool hasAvailable() const;

 private:
  RegList* available_;
  RegList old_available_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_