summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/arm64/assembler-arm64-inl.h
blob: baae106c1c6ad85a21c3025f10c2bb5143194a1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_CODEGEN_ARM64_ASSEMBLER_ARM64_INL_H_
#define V8_CODEGEN_ARM64_ASSEMBLER_ARM64_INL_H_

#include <type_traits>

#include "src/base/memory.h"
#include "src/codegen/arm64/assembler-arm64.h"
#include "src/codegen/assembler.h"
#include "src/debug/debug.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"

namespace v8 {
namespace internal {

bool CpuFeatures::SupportsOptimizer() { return true; }

bool CpuFeatures::SupportsWasmSimd128() { return true; }

void RelocInfo::apply(intptr_t delta) {
  // On arm64 only internal references and immediate branches need extra work.
  if (RelocInfo::IsInternalReference(rmode_)) {
    // Absolute code pointer inside code object moves with the code object.
    intptr_t internal_ref = ReadUnalignedValue<intptr_t>(pc_);
    internal_ref += delta;  // Relocate entry.
    WriteUnalignedValue<intptr_t>(pc_, internal_ref);
  } else {
    Instruction* instr = reinterpret_cast<Instruction*>(pc_);
    if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) {
      Address old_target =
          reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
      Address new_target = old_target - delta;
      instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(new_target));
    }
  }
}

inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
  return (reg_size_ == other.reg_size_) && (reg_type_ == other.reg_type_);
}

inline bool CPURegister::IsZero() const {
  DCHECK(IsValid());
  return IsRegister() && (reg_code_ == kZeroRegCode);
}

inline bool CPURegister::IsSP() const {
  DCHECK(IsValid());
  return IsRegister() && (reg_code_ == kSPRegInternalCode);
}

inline void CPURegList::Combine(const CPURegList& other) {
  DCHECK(IsValid());
  DCHECK(other.type() == type_);
  DCHECK(other.RegisterSizeInBits() == size_);
  list_ |= other.list();
}

inline void CPURegList::Remove(const CPURegList& other) {
  DCHECK(IsValid());
  if (other.type() == type_) {
    list_ &= ~other.list();
  }
}

inline void CPURegList::Combine(const CPURegister& other) {
  DCHECK(other.type() == type_);
  DCHECK(other.SizeInBits() == size_);
  Combine(other.code());
}

inline void CPURegList::Remove(const CPURegister& other1,
                               const CPURegister& other2,
                               const CPURegister& other3,
                               const CPURegister& other4) {
  if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
  if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
  if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
  if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
}

inline void CPURegList::Combine(int code) {
  DCHECK(IsValid());
  DCHECK(CPURegister::Create(code, size_, type_).IsValid());
  list_ |= (1ULL << code);
}

inline void CPURegList::Remove(int code) {
  DCHECK(IsValid());
  DCHECK(CPURegister::Create(code, size_, type_).IsValid());
  list_ &= ~(1ULL << code);
}

inline Register Register::XRegFromCode(unsigned code) {
  if (code == kSPRegInternalCode) {
    return sp;
  } else {
    DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
    return Register::Create(code, kXRegSizeInBits);
  }
}

inline Register Register::WRegFromCode(unsigned code) {
  if (code == kSPRegInternalCode) {
    return wsp;
  } else {
    DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
    return Register::Create(code, kWRegSizeInBits);
  }
}

inline VRegister VRegister::BRegFromCode(unsigned code) {
  DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
  return VRegister::Create(code, kBRegSizeInBits);
}

inline VRegister VRegister::HRegFromCode(unsigned code) {
  DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
  return VRegister::Create(code, kHRegSizeInBits);
}

inline VRegister VRegister::SRegFromCode(unsigned code) {
  DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
  return VRegister::Create(code, kSRegSizeInBits);
}

inline VRegister VRegister::DRegFromCode(unsigned code) {
  DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
  return VRegister::Create(code, kDRegSizeInBits);
}

inline VRegister VRegister::QRegFromCode(unsigned code) {
  DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
  return VRegister::Create(code, kQRegSizeInBits);
}

inline VRegister VRegister::VRegFromCode(unsigned code) {
  DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
  return VRegister::Create(code, kVRegSizeInBits);
}

inline Register CPURegister::W() const {
  DCHECK(IsRegister());
  return Register::WRegFromCode(reg_code_);
}

inline Register CPURegister::Reg() const {
  DCHECK(IsRegister());
  return Register::Create(reg_code_, reg_size_);
}

inline VRegister CPURegister::VReg() const {
  DCHECK(IsVRegister());
  return VRegister::Create(reg_code_, reg_size_);
}

inline Register CPURegister::X() const {
  DCHECK(IsRegister());
  return Register::XRegFromCode(reg_code_);
}

inline VRegister CPURegister::V() const {
  DCHECK(IsVRegister());
  return VRegister::VRegFromCode(reg_code_);
}

inline VRegister CPURegister::B() const {
  DCHECK(IsVRegister());
  return VRegister::BRegFromCode(reg_code_);
}

inline VRegister CPURegister::H() const {
  DCHECK(IsVRegister());
  return VRegister::HRegFromCode(reg_code_);
}

inline VRegister CPURegister::S() const {
  DCHECK(IsVRegister());
  return VRegister::SRegFromCode(reg_code_);
}

inline VRegister CPURegister::D() const {
  DCHECK(IsVRegister());
  return VRegister::DRegFromCode(reg_code_);
}

inline VRegister CPURegister::Q() const {
  DCHECK(IsVRegister());
  return VRegister::QRegFromCode(reg_code_);
}

// Immediate.
// Default initializer is for int types
template <typename T>
struct ImmediateInitializer {
  static inline RelocInfo::Mode rmode_for(T) { return RelocInfo::NONE; }
  static inline int64_t immediate_for(T t) {
    STATIC_ASSERT(sizeof(T) <= 8);
    STATIC_ASSERT(std::is_integral<T>::value || std::is_enum<T>::value);
    return t;
  }
};

template <>
struct ImmediateInitializer<Smi> {
  static inline RelocInfo::Mode rmode_for(Smi t) { return RelocInfo::NONE; }
  static inline int64_t immediate_for(Smi t) {
    return static_cast<int64_t>(t.ptr());
  }
};

template <>
struct ImmediateInitializer<ExternalReference> {
  static inline RelocInfo::Mode rmode_for(ExternalReference t) {
    return RelocInfo::EXTERNAL_REFERENCE;
  }
  static inline int64_t immediate_for(ExternalReference t) {
    return static_cast<int64_t>(t.address());
  }
};

template <typename T>
Immediate::Immediate(Handle<T> handle, RelocInfo::Mode mode)
    : value_(static_cast<intptr_t>(handle.address())), rmode_(mode) {
  DCHECK(RelocInfo::IsEmbeddedObjectMode(mode));
}

template <typename T>
Immediate::Immediate(T t)
    : value_(ImmediateInitializer<T>::immediate_for(t)),
      rmode_(ImmediateInitializer<T>::rmode_for(t)) {}

template <typename T>
Immediate::Immediate(T t, RelocInfo::Mode rmode)
    : value_(ImmediateInitializer<T>::immediate_for(t)), rmode_(rmode) {
  STATIC_ASSERT(std::is_integral<T>::value);
}

template <typename T>
Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}

template <typename T>
Operand::Operand(T t, RelocInfo::Mode rmode)
    : immediate_(t, rmode), reg_(NoReg) {}

Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
    : immediate_(0),
      reg_(reg),
      shift_(shift),
      extend_(NO_EXTEND),
      shift_amount_(shift_amount) {
  DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
  DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
  DCHECK_IMPLIES(reg.IsSP(), shift_amount == 0);
}

Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
    : immediate_(0),
      reg_(reg),
      shift_(NO_SHIFT),
      extend_(extend),
      shift_amount_(shift_amount) {
  DCHECK(reg.IsValid());
  DCHECK_LE(shift_amount, 4);
  DCHECK(!reg.IsSP());

  // Extend modes SXTX and UXTX require a 64-bit register.
  DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
}

bool Operand::IsHeapObjectRequest() const {
  DCHECK_IMPLIES(heap_object_request_.has_value(), reg_.Is(NoReg));
  DCHECK_IMPLIES(heap_object_request_.has_value(),
                 immediate_.rmode() == RelocInfo::FULL_EMBEDDED_OBJECT ||
                     immediate_.rmode() == RelocInfo::CODE_TARGET);
  return heap_object_request_.has_value();
}

HeapObjectRequest Operand::heap_object_request() const {
  DCHECK(IsHeapObjectRequest());
  return *heap_object_request_;
}

bool Operand::IsImmediate() const {
  return reg_.Is(NoReg) && !IsHeapObjectRequest();
}

bool Operand::IsShiftedRegister() const {
  return reg_.IsValid() && (shift_ != NO_SHIFT);
}

bool Operand::IsExtendedRegister() const {
  return reg_.IsValid() && (extend_ != NO_EXTEND);
}

bool Operand::IsZero() const {
  if (IsImmediate()) {
    return ImmediateValue() == 0;
  } else {
    return reg().IsZero();
  }
}

Operand Operand::ToExtendedRegister() const {
  DCHECK(IsShiftedRegister());
  DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
  return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
}

Immediate Operand::immediate_for_heap_object_request() const {
  DCHECK((heap_object_request().kind() == HeapObjectRequest::kHeapNumber &&
          immediate_.rmode() == RelocInfo::FULL_EMBEDDED_OBJECT) ||
         (heap_object_request().kind() == HeapObjectRequest::kStringConstant &&
          immediate_.rmode() == RelocInfo::FULL_EMBEDDED_OBJECT));
  return immediate_;
}

Immediate Operand::immediate() const {
  DCHECK(IsImmediate());
  return immediate_;
}

int64_t Operand::ImmediateValue() const {
  DCHECK(IsImmediate());
  return immediate_.value();
}

RelocInfo::Mode Operand::ImmediateRMode() const {
  DCHECK(IsImmediate() || IsHeapObjectRequest());
  return immediate_.rmode();
}

Register Operand::reg() const {
  DCHECK(IsShiftedRegister() || IsExtendedRegister());
  return reg_;
}

Shift Operand::shift() const {
  DCHECK(IsShiftedRegister());
  return shift_;
}

Extend Operand::extend() const {
  DCHECK(IsExtendedRegister());
  return extend_;
}

unsigned Operand::shift_amount() const {
  DCHECK(IsShiftedRegister() || IsExtendedRegister());
  return shift_amount_;
}

MemOperand::MemOperand()
    : base_(NoReg),
      regoffset_(NoReg),
      offset_(0),
      addrmode_(Offset),
      shift_(NO_SHIFT),
      extend_(NO_EXTEND),
      shift_amount_(0) {}

MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
    : base_(base),
      regoffset_(NoReg),
      offset_(offset),
      addrmode_(addrmode),
      shift_(NO_SHIFT),
      extend_(NO_EXTEND),
      shift_amount_(0) {
  DCHECK(base.Is64Bits() && !base.IsZero());
}

MemOperand::MemOperand(Register base, Register regoffset, Extend extend,
                       unsigned shift_amount)
    : base_(base),
      regoffset_(regoffset),
      offset_(0),
      addrmode_(Offset),
      shift_(NO_SHIFT),
      extend_(extend),
      shift_amount_(shift_amount) {
  DCHECK(base.Is64Bits() && !base.IsZero());
  DCHECK(!regoffset.IsSP());
  DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));

  // SXTX extend mode requires a 64-bit offset register.
  DCHECK(regoffset.Is64Bits() || (extend != SXTX));
}

MemOperand::MemOperand(Register base, Register regoffset, Shift shift,
                       unsigned shift_amount)
    : base_(base),
      regoffset_(regoffset),
      offset_(0),
      addrmode_(Offset),
      shift_(shift),
      extend_(NO_EXTEND),
      shift_amount_(shift_amount) {
  DCHECK(base.Is64Bits() && !base.IsZero());
  DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
  DCHECK(shift == LSL);
}

MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
    : base_(base), regoffset_(NoReg), addrmode_(addrmode) {
  DCHECK(base.Is64Bits() && !base.IsZero());

  if (offset.IsImmediate()) {
    offset_ = offset.ImmediateValue();
  } else if (offset.IsShiftedRegister()) {
    DCHECK((addrmode == Offset) || (addrmode == PostIndex));

    regoffset_ = offset.reg();
    shift_ = offset.shift();
    shift_amount_ = offset.shift_amount();

    extend_ = NO_EXTEND;
    offset_ = 0;

    // These assertions match those in the shifted-register constructor.
    DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
    DCHECK(shift_ == LSL);
  } else {
    DCHECK(offset.IsExtendedRegister());
    DCHECK(addrmode == Offset);

    regoffset_ = offset.reg();
    extend_ = offset.extend();
    shift_amount_ = offset.shift_amount();

    shift_ = NO_SHIFT;
    offset_ = 0;

    // These assertions match those in the extended-register constructor.
    DCHECK(!regoffset_.IsSP());
    DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
    DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
  }
}

bool MemOperand::IsImmediateOffset() const {
  return (addrmode_ == Offset) && regoffset_.Is(NoReg);
}

bool MemOperand::IsRegisterOffset() const {
  return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
}

bool MemOperand::IsPreIndex() const { return addrmode_ == PreIndex; }

bool MemOperand::IsPostIndex() const { return addrmode_ == PostIndex; }

Operand MemOperand::OffsetAsOperand() const {
  if (IsImmediateOffset()) {
    return offset();
  } else {
    DCHECK(IsRegisterOffset());
    if (extend() == NO_EXTEND) {
      return Operand(regoffset(), shift(), shift_amount());
    } else {
      return Operand(regoffset(), extend(), shift_amount());
    }
  }
}

void Assembler::Unreachable() {
#ifdef USE_SIMULATOR
  debug("UNREACHABLE", __LINE__, BREAK);
#else
  // Crash by branching to 0. lr now points near the fault.
  Emit(BLR | Rn(xzr));
#endif
}

Address Assembler::target_pointer_address_at(Address pc) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  DCHECK(instr->IsLdrLiteralX() || instr->IsLdrLiteralW());
  return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
}

// Read/Modify the code target address in the branch/call instruction at pc.
Address Assembler::target_address_at(Address pc, Address constant_pool) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  if (instr->IsLdrLiteralX()) {
    return Memory<Address>(target_pointer_address_at(pc));
  } else {
    DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
    return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
  }
}

Tagged_t Assembler::target_compressed_address_at(Address pc,
                                                 Address constant_pool) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  CHECK(instr->IsLdrLiteralW());
  return Memory<Tagged_t>(target_pointer_address_at(pc));
}

Handle<Code> Assembler::code_target_object_handle_at(Address pc) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  if (instr->IsLdrLiteralX()) {
    return Handle<Code>(reinterpret_cast<Address*>(
        Assembler::target_address_at(pc, 0 /* unused */)));
  } else {
    DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
    DCHECK_EQ(instr->ImmPCOffset() % kInstrSize, 0);
    return Handle<Code>::cast(
        GetEmbeddedObject(instr->ImmPCOffset() >> kInstrSizeLog2));
  }
}

AssemblerBase::EmbeddedObjectIndex
Assembler::embedded_object_index_referenced_from(Address pc) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  if (instr->IsLdrLiteralX()) {
    STATIC_ASSERT(sizeof(EmbeddedObjectIndex) == sizeof(intptr_t));
    return Memory<EmbeddedObjectIndex>(target_pointer_address_at(pc));
  } else {
    DCHECK(instr->IsLdrLiteralW());
    return Memory<uint32_t>(target_pointer_address_at(pc));
  }
}

void Assembler::set_embedded_object_index_referenced_from(
    Address pc, EmbeddedObjectIndex data) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  if (instr->IsLdrLiteralX()) {
    Memory<EmbeddedObjectIndex>(target_pointer_address_at(pc)) = data;
  } else {
    DCHECK(instr->IsLdrLiteralW());
    DCHECK(is_uint32(data));
    WriteUnalignedValue<uint32_t>(target_pointer_address_at(pc),
                                  static_cast<uint32_t>(data));
  }
}

Handle<HeapObject> Assembler::target_object_handle_at(Address pc) {
  return GetEmbeddedObject(
      Assembler::embedded_object_index_referenced_from(pc));
}

Address Assembler::runtime_entry_at(Address pc) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  if (instr->IsLdrLiteralX()) {
    return Assembler::target_address_at(pc, 0 /* unused */);
  } else {
    DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
    return instr->ImmPCOffset() + options().code_range_start;
  }
}

int Assembler::deserialization_special_target_size(Address location) {
  Instruction* instr = reinterpret_cast<Instruction*>(location);
  if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) {
    return kSpecialTargetSize;
  } else {
    DCHECK_EQ(instr->InstructionBits(), 0);
    return kSystemPointerSize;
  }
}

void Assembler::deserialization_set_special_target_at(Address location,
                                                      Code code,
                                                      Address target) {
  Instruction* instr = reinterpret_cast<Instruction*>(location);
  if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) {
    if (target == 0) {
      // We are simply wiping the target out for serialization. Set the offset
      // to zero instead.
      target = location;
    }
    instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(target));
    FlushInstructionCache(location, kInstrSize);
  } else {
    DCHECK_EQ(instr->InstructionBits(), 0);
    Memory<Address>(location) = target;
    // Intuitively, we would think it is necessary to always flush the
    // instruction cache after patching a target address in the code. However,
    // in this case, only the constant pool contents change. The instruction
    // accessing the constant pool remains unchanged, so a flush is not
    // required.
  }
}

void Assembler::deserialization_set_target_internal_reference_at(
    Address pc, Address target, RelocInfo::Mode mode) {
  WriteUnalignedValue<Address>(pc, target);
}

void Assembler::set_target_address_at(Address pc, Address constant_pool,
                                      Address target,
                                      ICacheFlushMode icache_flush_mode) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  if (instr->IsLdrLiteralX()) {
    Memory<Address>(target_pointer_address_at(pc)) = target;
    // Intuitively, we would think it is necessary to always flush the
    // instruction cache after patching a target address in the code. However,
    // in this case, only the constant pool contents change. The instruction
    // accessing the constant pool remains unchanged, so a flush is not
    // required.
  } else {
    DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
    if (target == 0) {
      // We are simply wiping the target out for serialization. Set the offset
      // to zero instead.
      target = pc;
    }
    instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(target));
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
      FlushInstructionCache(pc, kInstrSize);
    }
  }
}

void Assembler::set_target_compressed_address_at(
    Address pc, Address constant_pool, Tagged_t target,
    ICacheFlushMode icache_flush_mode) {
  Instruction* instr = reinterpret_cast<Instruction*>(pc);
  CHECK(instr->IsLdrLiteralW());
  Memory<Tagged_t>(target_pointer_address_at(pc)) = target;
}

int RelocInfo::target_address_size() {
  if (IsCodedSpecially()) {
    return Assembler::kSpecialTargetSize;
  } else {
    Instruction* instr = reinterpret_cast<Instruction*>(pc_);
    DCHECK(instr->IsLdrLiteralX() || instr->IsLdrLiteralW());
    return instr->IsLdrLiteralW() ? kTaggedSize : kSystemPointerSize;
  }
}

Address RelocInfo::target_address() {
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
  return Assembler::target_address_at(pc_, constant_pool_);
}

Address RelocInfo::target_address_address() {
  DCHECK(HasTargetAddressAddress());
  Instruction* instr = reinterpret_cast<Instruction*>(pc_);
  // Read the address of the word containing the target_address in an
  // instruction stream.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.
  // For an instruction like B/BL, where the target bits are mixed into the
  // instruction bits, the size of the target will be zero, indicating that the
  // serializer should not step forward in memory after a target is resolved
  // and written.
  // For LDR literal instructions, we can skip up to the constant pool entry
  // address. We make sure that RelocInfo is ordered by the
  // target_address_address so that we do not skip over any relocatable
  // instruction sequences.
  if (instr->IsLdrLiteralX()) {
    return constant_pool_entry_address();
  } else {
    DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
    return pc_;
  }
}

Address RelocInfo::constant_pool_entry_address() {
  DCHECK(IsInConstantPool());
  return Assembler::target_pointer_address_at(pc_);
}

HeapObject RelocInfo::target_object() {
  DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
  if (IsCompressedEmbeddedObject(rmode_)) {
    return HeapObject::cast(Object(DecompressTaggedAny(
        host_.address(),
        Assembler::target_compressed_address_at(pc_, constant_pool_))));
  } else {
    return HeapObject::cast(
        Object(Assembler::target_address_at(pc_, constant_pool_)));
  }
}

HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
  if (IsCompressedEmbeddedObject(rmode_)) {
    return HeapObject::cast(Object(DecompressTaggedAny(
        isolate,
        Assembler::target_compressed_address_at(pc_, constant_pool_))));
  } else {
    return target_object();
  }
}

Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
  if (IsEmbeddedObjectMode(rmode_)) {
    return origin->target_object_handle_at(pc_);
  } else {
    DCHECK(IsCodeTarget(rmode_));
    return origin->code_target_object_handle_at(pc_);
  }
}

void RelocInfo::set_target_object(Heap* heap, HeapObject target,
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
  DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
  if (IsCompressedEmbeddedObject(rmode_)) {
    Assembler::set_target_compressed_address_at(
        pc_, constant_pool_, CompressTagged(target.ptr()), icache_flush_mode);
  } else {
    DCHECK(IsFullEmbeddedObject(rmode_));
    Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
                                     icache_flush_mode);
  }
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null()) {
    WriteBarrierForCode(host(), this, target);
  }
}

Address RelocInfo::target_external_reference() {
  DCHECK(rmode_ == EXTERNAL_REFERENCE);
  return Assembler::target_address_at(pc_, constant_pool_);
}

void RelocInfo::set_target_external_reference(
    Address target, ICacheFlushMode icache_flush_mode) {
  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
  Assembler::set_target_address_at(pc_, constant_pool_, target,
                                   icache_flush_mode);
}

Address RelocInfo::target_internal_reference() {
  DCHECK(rmode_ == INTERNAL_REFERENCE);
  return ReadUnalignedValue<Address>(pc_);
}

Address RelocInfo::target_internal_reference_address() {
  DCHECK(rmode_ == INTERNAL_REFERENCE);
  return pc_;
}

Address RelocInfo::target_runtime_entry(Assembler* origin) {
  DCHECK(IsRuntimeEntry(rmode_));
  return origin->runtime_entry_at(pc_);
}

void RelocInfo::set_target_runtime_entry(Address target,
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
  DCHECK(IsRuntimeEntry(rmode_));
  if (target_address() != target) {
    set_target_address(target, write_barrier_mode, icache_flush_mode);
  }
}

Address RelocInfo::target_off_heap_target() {
  DCHECK(IsOffHeapTarget(rmode_));
  return Assembler::target_address_at(pc_, constant_pool_);
}

void RelocInfo::WipeOut() {
  DCHECK(IsEmbeddedObjectMode(rmode_) || IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
         IsInternalReference(rmode_) || IsOffHeapTarget(rmode_));
  if (IsInternalReference(rmode_)) {
    WriteUnalignedValue<Address>(pc_, kNullAddress);
  } else if (IsCompressedEmbeddedObject(rmode_)) {
    Assembler::set_target_compressed_address_at(pc_, constant_pool_,
                                                kNullAddress);
  } else {
    Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
  }
}

LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
  DCHECK(rt.IsValid());
  if (rt.IsRegister()) {
    return rt.Is64Bits() ? LDR_x : LDR_w;
  } else {
    DCHECK(rt.IsVRegister());
    switch (rt.SizeInBits()) {
      case kBRegSizeInBits:
        return LDR_b;
      case kHRegSizeInBits:
        return LDR_h;
      case kSRegSizeInBits:
        return LDR_s;
      case kDRegSizeInBits:
        return LDR_d;
      default:
        DCHECK(rt.IsQ());
        return LDR_q;
    }
  }
}

LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
  DCHECK(rt.IsValid());
  if (rt.IsRegister()) {
    return rt.Is64Bits() ? STR_x : STR_w;
  } else {
    DCHECK(rt.IsVRegister());
    switch (rt.SizeInBits()) {
      case kBRegSizeInBits:
        return STR_b;
      case kHRegSizeInBits:
        return STR_h;
      case kSRegSizeInBits:
        return STR_s;
      case kDRegSizeInBits:
        return STR_d;
      default:
        DCHECK(rt.IsQ());
        return STR_q;
    }
  }
}

LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
                                         const CPURegister& rt2) {
  DCHECK_EQ(STP_w | LoadStorePairLBit, LDP_w);
  return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) |
                                      LoadStorePairLBit);
}

LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
                                          const CPURegister& rt2) {
  DCHECK(AreSameSizeAndType(rt, rt2));
  USE(rt2);
  if (rt.IsRegister()) {
    return rt.Is64Bits() ? STP_x : STP_w;
  } else {
    DCHECK(rt.IsVRegister());
    switch (rt.SizeInBits()) {
      case kSRegSizeInBits:
        return STP_s;
      case kDRegSizeInBits:
        return STP_d;
      default:
        DCHECK(rt.IsQ());
        return STP_q;
    }
  }
}

LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
  if (rt.IsRegister()) {
    return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
  } else {
    DCHECK(rt.IsVRegister());
    return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
  }
}

int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
  DCHECK_EQ(kStartOfLabelLinkChain, 0);
  int offset = LinkAndGetByteOffsetTo(label);
  DCHECK(IsAligned(offset, kInstrSize));
  return offset >> kInstrSizeLog2;
}

Instr Assembler::Flags(FlagsUpdate S) {
  if (S == SetFlags) {
    return 1 << FlagsUpdate_offset;
  } else if (S == LeaveFlags) {
    return 0 << FlagsUpdate_offset;
  }
  UNREACHABLE();
}

Instr Assembler::Cond(Condition cond) { return cond << Condition_offset; }

Instr Assembler::ImmPCRelAddress(int imm21) {
  CHECK(is_int21(imm21));
  Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
  Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
  Instr immlo = imm << ImmPCRelLo_offset;
  return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
}

Instr Assembler::ImmUncondBranch(int imm26) {
  CHECK(is_int26(imm26));
  return truncate_to_int26(imm26) << ImmUncondBranch_offset;
}

Instr Assembler::ImmCondBranch(int imm19) {
  CHECK(is_int19(imm19));
  return truncate_to_int19(imm19) << ImmCondBranch_offset;
}

Instr Assembler::ImmCmpBranch(int imm19) {
  CHECK(is_int19(imm19));
  return truncate_to_int19(imm19) << ImmCmpBranch_offset;
}

Instr Assembler::ImmTestBranch(int imm14) {
  CHECK(is_int14(imm14));
  return truncate_to_int14(imm14) << ImmTestBranch_offset;
}

Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
  DCHECK(is_uint6(bit_pos));
  // Subtract five from the shift offset, as we need bit 5 from bit_pos.
  unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
  unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
  b5 &= ImmTestBranchBit5_mask;
  b40 &= ImmTestBranchBit40_mask;
  return b5 | b40;
}

Instr Assembler::SF(Register rd) {
  return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
}

Instr Assembler::ImmAddSub(int imm) {
  DCHECK(IsImmAddSub(imm));
  if (is_uint12(imm)) {  // No shift required.
    imm <<= ImmAddSub_offset;
  } else {
    imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
  }
  return imm;
}

Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
  DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
         ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
  USE(reg_size);
  return imms << ImmS_offset;
}

Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
  DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
         ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
  USE(reg_size);
  DCHECK(is_uint6(immr));
  return immr << ImmR_offset;
}

Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
  DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
  DCHECK(is_uint6(imms));
  DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
  USE(reg_size);
  return imms << ImmSetBits_offset;
}

Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
  DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
  DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
         ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
  USE(reg_size);
  return immr << ImmRotate_offset;
}

Instr Assembler::ImmLLiteral(int imm19) {
  CHECK(is_int19(imm19));
  return truncate_to_int19(imm19) << ImmLLiteral_offset;
}

Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
  DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
  DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
  USE(reg_size);
  return bitn << BitN_offset;
}

Instr Assembler::ShiftDP(Shift shift) {
  DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
  return shift << ShiftDP_offset;
}

Instr Assembler::ImmDPShift(unsigned amount) {
  DCHECK(is_uint6(amount));
  return amount << ImmDPShift_offset;
}

Instr Assembler::ExtendMode(Extend extend) {
  return extend << ExtendMode_offset;
}

Instr Assembler::ImmExtendShift(unsigned left_shift) {
  DCHECK_LE(left_shift, 4);
  return left_shift << ImmExtendShift_offset;
}

Instr Assembler::ImmCondCmp(unsigned imm) {
  DCHECK(is_uint5(imm));
  return imm << ImmCondCmp_offset;
}

Instr Assembler::Nzcv(StatusFlags nzcv) {
  return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
}

Instr Assembler::ImmLSUnsigned(int imm12) {
  DCHECK(is_uint12(imm12));
  return imm12 << ImmLSUnsigned_offset;
}

Instr Assembler::ImmLS(int imm9) {
  DCHECK(is_int9(imm9));
  return truncate_to_int9(imm9) << ImmLS_offset;
}

Instr Assembler::ImmLSPair(int imm7, unsigned size) {
  DCHECK_EQ((imm7 >> size) << size, imm7);
  int scaled_imm7 = imm7 >> size;
  DCHECK(is_int7(scaled_imm7));
  return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
}

Instr Assembler::ImmShiftLS(unsigned shift_amount) {
  DCHECK(is_uint1(shift_amount));
  return shift_amount << ImmShiftLS_offset;
}

Instr Assembler::ImmException(int imm16) {
  DCHECK(is_uint16(imm16));
  return imm16 << ImmException_offset;
}

Instr Assembler::ImmSystemRegister(int imm15) {
  DCHECK(is_uint15(imm15));
  return imm15 << ImmSystemRegister_offset;
}

Instr Assembler::ImmHint(int imm7) {
  DCHECK(is_uint7(imm7));
  return imm7 << ImmHint_offset;
}

Instr Assembler::ImmBarrierDomain(int imm2) {
  DCHECK(is_uint2(imm2));
  return imm2 << ImmBarrierDomain_offset;
}

Instr Assembler::ImmBarrierType(int imm2) {
  DCHECK(is_uint2(imm2));
  return imm2 << ImmBarrierType_offset;
}

unsigned Assembler::CalcLSDataSize(LoadStoreOp op) {
  DCHECK((LSSize_offset + LSSize_width) == (kInstrSize * 8));
  unsigned size = static_cast<Instr>(op >> LSSize_offset);
  if ((op & LSVector_mask) != 0) {
    // Vector register memory operations encode the access size in the "size"
    // and "opc" fields.
    if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
      size = kQRegSizeLog2;
    }
  }
  return size;
}

Instr Assembler::ImmMoveWide(int imm) {
  DCHECK(is_uint16(imm));
  return imm << ImmMoveWide_offset;
}

Instr Assembler::ShiftMoveWide(int shift) {
  DCHECK(is_uint2(shift));
  return shift << ShiftMoveWide_offset;
}

Instr Assembler::FPType(VRegister fd) { return fd.Is64Bits() ? FP64 : FP32; }

Instr Assembler::FPScale(unsigned scale) {
  DCHECK(is_uint6(scale));
  return scale << FPScale_offset;
}

const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
  return reg.Is64Bits() ? xzr : wzr;
}

inline void Assembler::CheckBufferSpace() {
  DCHECK_LT(pc_, buffer_start_ + buffer_->size());
  if (buffer_space() < kGap) {
    GrowBuffer();
  }
}

inline void Assembler::CheckBuffer() {
  CheckBufferSpace();
  if (pc_offset() >= next_veneer_pool_check_) {
    CheckVeneerPool(false, true);
  }
  constpool_.MaybeCheck();
}

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_ARM64_ASSEMBLER_ARM64_INL_H_