summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/arm/macro-assembler-arm.h
blob: e4ce734f52a37fc193f9f683c7330a6a9783c932 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif

#ifndef V8_CODEGEN_ARM_MACRO_ASSEMBLER_ARM_H_
#define V8_CODEGEN_ARM_MACRO_ASSEMBLER_ARM_H_

#include "src/codegen/arm/assembler-arm.h"
#include "src/codegen/bailout-reason.h"
#include "src/common/globals.h"
#include "src/objects/contexts.h"

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// Static helper functions

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}

enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };

Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
                                   Register reg3 = no_reg,
                                   Register reg4 = no_reg,
                                   Register reg5 = no_reg,
                                   Register reg6 = no_reg);

enum TargetAddressStorageMode {
  CAN_INLINE_TARGET_ADDRESS,
  NEVER_INLINE_TARGET_ADDRESS
};

class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
 public:
  using TurboAssemblerBase::TurboAssemblerBase;

  // Activation support.
  void EnterFrame(StackFrame::Type type,
                  bool load_constant_pool_pointer_reg = false);
  // Returns the pc offset at which the frame ends.
  int LeaveFrame(StackFrame::Type type);

// Allocate stack space of given size (i.e. decrement {sp} by the value
// stored in the given register, or by a constant). If you need to perform a
// stack check, do it before calling this function because this function may
// write into the newly allocated space. It may also overwrite the given
// register's value, in the version that takes a register.
#ifdef V8_OS_WIN
  void AllocateStackSpace(Register bytes_scratch);
  void AllocateStackSpace(int bytes);
#else
  void AllocateStackSpace(Register bytes) { sub(sp, sp, bytes); }
  void AllocateStackSpace(int bytes) { sub(sp, sp, Operand(bytes)); }
#endif

  // Push a fixed frame, consisting of lr, fp
  void PushCommonFrame(Register marker_reg = no_reg);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type);
  void Prologue();

  // Push a standard frame, consisting of lr, fp, context and JS function
  void PushStandardFrame(Register function_reg);

  void InitializeRootRegister();

  void Push(Register src) { push(src); }

  void Push(Handle<HeapObject> handle);
  void Push(Smi smi);

  // Push two registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Condition cond = al) {
    if (src1.code() > src2.code()) {
      stm(db_w, sp, src1.bit() | src2.bit(), cond);
    } else {
      str(src1, MemOperand(sp, 4, NegPreIndex), cond);
      str(src2, MemOperand(sp, 4, NegPreIndex), cond);
    }
  }

  // Push three registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Condition cond = al) {
    if (src1.code() > src2.code()) {
      if (src2.code() > src3.code()) {
        stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
      } else {
        stm(db_w, sp, src1.bit() | src2.bit(), cond);
        str(src3, MemOperand(sp, 4, NegPreIndex), cond);
      }
    } else {
      str(src1, MemOperand(sp, 4, NegPreIndex), cond);
      Push(src2, src3, cond);
    }
  }

  // Push four registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Condition cond = al) {
    if (src1.code() > src2.code()) {
      if (src2.code() > src3.code()) {
        if (src3.code() > src4.code()) {
          stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
              cond);
        } else {
          stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
          str(src4, MemOperand(sp, 4, NegPreIndex), cond);
        }
      } else {
        stm(db_w, sp, src1.bit() | src2.bit(), cond);
        Push(src3, src4, cond);
      }
    } else {
      str(src1, MemOperand(sp, 4, NegPreIndex), cond);
      Push(src2, src3, src4, cond);
    }
  }

  // Push five registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Register src5, Condition cond = al) {
    if (src1.code() > src2.code()) {
      if (src2.code() > src3.code()) {
        if (src3.code() > src4.code()) {
          if (src4.code() > src5.code()) {
            stm(db_w, sp,
                src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
                cond);
          } else {
            stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
                cond);
            str(src5, MemOperand(sp, 4, NegPreIndex), cond);
          }
        } else {
          stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
          Push(src4, src5, cond);
        }
      } else {
        stm(db_w, sp, src1.bit() | src2.bit(), cond);
        Push(src3, src4, src5, cond);
      }
    } else {
      str(src1, MemOperand(sp, 4, NegPreIndex), cond);
      Push(src2, src3, src4, src5, cond);
    }
  }

  void Pop(Register dst) { pop(dst); }

  // Pop two registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Condition cond = al) {
    DCHECK(src1 != src2);
    if (src1.code() > src2.code()) {
      ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    } else {
      ldr(src2, MemOperand(sp, 4, PostIndex), cond);
      ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    }
  }

  // Pop three registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
    DCHECK(!AreAliased(src1, src2, src3));
    if (src1.code() > src2.code()) {
      if (src2.code() > src3.code()) {
        ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
      } else {
        ldr(src3, MemOperand(sp, 4, PostIndex), cond);
        ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
      }
    } else {
      Pop(src2, src3, cond);
      ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    }
  }

  // Pop four registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4,
           Condition cond = al) {
    DCHECK(!AreAliased(src1, src2, src3, src4));
    if (src1.code() > src2.code()) {
      if (src2.code() > src3.code()) {
        if (src3.code() > src4.code()) {
          ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
              cond);
        } else {
          ldr(src4, MemOperand(sp, 4, PostIndex), cond);
          ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
        }
      } else {
        Pop(src3, src4, cond);
        ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
      }
    } else {
      Pop(src2, src3, src4, cond);
      ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    }
  }

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, non-register arguments must be stored in
  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
  // are word sized. If double arguments are used, this function assumes that
  // all double arguments are stored before core registers; otherwise the
  // correct alignment of the double values is not guaranteed.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers = 0,
                            Register scratch = no_reg);

  // Removes current frame and its arguments from the stack preserving
  // the arguments and a return address pushed to the stack for the next call.
  // Both |callee_args_count| and |caller_args_count_reg| do not include
  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
  // is trashed.
  void PrepareForTailCall(const ParameterCount& callee_args_count,
                          Register caller_args_count_reg, Register scratch0,
                          Register scratch1);

  // There are two ways of passing double arguments on ARM, depending on
  // whether soft or hard floating point ABI is used. These functions
  // abstract parameter passing for the three different ways we call
  // C functions from generated code.
  void MovToFloatParameter(DwVfpRegister src);
  void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
  void MovToFloatResult(DwVfpRegister src);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);
  void CallCFunction(ExternalReference function, int num_reg_arguments,
                     int num_double_arguments);
  void CallCFunction(Register function, int num_reg_arguments,
                     int num_double_arguments);

  void MovFromFloatParameter(DwVfpRegister dst);
  void MovFromFloatResult(DwVfpRegister dst);

  // Calls Abort(msg) if the condition cond is not satisfied.
  // Use --debug-code to enable.
  void Assert(Condition cond, AbortReason reason);

  // Like Assert(), but without condition.
  // Use --debug-code to enable.
  void AssertUnreachable(AbortReason reason);

  // Like Assert(), but always enabled.
  void Check(Condition cond, AbortReason reason);

  // Print a message to stdout and abort execution.
  void Abort(AbortReason msg);

  void LslPair(Register dst_low, Register dst_high, Register src_low,
               Register src_high, Register shift);
  void LslPair(Register dst_low, Register dst_high, Register src_low,
               Register src_high, uint32_t shift);
  void LsrPair(Register dst_low, Register dst_high, Register src_low,
               Register src_high, Register shift);
  void LsrPair(Register dst_low, Register dst_high, Register src_low,
               Register src_high, uint32_t shift);
  void AsrPair(Register dst_low, Register dst_high, Register src_low,
               Register src_high, Register shift);
  void AsrPair(Register dst_low, Register dst_high, Register src_low,
               Register src_high, uint32_t shift);

  void LoadFromConstantsTable(Register destination,
                              int constant_index) override;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
  void LoadRootRelative(Register destination, int32_t offset) override;

  // Call a runtime routine. This expects {centry} to contain a fitting CEntry
  // builtin for the target runtime function and uses an indirect call.
  void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);

  // Jump, Call, and Ret pseudo instructions implementing inter-working.
  void Call(Register target, Condition cond = al);
  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al,
            TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS,
            bool check_constant_pool = true);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
            Condition cond = al,
            TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS,
            bool check_constant_pool = true);
  void Call(Label* target);

  // Load the builtin given by the Smi in |builtin_index| into the same
  // register.
  void LoadEntryFromBuiltinIndex(Register builtin_index);
  void CallBuiltinByIndex(Register builtin_index) override;

  void LoadCodeObjectEntry(Register destination, Register code_object) override;
  void CallCodeObject(Register code_object) override;
  void JumpCodeObject(Register code_object) override;

  // Generates an instruction sequence s.t. the return address points to the
  // instruction following the call.
  // The return address on the stack is used by frame iteration.
  void StoreReturnAddressAndCall(Register target);

  // This should only be used when assembling a deoptimizer call because of
  // the CheckConstPool invocation, which is only needed for deoptimization.
  void CallForDeoptimization(Address target, int deopt_id);

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count, Condition cond = al);
  void Drop(Register count, Condition cond = al);

  void Ret(Condition cond = al);
  void Ret(int drop, Condition cond = al);

  // Compare single values and move the result to the normal condition flags.
  void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
                             const Condition cond = al);
  void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
                             const Condition cond = al);

  // Compare double values and move the result to the normal condition flags.
  void VFPCompareAndSetFlags(const DwVfpRegister src1, const DwVfpRegister src2,
                             const Condition cond = al);
  void VFPCompareAndSetFlags(const DwVfpRegister src1, const double src2,
                             const Condition cond = al);

  // If the value is a NaN, canonicalize the value else, do nothing.
  void VFPCanonicalizeNaN(const DwVfpRegister dst, const DwVfpRegister src,
                          const Condition cond = al);
  void VFPCanonicalizeNaN(const DwVfpRegister value,
                          const Condition cond = al) {
    VFPCanonicalizeNaN(value, value, cond);
  }

  void VmovHigh(Register dst, DwVfpRegister src);
  void VmovHigh(DwVfpRegister dst, Register src);
  void VmovLow(Register dst, DwVfpRegister src);
  void VmovLow(DwVfpRegister dst, Register src);

  void CheckPageFlag(Register object, int mask, Condition cc,
                     Label* condition_met);

  // Check whether d16-d31 are available on the CPU. The result is given by the
  // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
  void CheckFor32DRegs(Register scratch);

  void SaveRegisters(RegList registers);
  void RestoreRegisters(RegList registers);

  void CallRecordWriteStub(Register object, Operand offset,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode);
  void CallRecordWriteStub(Register object, Operand offset,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Address wasm_target);
  void CallEphemeronKeyBarrier(Register object, Operand offset,
                               SaveFPRegsMode fp_mode);

  // For a given |object| and |offset|:
  //   - Move |object| to |dst_object|.
  //   - Compute the address of the slot pointed to by |offset| in |object| and
  //     write it to |dst_slot|. |offset| can be either an immediate or a
  //     register.
  // This method makes sure |object| and |offset| are allowed to overlap with
  // the destination registers.
  void MoveObjectAndSlot(Register dst_object, Register dst_slot,
                         Register object, Operand offset);

  // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
  // values to location, saving [d0..(d15|d31)].
  void SaveFPRegs(Register location, Register scratch);

  // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
  // values to location, restoring [d0..(d15|d31)].
  void RestoreFPRegs(Register location, Register scratch);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);
  void Jump(Register target, Condition cond = al);
  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);

  // Perform a floating-point min or max operation with the
  // (IEEE-754-compatible) semantics of ARM64's fmin/fmax. Some cases, typically
  // NaNs or +/-0.0, are expected to be rare and are handled in out-of-line
  // code. The specific behaviour depends on supported instructions.
  //
  // These functions assume (and assert) that left!=right. It is permitted
  // for the result to alias either input register.
  void FloatMax(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
                Label* out_of_line);
  void FloatMin(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
                Label* out_of_line);
  void FloatMax(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
                Label* out_of_line);
  void FloatMin(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
                Label* out_of_line);

  // Generate out-of-line cases for the macros above.
  void FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left,
                         SwVfpRegister right);
  void FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left,
                         SwVfpRegister right);
  void FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left,
                         DwVfpRegister right);
  void FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left,
                         DwVfpRegister right);

  void ExtractLane(Register dst, QwNeonRegister src, NeonDataType dt, int lane);
  void ExtractLane(Register dst, DwVfpRegister src, NeonDataType dt, int lane);
  void ExtractLane(SwVfpRegister dst, QwNeonRegister src, int lane);
  void ReplaceLane(QwNeonRegister dst, QwNeonRegister src, Register src_lane,
                   NeonDataType dt, int lane);
  void ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
                   SwVfpRegister src_lane, int lane);

  // Register move. May do nothing if the registers are identical.
  void Move(Register dst, Smi smi);
  void Move(Register dst, Handle<HeapObject> value);
  void Move(Register dst, ExternalReference reference);
  void Move(Register dst, Register src, Condition cond = al);
  void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
            Condition cond = al) {
    if (!src.IsRegister() || src.rm() != dst || sbit != LeaveCC) {
      mov(dst, src, sbit, cond);
    }
  }
  // Move src0 to dst0 and src1 to dst1, handling possible overlaps.
  void MovePair(Register dst0, Register src0, Register dst1, Register src1);

  void Move(SwVfpRegister dst, SwVfpRegister src, Condition cond = al);
  void Move(DwVfpRegister dst, DwVfpRegister src, Condition cond = al);
  void Move(QwNeonRegister dst, QwNeonRegister src);

  // Simulate s-register moves for imaginary s32 - s63 registers.
  void VmovExtended(Register dst, int src_code);
  void VmovExtended(int dst_code, Register src);
  // Move between s-registers and imaginary s-registers.
  void VmovExtended(int dst_code, int src_code);
  void VmovExtended(int dst_code, const MemOperand& src);
  void VmovExtended(const MemOperand& dst, int src_code);

  // Register swap. Note that the register operands should be distinct.
  void Swap(Register srcdst0, Register srcdst1);
  void Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1);
  void Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1);

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();

  void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);

  void SmiUntag(Register reg, SBit s = LeaveCC) {
    mov(reg, Operand::SmiUntag(reg), s);
  }
  void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
    mov(dst, Operand::SmiUntag(src), s);
  }

  // Load an object from the root table.
  void LoadRoot(Register destination, RootIndex index) override {
    LoadRoot(destination, index, al);
  }
  void LoadRoot(Register destination, RootIndex index, Condition cond);

  // Jump if the register contains a smi.
  void JumpIfSmi(Register value, Label* smi_label);

  void JumpIfEqual(Register x, int32_t y, Label* dest);
  void JumpIfLessThan(Register x, int32_t y, Label* dest);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
  // succeeds, otherwise falls through if result is saturated. On return
  // 'result' either holds answer, or is clobbered on fall through.
  void TryInlineTruncateDoubleToI(Register result, DwVfpRegister input,
                                  Label* done);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
  // Exits with 'result' holding the answer.
  void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
                         DwVfpRegister double_input, StubCallMode stub_mode);

  // EABI variant for double arguments in use.
  bool use_eabi_hardfloat() {
#ifdef __arm__
    return base::OS::ArmUsingHardFloat();
#elif USE_EABI_HARDFLOAT
    return true;
#else
    return false;
#endif
  }

  // Compute the start of the generated instruction stream from the current PC.
  // This is an alternative to embedding the {CodeObject} handle as a reference.
  void ComputeCodeStartAddress(Register dst);

  void ResetSpeculationPoisonRegister();

 private:
  // Compare single values and then load the fpscr flags to a register.
  void VFPCompareAndLoadFlags(const SwVfpRegister src1,
                              const SwVfpRegister src2,
                              const Register fpscr_flags,
                              const Condition cond = al);
  void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
                              const Register fpscr_flags,
                              const Condition cond = al);

  // Compare double values and then load the fpscr flags to a register.
  void VFPCompareAndLoadFlags(const DwVfpRegister src1,
                              const DwVfpRegister src2,
                              const Register fpscr_flags,
                              const Condition cond = al);
  void VFPCompareAndLoadFlags(const DwVfpRegister src1, const double src2,
                              const Register fpscr_flags,
                              const Condition cond = al);

  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);

  // Implementation helpers for FloatMin and FloatMax.
  template <typename T>
  void FloatMaxHelper(T result, T left, T right, Label* out_of_line);
  template <typename T>
  void FloatMinHelper(T result, T left, T right, Label* out_of_line);
  template <typename T>
  void FloatMaxOutOfLineHelper(T result, T left, T right);
  template <typename T>
  void FloatMinOutOfLineHelper(T result, T left, T right);

  int CalculateStackPassedWords(int num_reg_arguments,
                                int num_double_arguments);

  void CallCFunctionHelper(Register function, int num_reg_arguments,
                           int num_double_arguments);

  void CallRecordWriteStub(Register object, Operand offset,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Handle<Code> code_target,
                           Address wasm_target);
};

// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
 public:
  using TurboAssembler::TurboAssembler;

  void Mls(Register dst, Register src1, Register src2, Register srcA,
           Condition cond = al);
  void And(Register dst, Register src1, const Operand& src2,
           Condition cond = al);
  void Ubfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);
  void Sbfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);

  // ---------------------------------------------------------------------------
  // GC Support

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, LinkRegisterStatus lr_status,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // For a given |object| notify the garbage collector that the slot at |offset|
  // has been written. |value| is the object being stored.
  void RecordWrite(
      Register object, Operand offset, Register value,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // Enter exit frame.
  // stack_space - extra stack space, used for alignment before call to C.
  void EnterExitFrame(bool save_doubles, int stack_space = 0,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Leave the current exit frame. Expects the return value in r0.
  // Expect the number of values, pushed prior to the exit frame, to
  // remove in a register (or no_reg, if there is nothing to remove).
  void LeaveExitFrame(bool save_doubles, Register argument_count,
                      bool argument_count_is_length = false);

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst);

  void LoadNativeContextSlot(int index, Register dst);

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          const ParameterCount& expected,
                          const ParameterCount& actual, InvokeFlag flag);

  // On function call, call into the debugger if necessary.
  void CheckDebugHook(Register fun, Register new_target,
                      const ParameterCount& expected,
                      const ParameterCount& actual);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function, Register new_target,
                      const ParameterCount& actual, InvokeFlag flag);

  void InvokeFunction(Register function, const ParameterCount& expected,
                      const ParameterCount& actual, InvokeFlag flag);

  // Frame restart support
  void MaybeDropFrames();

  // Exception handling

  // Push a new stack handler and link into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  // Must preserve the result register.
  void PopStackHandler();

  // ---------------------------------------------------------------------------
  // Support functions.

  // Compare object type for heap object.  heap_object contains a non-Smi
  // whose object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  // It leaves the map in the map register (unless the type_reg and map register
  // are the same register).  It leaves the heap object in the heap_object
  // register unless the heap_object register is the same register as one of the
  // other registers.
  // Type_reg can be no_reg. In that case a scratch register is used.
  void CompareObjectType(Register heap_object, Register map, Register type_reg,
                         InstanceType type);

  // Compare instance type in a map.  map contains a valid map object whose
  // object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  void CompareInstanceType(Register map, Register type_reg, InstanceType type);

  // Compare the object in a register to a value from the root list.
  // Acquires a scratch register.
  void CompareRoot(Register obj, RootIndex index);
  void PushRoot(RootIndex index) {
    UseScratchRegisterScope temps(this);
    Register scratch = temps.Acquire();
    LoadRoot(scratch, index);
    Push(scratch);
  }

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
    CompareRoot(with, index);
    b(eq, if_equal);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
    CompareRoot(with, index);
    b(ne, if_not_equal);
  }

  // Checks if value is in range [lower_limit, higher_limit] using a single
  // comparison.
  void JumpIfIsInRange(Register value, unsigned lower_limit,
                       unsigned higher_limit, Label* on_in_range);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& builtin,
                               bool builtin_exit_frame = false);

  // Generates a trampoline to jump to the off-heap instruction stream.
  void JumpToInstructionStream(Address entry);

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register out, Register in, Label* target_if_cleared);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);

  // ---------------------------------------------------------------------------
  // Smi utilities

  void SmiTag(Register reg, SBit s = LeaveCC);
  void SmiTag(Register dst, Register src, SBit s = LeaveCC);

  // Test if the register contains a smi (Z == 0 (eq) if true).
  void SmiTst(Register value);
  // Jump if either of the registers contain a non-smi.
  void JumpIfNotSmi(Register value, Label* not_smi_label);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);
  void AssertSmi(Register object);

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object, Register scratch);

  template <typename Field>
  void DecodeField(Register dst, Register src) {
    Ubfx(dst, src, Field::kShift, Field::kSize);
  }

  template <typename Field>
  void DecodeField(Register reg) {
    DecodeField<Field>(reg, reg);
  }

 private:
  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual, Label* done,
                      bool* definitely_mismatches, InvokeFlag flag);

  // Compute memory operands for safepoint stack slots.
  static int SafepointRegisterStackIndex(int reg_code);

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class StandardFrame;

  DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};

// -----------------------------------------------------------------------------
// Static helper functions.

inline MemOperand ContextMemOperand(Register context, int index = 0) {
  return MemOperand(context, Context::SlotOffset(index));
}

inline MemOperand NativeContextMemOperand() {
  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
}

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_ARM_MACRO_ASSEMBLER_ARM_H_