summaryrefslogtreecommitdiff
path: root/deps/v8/src/code-stub-assembler.h
blob: 38fc9717de0542b9b94f4143c5a5e4e3e60f1dc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_CODE_STUB_ASSEMBLER_H_
#define V8_CODE_STUB_ASSEMBLER_H_

#include <functional>

#include "src/base/macros.h"
#include "src/compiler/code-assembler.h"
#include "src/globals.h"
#include "src/objects.h"
#include "src/objects/bigint.h"
#include "src/roots.h"

namespace v8 {
namespace internal {

class CallInterfaceDescriptor;
class CodeStubArguments;
class CodeStubAssembler;
class StatsCounter;
class StubCache;

enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };

#define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V)                              \
  V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \
  V(EmptyPropertyDictionary, empty_property_dictionary,                    \
    EmptyPropertyDictionary)                                               \
  V(PromiseSpeciesProtector, promise_species_protector,                    \
    PromiseSpeciesProtector)                                               \
  V(TypedArraySpeciesProtector, typed_array_species_protector,             \
    TypedArraySpeciesProtector)                                            \
  V(StoreHandler0Map, store_handler0_map, StoreHandler0Map)

#define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)                              \
  V(AccessorInfoMap, accessor_info_map, AccessorInfoMap)                     \
  V(AccessorPairMap, accessor_pair_map, AccessorPairMap)                     \
  V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap)   \
  V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map,  \
    AllocationSiteWithoutWeakNextMap)                                        \
  V(BooleanMap, boolean_map, BooleanMap)                                     \
  V(CodeMap, code_map, CodeMap)                                              \
  V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray)                     \
  V(EmptySlowElementDictionary, empty_slow_element_dictionary,               \
    EmptySlowElementDictionary)                                              \
  V(empty_string, empty_string, EmptyString)                                 \
  V(FalseValue, false_value, False)                                          \
  V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap)               \
  V(FixedArrayMap, fixed_array_map, FixedArrayMap)                           \
  V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap)                 \
  V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap)        \
  V(FunctionTemplateInfoMap, function_template_info_map,                     \
    FunctionTemplateInfoMap)                                                 \
  V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap)        \
  V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol)             \
  V(HeapNumberMap, heap_number_map, HeapNumberMap)                           \
  V(iterator_symbol, iterator_symbol, IteratorSymbol)                        \
  V(length_string, length_string, LengthString)                              \
  V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap)        \
  V(MetaMap, meta_map, MetaMap)                                              \
  V(MinusZeroValue, minus_zero_value, MinusZero)                             \
  V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap)     \
  V(NanValue, nan_value, Nan)                                                \
  V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap)              \
  V(NullValue, null_value, Null)                                             \
  V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap)              \
  V(PreParsedScopeDataMap, pre_parsed_scope_data_map, PreParsedScopeDataMap) \
  V(prototype_string, prototype_string, PrototypeString)                     \
  V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap)  \
  V(SymbolMap, symbol_map, SymbolMap)                                        \
  V(TheHoleValue, the_hole_value, TheHole)                                   \
  V(TransitionArrayMap, transition_array_map, TransitionArrayMap)            \
  V(TrueValue, true_value, True)                                             \
  V(Tuple2Map, tuple2_map, Tuple2Map)                                        \
  V(Tuple3Map, tuple3_map, Tuple3Map)                                        \
  V(ArrayBoilerplateDescriptionMap, array_boilerplate_description_map,       \
    ArrayBoilerplateDescriptionMap)                                          \
  V(UncompiledDataWithoutPreParsedScopeMap,                                  \
    uncompiled_data_without_pre_parsed_scope_map,                            \
    UncompiledDataWithoutPreParsedScopeMap)                                  \
  V(UncompiledDataWithPreParsedScopeMap,                                     \
    uncompiled_data_with_pre_parsed_scope_map,                               \
    UncompiledDataWithPreParsedScopeMap)                                     \
  V(UndefinedValue, undefined_value, Undefined)                              \
  V(WeakFixedArrayMap, weak_fixed_array_map, WeakFixedArrayMap)

#define HEAP_IMMOVABLE_OBJECT_LIST(V)   \
  HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
  HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)

// Returned from IteratorBuiltinsAssembler::GetIterator(). Struct is declared
// here to simplify use in other generated builtins.
struct IteratorRecord {
 public:
  // iteratorRecord.[[Iterator]]
  compiler::TNode<JSReceiver> object;

  // iteratorRecord.[[NextMethod]]
  compiler::TNode<Object> next;
};

#ifdef DEBUG
#define CSA_CHECK(csa, x)                                        \
  (csa)->Check(                                                  \
      [&]() -> compiler::Node* {                                 \
        return implicit_cast<compiler::SloppyTNode<Word32T>>(x); \
      },                                                         \
      #x, __FILE__, __LINE__)
#else
#define CSA_CHECK(csa, x) (csa)->FastCheck(x)
#endif

#ifdef DEBUG
// Add stringified versions to the given values, except the first. That is,
// transform
//   x, a, b, c, d, e, f
// to
//   a, "a", b, "b", c, "c", d, "d", e, "e", f, "f"
//
// __VA_ARGS__  is ignored to allow the caller to pass through too many
// parameters, and the first element is ignored to support having no extra
// values without empty __VA_ARGS__ (which cause all sorts of problems with
// extra commas).
#define CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(_, v1, v2, v3, v4, v5, ...) \
  v1, #v1, v2, #v2, v3, #v3, v4, #v4, v5, #v5

// Stringify the given variable number of arguments. The arguments are trimmed
// to 5 if there are too many, and padded with nullptr if there are not enough.
#define CSA_ASSERT_STRINGIFY_EXTRA_VALUES(...)                                \
  CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(__VA_ARGS__, nullptr, nullptr, nullptr, \
                                      nullptr, nullptr)

#define CSA_ASSERT_GET_FIRST(x, ...) (x)
#define CSA_ASSERT_GET_FIRST_STR(x, ...) #x

// CSA_ASSERT(csa, <condition>, <extra values to print...>)

// We have to jump through some hoops to allow <extra values to print...> to be
// empty.
#define CSA_ASSERT(csa, ...)                                             \
  (csa)->Assert(                                                         \
      [&]() -> compiler::Node* {                                         \
        return implicit_cast<compiler::SloppyTNode<Word32T>>(            \
            EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)));                  \
      },                                                                 \
      EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, __LINE__, \
      CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))

// CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
//     <extra values to print...>)

#define CSA_ASSERT_BRANCH(csa, ...)                                      \
  (csa)->Assert(EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)),               \
                EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, \
                __LINE__, CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))

#define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected)                       \
  (csa)->Assert(                                                           \
      [&]() -> compiler::Node* {                                           \
        compiler::Node* const argc =                                       \
            (csa)->Parameter(Descriptor::kJSActualArgumentsCount);         \
        return (csa)->Op(argc, (csa)->Int32Constant(expected));            \
      },                                                                   \
      "argc " #op " " #expected, __FILE__, __LINE__,                       \
      SmiFromInt32((csa)->Parameter(Descriptor::kJSActualArgumentsCount)), \
      "argc")

#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
  CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)

#define CSA_DEBUG_INFO(name) \
  { #name, __FILE__, __LINE__ }
#define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
#define VARIABLE(name, ...) \
  Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
#define VARIABLE_CONSTRUCTOR(name, ...) \
  name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
#define TYPED_VARIABLE_DEF(type, name, ...) \
  TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
#else  // DEBUG
#define CSA_ASSERT(csa, ...) ((void)0)
#define CSA_ASSERT_BRANCH(csa, ...) ((void)0)
#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
#define BIND(label) Bind(label)
#define VARIABLE(name, ...) Variable name(this, __VA_ARGS__)
#define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__)
#define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
#endif  // DEBUG

#define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))

#ifdef ENABLE_SLOW_DCHECKS
#define CSA_SLOW_ASSERT(csa, ...) \
  if (FLAG_enable_slow_asserts) { \
    CSA_ASSERT(csa, __VA_ARGS__); \
  }
#else
#define CSA_SLOW_ASSERT(csa, ...) ((void)0)
#endif

class int31_t {
 public:
  int31_t() : value_(0) {}
  int31_t(int value) : value_(value) {  // NOLINT(runtime/explicit)
    DCHECK_EQ((value & 0x80000000) != 0, (value & 0x40000000) != 0);
  }
  int31_t& operator=(int value) {
    DCHECK_EQ((value & 0x80000000) != 0, (value & 0x40000000) != 0);
    value_ = value;
    return *this;
  }
  int32_t value() const { return value_; }
  operator int32_t() const { return value_; }

 private:
  int32_t value_;
};

// Provides JavaScript-specific "macro-assembler" functionality on top of the
// CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
// it's possible to add JavaScript-specific useful CodeAssembler "macros"
// without modifying files in the compiler directory (and requiring a review
// from a compiler directory OWNER).
class V8_EXPORT_PRIVATE CodeStubAssembler : public compiler::CodeAssembler {
 public:
  using Node = compiler::Node;
  template <class T>
  using TNode = compiler::TNode<T>;
  template <class T>
  using SloppyTNode = compiler::SloppyTNode<T>;

  template <typename T>
  using LazyNode = std::function<TNode<T>()>;

  CodeStubAssembler(compiler::CodeAssemblerState* state);

  enum AllocationFlag : uint8_t {
    kNone = 0,
    kDoubleAlignment = 1,
    kPretenured = 1 << 1,
    kAllowLargeObjectAllocation = 1 << 2,
  };

  enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };

  typedef base::Flags<AllocationFlag> AllocationFlags;

  enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };

  // On 32-bit platforms, there is a slight performance advantage to doing all
  // of the array offset/index arithmetic with SMIs, since it's possible
  // to save a few tag/untag operations without paying an extra expense when
  // calculating array offset (the smi math can be folded away) and there are
  // fewer live ranges. Thus only convert indices to untagged value on 64-bit
  // platforms.
  ParameterMode OptimalParameterMode() const {
    return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
  }

  MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
    return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
                                     : MachineRepresentation::kTaggedSigned;
  }

  MachineRepresentation OptimalParameterRepresentation() const {
    return ParameterRepresentation(OptimalParameterMode());
  }

  TNode<IntPtrT> ParameterToIntPtr(Node* value, ParameterMode mode) {
    if (mode == SMI_PARAMETERS) value = SmiUntag(value);
    return UncheckedCast<IntPtrT>(value);
  }

  Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) {
    if (mode == SMI_PARAMETERS) return SmiTag(value);
    return value;
  }

  Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) {
    return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode);
  }

  TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) {
    if (mode != SMI_PARAMETERS) return SmiTag(value);
    return UncheckedCast<Smi>(value);
  }

  Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) {
    if (mode != SMI_PARAMETERS) return SmiUntag(value);
    return value;
  }

  TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) {
    GotoIf(TaggedIsNotSmi(value), fail);
    return UncheckedCast<Smi>(value);
  }

  TNode<Number> TaggedToNumber(TNode<Object> value, Label* fail) {
    GotoIfNot(IsNumber(value), fail);
    return UncheckedCast<Number>(value);
  }

  TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) {
    GotoIf(TaggedIsSmi(value), fail);
    return UncheckedCast<HeapObject>(value);
  }

  TNode<JSArray> HeapObjectToJSArray(TNode<HeapObject> heap_object,
                                     Label* fail) {
    GotoIfNot(IsJSArray(heap_object), fail);
    return UncheckedCast<JSArray>(heap_object);
  }

  TNode<JSArray> TaggedToFastJSArray(TNode<Context> context,
                                     TNode<Object> value, Label* fail) {
    GotoIf(TaggedIsSmi(value), fail);
    TNode<HeapObject> heap_object = CAST(value);
    GotoIfNot(IsFastJSArray(heap_object, context), fail);
    return UncheckedCast<JSArray>(heap_object);
  }

  TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object,
                                           Label* fail) {
    GotoIfNot(IsJSDataView(heap_object), fail);
    return CAST(heap_object);
  }

  TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object,
                                         Label* fail) {
    GotoIfNot(IsCallable(heap_object), fail);
    return CAST(heap_object);
  }

  TNode<HeapNumber> UnsafeCastNumberToHeapNumber(TNode<Number> p_n) {
    return CAST(p_n);
  }

  TNode<FixedArrayBase> UnsafeCastObjectToFixedArrayBase(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<FixedArray> UnsafeCastObjectToFixedArray(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<FixedDoubleArray> UnsafeCastObjectToFixedDoubleArray(
      TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<HeapNumber> UnsafeCastObjectToHeapNumber(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<HeapObject> UnsafeCastObjectToCallable(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<Smi> UnsafeCastObjectToSmi(TNode<Object> p_o) { return CAST(p_o); }

  TNode<Number> UnsafeCastObjectToNumber(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<HeapObject> UnsafeCastObjectToHeapObject(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<JSArray> UnsafeCastObjectToJSArray(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<FixedTypedArrayBase> UnsafeCastObjectToFixedTypedArrayBase(
      TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<Object> UnsafeCastObjectToCompareBuiltinFn(TNode<Object> p_o) {
    return p_o;
  }

  TNode<Object> UnsafeCastObjectToLoadFn(TNode<Object> p_o) { return p_o; }
  TNode<Object> UnsafeCastObjectToStoreFn(TNode<Object> p_o) { return p_o; }
  TNode<Object> UnsafeCastObjectToCanUseSameAccessorFn(TNode<Object> p_o) {
    return p_o;
  }

  TNode<NumberDictionary> UnsafeCastObjectToNumberDictionary(
      TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<JSReceiver> UnsafeCastObjectToJSReceiver(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<JSObject> UnsafeCastObjectToJSObject(TNode<Object> p_o) {
    return CAST(p_o);
  }

  TNode<Map> UnsafeCastObjectToMap(TNode<Object> p_o) { return CAST(p_o); }

  Node* MatchesParameterMode(Node* value, ParameterMode mode);

#define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
  Node* OpName(Node* a, Node* b, ParameterMode mode) {   \
    if (mode == SMI_PARAMETERS) {                        \
      return SmiOpName(CAST(a), CAST(b));                \
    } else {                                             \
      DCHECK_EQ(INTPTR_PARAMETERS, mode);                \
      return IntPtrOpName(a, b);                         \
    }                                                    \
  }
  PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
  PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
  PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
  PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
  PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
                  SmiLessThanOrEqual)
  PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
  PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
                  SmiGreaterThanOrEqual)
  PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
  PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
                  SmiAboveOrEqual)
#undef PARAMETER_BINOP

  TNode<Object> NoContextConstant();

#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
  compiler::TNode<std::remove_reference<decltype(                     \
      *std::declval<ReadOnlyRoots>().rootAccessorName())>::type>      \
      name##Constant();
  HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR

#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
  compiler::TNode<std::remove_reference<decltype(                     \
      *std::declval<Heap>().rootAccessorName())>::type>               \
      name##Constant();
  HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR

#define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
  TNode<BoolT> Is##name(SloppyTNode<Object> value);               \
  TNode<BoolT> IsNot##name(SloppyTNode<Object> value);
  HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
#undef HEAP_CONSTANT_TEST

  Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
  TNode<Smi> LanguageModeConstant(LanguageMode mode) {
    return SmiConstant(static_cast<int>(mode));
  }

  bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode);
  bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value,
                                      ParameterMode mode);

  // Round the 32bits payload of the provided word up to the next power of two.
  TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value);
  // Select the maximum of the two provided IntPtr values.
  TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left,
                           SloppyTNode<IntPtrT> right);
  // Select the minimum of the two provided IntPtr values.
  TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left,
                           SloppyTNode<IntPtrT> right);

  // Float64 operations.
  TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x);
  TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x);
  TNode<Float64T> Float64Round(SloppyTNode<Float64T> x);
  TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x);
  TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x);
  // Select the minimum of the two provided Number values.
  TNode<Object> NumberMax(SloppyTNode<Object> left, SloppyTNode<Object> right);
  // Select the minimum of the two provided Number values.
  TNode<Object> NumberMin(SloppyTNode<Object> left, SloppyTNode<Object> right);

  // After converting an index to an integer, calculate a relative index: if
  // index < 0, max(length + index, 0); else min(index, length)
  TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context,
                                        TNode<Object> index,
                                        TNode<IntPtrT> length);

  // Returns true iff the given value fits into smi range and is >= 0.
  TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value);

  // Tag an IntPtr as a Smi value.
  TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value);
  // Untag a Smi value as an IntPtr.
  TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value);

  // Smi conversions.
  TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value);
  TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); }
  TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value);
  TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); }
  TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value);

  // Smi operations.
#define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName)       \
  TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) {                     \
    if (SmiValuesAre32Bits()) {                                          \
      return BitcastWordToTaggedSigned(                                  \
          IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
    } else {                                                             \
      DCHECK(SmiValuesAre31Bits());                                      \
      if (kPointerSize == kInt64Size) {                                  \
        CSA_ASSERT(this, IsValidSmi(a));                                 \
        CSA_ASSERT(this, IsValidSmi(b));                                 \
      }                                                                  \
      return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(              \
          Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)),     \
                      TruncateIntPtrToInt32(BitcastTaggedToWord(b)))));  \
    }                                                                    \
  }
  SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add)
  SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub)
  SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And)
  SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or)
#undef SMI_ARITHMETIC_BINOP
  TNode<Smi> SmiInc(TNode<Smi> value) { return SmiAdd(value, SmiConstant(1)); }

  TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
  TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);

  TNode<Smi> SmiShl(TNode<Smi> a, int shift) {
    return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
  }

  TNode<Smi> SmiShr(TNode<Smi> a, int shift) {
    return BitcastWordToTaggedSigned(
        WordAnd(WordShr(BitcastTaggedToWord(a), shift),
                BitcastTaggedToWord(SmiConstant(-1))));
  }

  Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
    if (mode == SMI_PARAMETERS) {
      return SmiShl(CAST(a), shift);
    } else {
      DCHECK_EQ(INTPTR_PARAMETERS, mode);
      return WordShl(a, shift);
    }
  }

  Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
    if (mode == SMI_PARAMETERS) {
      return SmiShr(CAST(a), shift);
    } else {
      DCHECK_EQ(INTPTR_PARAMETERS, mode);
      return WordShr(a, shift);
    }
  }

#define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName)            \
  TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) {                     \
    if (SmiValuesAre32Bits()) {                                            \
      return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
    } else {                                                               \
      DCHECK(SmiValuesAre31Bits());                                        \
      if (kPointerSize == kInt64Size) {                                    \
        CSA_ASSERT(this, IsValidSmi(a));                                   \
        CSA_ASSERT(this, IsValidSmi(b));                                   \
      }                                                                    \
      return Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)),    \
                         TruncateIntPtrToInt32(BitcastTaggedToWord(b)));   \
    }                                                                      \
  }
  SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal)
  SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual)
  SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan)
  SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual,
                    Uint32GreaterThanOrEqual)
  SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan)
  SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan)
  SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual,
                    Int32LessThanOrEqual)
  SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan)
  SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
                    Int32GreaterThanOrEqual)
#undef SMI_COMPARISON_OP
  TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b);
  TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b);
  // Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
  TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b);
  // Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
  TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b);
  // Tries to compute dividend / divisor for Smi inputs; branching to bailout
  // if the division needs to be performed as a floating point operation.
  TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout);

  // Smi | HeapNumber operations.
  TNode<Number> NumberInc(SloppyTNode<Number> value);
  TNode<Number> NumberDec(SloppyTNode<Number> value);
  TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
  TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
  void GotoIfNotNumber(Node* value, Label* is_not_number);
  void GotoIfNumber(Node* value, Label* is_number);
  TNode<Number> SmiToNumber(TNode<Smi> v) { return v; }

  TNode<Number> BitwiseOp(Node* left32, Node* right32, Operation bitwise_op);

  // Allocate an object of the given size.
  Node* AllocateInNewSpace(Node* size, AllocationFlags flags = kNone);
  Node* AllocateInNewSpace(int size, AllocationFlags flags = kNone);
  Node* Allocate(Node* size, AllocationFlags flags = kNone);
  Node* Allocate(int size, AllocationFlags flags = kNone);
  Node* InnerAllocate(Node* previous, int offset);
  Node* InnerAllocate(Node* previous, Node* offset);
  Node* IsRegularHeapObjectSize(Node* size);

  typedef std::function<void(Label*, Label*)> BranchGenerator;
  typedef std::function<Node*()> NodeGenerator;

  void Assert(const BranchGenerator& branch, const char* message = nullptr,
              const char* file = nullptr, int line = 0,
              Node* extra_node1 = nullptr, const char* extra_node1_name = "",
              Node* extra_node2 = nullptr, const char* extra_node2_name = "",
              Node* extra_node3 = nullptr, const char* extra_node3_name = "",
              Node* extra_node4 = nullptr, const char* extra_node4_name = "",
              Node* extra_node5 = nullptr, const char* extra_node5_name = "");
  void Assert(const NodeGenerator& condition_body,
              const char* message = nullptr, const char* file = nullptr,
              int line = 0, Node* extra_node1 = nullptr,
              const char* extra_node1_name = "", Node* extra_node2 = nullptr,
              const char* extra_node2_name = "", Node* extra_node3 = nullptr,
              const char* extra_node3_name = "", Node* extra_node4 = nullptr,
              const char* extra_node4_name = "", Node* extra_node5 = nullptr,
              const char* extra_node5_name = "");
  void Check(const BranchGenerator& branch, const char* message = nullptr,
             const char* file = nullptr, int line = 0,
             Node* extra_node1 = nullptr, const char* extra_node1_name = "",
             Node* extra_node2 = nullptr, const char* extra_node2_name = "",
             Node* extra_node3 = nullptr, const char* extra_node3_name = "",
             Node* extra_node4 = nullptr, const char* extra_node4_name = "",
             Node* extra_node5 = nullptr, const char* extra_node5_name = "");
  void Check(const NodeGenerator& condition_body, const char* message = nullptr,
             const char* file = nullptr, int line = 0,
             Node* extra_node1 = nullptr, const char* extra_node1_name = "",
             Node* extra_node2 = nullptr, const char* extra_node2_name = "",
             Node* extra_node3 = nullptr, const char* extra_node3_name = "",
             Node* extra_node4 = nullptr, const char* extra_node4_name = "",
             Node* extra_node5 = nullptr, const char* extra_node5_name = "");
  void FastCheck(TNode<BoolT> condition);

  // The following Call wrappers call an object according to the semantics that
  // one finds in the EcmaScript spec, operating on an Callable (e.g. a
  // JSFunction or proxy) rather than a Code object.
  template <class... TArgs>
  TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
                     TNode<JSReceiver> receiver, TArgs... args) {
    return UncheckedCast<Object>(CallJS(
        CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
        context, callable, receiver, args...));
  }
  template <class... TArgs>
  TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
                     TNode<Object> receiver, TArgs... args) {
    if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) {
      return UncheckedCast<Object>(CallJS(
          CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined),
          context, callable, receiver, args...));
    }
    return UncheckedCast<Object>(CallJS(CodeFactory::Call(isolate()), context,
                                        callable, receiver, args...));
  }

  template <class A, class F, class G>
  TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body,
                  const G& false_body) {
    return UncheckedCast<A>(SelectImpl(
        condition,
        [&]() -> Node* { return implicit_cast<TNode<A>>(true_body()); },
        [&]() -> Node* { return implicit_cast<TNode<A>>(false_body()); },
        MachineRepresentationOf<A>::value));
  }

  template <class A>
  TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
                          TNode<A> false_value) {
    return Select<A>(condition, [=] { return true_value; },
                     [=] { return false_value; });
  }

  TNode<Int32T> SelectInt32Constant(SloppyTNode<BoolT> condition,
                                    int true_value, int false_value);
  TNode<IntPtrT> SelectIntPtrConstant(SloppyTNode<BoolT> condition,
                                      int true_value, int false_value);
  TNode<Oddball> SelectBooleanConstant(SloppyTNode<BoolT> condition);
  TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi* true_value,
                               Smi* false_value);
  TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
                               Smi* false_value) {
    return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
  }
  TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi* true_value,
                               int false_value) {
    return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
  }
  TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
                               int false_value) {
    return SelectSmiConstant(condition, Smi::FromInt(true_value),
                             Smi::FromInt(false_value));
  }

  TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value);

  // Check a value for smi-ness
  TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a);
  TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a);
  TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a);
  // Check that the value is a non-negative smi.
  TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a);
  // Check that a word has a word-aligned address.
  TNode<BoolT> WordIsWordAligned(SloppyTNode<WordT> word);
  TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value);

#if DEBUG
  void Bind(Label* label, AssemblerDebugInfo debug_info);
#else
  void Bind(Label* label);
#endif  // DEBUG

  void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
                        Label* if_false) {
    Branch(SmiEqual(a, b), if_true, if_false);
  }

  void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true,
                           Label* if_false) {
    Branch(SmiLessThan(a, b), if_true, if_false);
  }

  void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
                                  Label* if_false) {
    Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
  }

  void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
    Branch(Float64Equal(value, value), if_false, if_true);
  }

  // Branches to {if_true} if ToBoolean applied to {value} yields true,
  // otherwise goes to {if_false}.
  void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);

  void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);

  void BranchIfFastJSArray(Node* object, Node* context, Label* if_true,
                           Label* if_false, bool iteration_only = false);
  void BranchIfNotFastJSArray(Node* object, Node* context, Label* if_true,
                              Label* if_false) {
    BranchIfFastJSArray(object, context, if_false, if_true);
  }
  void BranchIfFastJSArrayForCopy(Node* object, Node* context, Label* if_true,
                                  Label* if_false);

  // Branches to {if_true} when --force-slow-path flag has been passed.
  // It's used for testing to ensure that slow path implementation behave
  // equivalent to corresponding fast paths (where applicable).
  //
  // Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
  void GotoIfForceSlowPath(Label* if_true);

  // Load value from current frame by given offset in bytes.
  Node* LoadFromFrame(int offset, MachineType rep = MachineType::AnyTagged());
  // Load value from current parent frame by given offset in bytes.
  Node* LoadFromParentFrame(int offset,
                            MachineType rep = MachineType::AnyTagged());

  // Load target function from the current JS frame.
  // This is an alternative way of getting the target function in addition to
  // Parameter(Descriptor::kJSTarget). The latter should be used near the
  // beginning of builtin code while the target value is still in the register
  // and the former should be used in slow paths in order to reduce register
  // pressure on the fast path.
  TNode<JSFunction> LoadTargetFromFrame();

  // Load an object pointer from a buffer that isn't in the heap.
  Node* LoadBufferObject(Node* buffer, int offset,
                         MachineType rep = MachineType::AnyTagged());
  // Load a field from an object on the heap.
  Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset,
                        MachineType rep);
  template <class T, typename std::enable_if<
                         std::is_convertible<TNode<T>, TNode<Object>>::value,
                         int>::type = 0>
  TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
    return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value));
  }
  template <class T, typename std::enable_if<
                         std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
                         int>::type = 0>
  TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
    return UncheckedCast<T>(
        LoadObjectField(object, offset, MachineTypeOf<T>::value));
  }
  TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) {
    return UncheckedCast<Object>(
        LoadObjectField(object, offset, MachineType::AnyTagged()));
  }
  Node* LoadObjectField(SloppyTNode<HeapObject> object,
                        SloppyTNode<IntPtrT> offset, MachineType rep);
  TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object,
                                SloppyTNode<IntPtrT> offset) {
    return UncheckedCast<Object>(
        LoadObjectField(object, offset, MachineType::AnyTagged()));
  }
  // Load a SMI field and untag it.
  TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object,
                                         int offset);
  // Load a SMI field, untag it, and convert to Word32.
  TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset);
  // Load a SMI and untag it.
  TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index);
  // Load a SMI root, untag it, and convert to Word32.
  TNode<Int32T> LoadAndUntagToWord32Root(Heap::RootListIndex root_index);

  TNode<MaybeObject> LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object,
                                              int offset) {
    return UncheckedCast<MaybeObject>(
        LoadObjectField(object, offset, MachineType::AnyTagged()));
  }

  // Tag a smi and store it.
  Node* StoreAndTagSmi(Node* base, int offset, Node* value);

  // Load the floating point value of a HeapNumber.
  TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object);
  // Load the Map of an HeapObject.
  TNode<Map> LoadMap(SloppyTNode<HeapObject> object);
  // Load the instance type of an HeapObject.
  TNode<Int32T> LoadInstanceType(SloppyTNode<HeapObject> object);
  // Compare the instance the type of the object against the provided one.
  TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object,
                               InstanceType type);
  TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object,
                                      InstanceType type);
  TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged,
                                            InstanceType type);
  // Load the properties backing store of a JSObject.
  TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object);
  TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object);
  // Load the elements backing store of a JSObject.
  TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object);
  // Load the length of a JSArray instance.
  TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array);
  // Load the length of a fast JSArray instance. Returns a positive Smi.
  TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array);
  // Load the length of a fixed array base instance.
  TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array);
  // Load the length of a fixed array base instance.
  TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(
      SloppyTNode<FixedArrayBase> array);
  // Load the length of a WeakFixedArray.
  TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array);
  TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(
      SloppyTNode<WeakFixedArray> array);
  // Load the length of a JSTypedArray instance.
  TNode<Smi> LoadTypedArrayLength(TNode<JSTypedArray> typed_array);
  // Load the bit field of a Map.
  TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map);
  // Load bit field 2 of a map.
  TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map);
  // Load bit field 3 of a map.
  TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map);
  // Load the instance type of a map.
  TNode<Int32T> LoadMapInstanceType(SloppyTNode<Map> map);
  // Load the ElementsKind of a map.
  TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map);
  TNode<Int32T> LoadElementsKind(SloppyTNode<HeapObject> map);
  // Load the instance descriptors of a map.
  TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map);
  // Load the prototype of a map.
  TNode<HeapObject> LoadMapPrototype(SloppyTNode<Map> map);
  // Load the prototype info of a map. The result has to be checked if it is a
  // prototype info object or not.
  TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map,
                                            Label* if_has_no_proto_info);
  // Load the instance size of a Map.
  TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map);
  // Load the inobject properties start of a Map (valid only for JSObjects).
  TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map);
  // Load the constructor function index of a Map (only for primitive maps).
  TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map);
  // Load the constructor of a Map (equivalent to Map::GetConstructor()).
  TNode<Object> LoadMapConstructor(SloppyTNode<Map> map);
  // Load the EnumLength of a Map.
  Node* LoadMapEnumLength(SloppyTNode<Map> map);
  // Load the back-pointer of a Map.
  TNode<Object> LoadMapBackPointer(SloppyTNode<Map> map);
  // Load the identity hash of a JSRececiver.
  TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver,
                                            Label* if_no_hash = nullptr);

  // This is only used on a newly allocated PropertyArray which
  // doesn't have an existing hash.
  void InitializePropertyArrayLength(Node* property_array, Node* length,
                                     ParameterMode mode);

  // Check if the map is set for slow properties.
  TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map);

  // Load the hash field of a name as an uint32 value.
  TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name);
  // Load the hash value of a name as an uint32 value.
  // If {if_hash_not_computed} label is specified then it also checks if
  // hash is actually computed.
  TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name,
                              Label* if_hash_not_computed = nullptr);

  // Load length field of a String object as intptr_t value.
  TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> object);
  // Load length field of a String object as Smi value.
  TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> object);
  // Loads a pointer to the sequential String char array.
  Node* PointerToSeqStringData(Node* seq_string);
  // Load value field of a JSValue object.
  Node* LoadJSValueValue(Node* object);

  // Figures out whether the value of maybe_object is:
  // - a SMI (jump to "if_smi", "extracted" will be the SMI value)
  // - a cleared weak reference (jump to "if_cleared", "extracted" will be
  // untouched)
  // - a weak reference (jump to "if_weak", "extracted" will be the object
  // pointed to)
  // - a strong reference (jump to "if_strong", "extracted" will be the object
  // pointed to)
  void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi,
                           Label* if_cleared, Label* if_weak, Label* if_strong,
                           TVariable<Object>* extracted);
  // See MaybeObject for semantics of these functions.
  TNode<BoolT> IsStrongHeapObject(TNode<MaybeObject> value);
  // This variant is for overzealous checking.
  TNode<BoolT> IsStrongHeapObject(TNode<Object> value) {
    return IsStrongHeapObject(ReinterpretCast<MaybeObject>(value));
  }
  TNode<HeapObject> ToStrongHeapObject(TNode<MaybeObject> value,
                                       Label* if_not_strong);

  TNode<BoolT> IsWeakOrClearedHeapObject(TNode<MaybeObject> value);
  TNode<BoolT> IsClearedWeakHeapObject(TNode<MaybeObject> value);
  TNode<BoolT> IsNotClearedWeakHeapObject(TNode<MaybeObject> value);

  // Removes the weak bit + asserts it was set.
  TNode<HeapObject> ToWeakHeapObject(TNode<MaybeObject> value);

  TNode<HeapObject> ToWeakHeapObject(TNode<MaybeObject> value,
                                     Label* if_cleared);

  TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> object,
                                 TNode<Object> value);
  TNode<BoolT> IsNotWeakReferenceTo(TNode<MaybeObject> object,
                                    TNode<Object> value);
  TNode<BoolT> IsStrongReferenceTo(TNode<MaybeObject> object,
                                   TNode<Object> value);

  TNode<MaybeObject> MakeWeak(TNode<HeapObject> value);

  void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index,
                             int additional_offset = 0,
                             ParameterMode parameter_mode = INTPTR_PARAMETERS);

  // Load an array element from a FixedArray / WeakFixedArray / PropertyArray.
  TNode<MaybeObject> LoadArrayElement(
      SloppyTNode<HeapObject> object, int array_header_size, Node* index,
      int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS,
      LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);

  // Load an array element from a FixedArray.
  TNode<Object> LoadFixedArrayElement(
      TNode<FixedArray> object, Node* index, int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS,
      LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);

  TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
                                      TNode<IntPtrT> index,
                                      LoadSensitivity needs_poisoning) {
    return LoadFixedArrayElement(object, index, 0, INTPTR_PARAMETERS,
                                 needs_poisoning);
  }

  TNode<Object> LoadFixedArrayElement(
      TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0,
      LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
    return LoadFixedArrayElement(object, index, additional_offset,
                                 INTPTR_PARAMETERS, needs_poisoning);
  }

  TNode<Object> LoadFixedArrayElement(
      TNode<FixedArray> object, int index, int additional_offset = 0,
      LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
    return LoadFixedArrayElement(object, IntPtrConstant(index),
                                 additional_offset, INTPTR_PARAMETERS,
                                 needs_poisoning);
  }
  TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
                                      TNode<Smi> index) {
    return LoadFixedArrayElement(object, index, 0, SMI_PARAMETERS);
  }

  TNode<Object> LoadPropertyArrayElement(SloppyTNode<PropertyArray> object,
                                         SloppyTNode<IntPtrT> index);
  TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object);

  // Load an array element from a FixedArray / WeakFixedArray, untag it and
  // return it as Word32.
  TNode<Int32T> LoadAndUntagToWord32ArrayElement(
      SloppyTNode<HeapObject> object, int array_header_size, Node* index,
      int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  // Load an array element from a FixedArray, untag it and return it as Word32.
  TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
      SloppyTNode<HeapObject> object, Node* index, int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
      SloppyTNode<HeapObject> object, int index, int additional_offset = 0) {
    return LoadAndUntagToWord32FixedArrayElement(
        object, IntPtrConstant(index), additional_offset, INTPTR_PARAMETERS);
  }

  // Load an array element from a WeakFixedArray.
  TNode<MaybeObject> LoadWeakFixedArrayElement(
      TNode<WeakFixedArray> object, Node* index, int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS,
      LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);

  TNode<MaybeObject> LoadWeakFixedArrayElement(
      TNode<WeakFixedArray> object, int index, int additional_offset = 0,
      LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
    return LoadWeakFixedArrayElement(object, IntPtrConstant(index),
                                     additional_offset, INTPTR_PARAMETERS,
                                     needs_poisoning);
  }

  // Load an array element from a FixedDoubleArray.
  TNode<Float64T> LoadFixedDoubleArrayElement(
      SloppyTNode<FixedDoubleArray> object, Node* index,
      MachineType machine_type, int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS,
      Label* if_hole = nullptr);

  Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
                                    TNode<Smi> index) {
    return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
                                       SMI_PARAMETERS);
  }

  // Load an array element from a FixedArray, FixedDoubleArray or a
  // NumberDictionary (depending on the |elements_kind|) and return
  // it as a tagged value. Assumes that the |index| passed a length
  // check before. Bails out to |if_accessor| if the element that
  // was found is an accessor, or to |if_hole| if the element at
  // the given |index| is not found in |elements|.
  TNode<Object> LoadFixedArrayBaseElementAsTagged(
      TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
      TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole);

  // Load a feedback slot from a FeedbackVector.
  TNode<MaybeObject> LoadFeedbackVectorSlot(
      Node* object, Node* index, int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>);
  TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
                                          TNode<Smi> index,
                                          Label* if_hole = nullptr);

  // Load Float64 value by |base| + |offset| address. If the value is a double
  // hole then jump to |if_hole|. If |machine_type| is None then only the hole
  // check is generated.
  TNode<Float64T> LoadDoubleWithHoleCheck(
      SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
      MachineType machine_type = MachineType::Float64());
  TNode<RawPtrT> LoadFixedTypedArrayBackingStore(
      TNode<FixedTypedArrayBase> typed_array);
  Node* LoadFixedTypedArrayElementAsTagged(
      Node* data_pointer, Node* index_node, ElementsKind elements_kind,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);
  TNode<Numeric> LoadFixedTypedArrayElementAsTagged(
      TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind);
  // Parts of the above, factored out for readability:
  Node* LoadFixedBigInt64ArrayElementAsTagged(Node* data_pointer, Node* offset);
  Node* LoadFixedBigUint64ArrayElementAsTagged(Node* data_pointer,
                                               Node* offset);

  void StoreFixedTypedArrayElementFromTagged(
      TNode<Context> context, TNode<FixedTypedArrayBase> elements,
      TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
      ParameterMode parameter_mode);

  // Context manipulation
  TNode<Object> LoadContextElement(SloppyTNode<Context> context,
                                   int slot_index);
  TNode<Object> LoadContextElement(SloppyTNode<Context> context,
                                   SloppyTNode<IntPtrT> slot_index);
  void StoreContextElement(SloppyTNode<Context> context, int slot_index,
                           SloppyTNode<Object> value);
  void StoreContextElement(SloppyTNode<Context> context,
                           SloppyTNode<IntPtrT> slot_index,
                           SloppyTNode<Object> value);
  void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context,
                                         int slot_index,
                                         SloppyTNode<Object> value);
  TNode<Context> LoadNativeContext(SloppyTNode<Context> context);
  // Calling this is only valid if there's a module context in the chain.
  TNode<Context> LoadModuleContext(SloppyTNode<Context> context);

  void GotoIfContextElementEqual(Node* value, Node* native_context,
                                 int slot_index, Label* if_equal) {
    GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)),
           if_equal);
  }

  TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
                                    SloppyTNode<Context> native_context);
  TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind,
                                    SloppyTNode<Context> native_context);

  TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function);
  TNode<BoolT> HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map);
  void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function,
                                            TNode<Map> map, Label* runtime);
  // Load the "prototype" property of a JSFunction.
  Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout);

  Node* LoadSharedFunctionInfoBytecodeArray(Node* shared);

  void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset,
                                     TNode<Word32T> value);

  // Store the floating point value of a HeapNumber.
  void StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
                            SloppyTNode<Float64T> value);
  void StoreMutableHeapNumberValue(SloppyTNode<MutableHeapNumber> object,
                                   SloppyTNode<Float64T> value);
  // Store a field to an object on the heap.
  Node* StoreObjectField(Node* object, int offset, Node* value);
  Node* StoreObjectField(Node* object, Node* offset, Node* value);
  Node* StoreObjectFieldNoWriteBarrier(
      Node* object, int offset, Node* value,
      MachineRepresentation rep = MachineRepresentation::kTagged);
  Node* StoreObjectFieldNoWriteBarrier(
      Node* object, Node* offset, Node* value,
      MachineRepresentation rep = MachineRepresentation::kTagged);
  // Store the Map of an HeapObject.
  Node* StoreMap(Node* object, Node* map);
  Node* StoreMapNoWriteBarrier(Node* object,
                               Heap::RootListIndex map_root_index);
  Node* StoreMapNoWriteBarrier(Node* object, Node* map);
  Node* StoreObjectFieldRoot(Node* object, int offset,
                             Heap::RootListIndex root);
  // Store an array element to a FixedArray.
  void StoreFixedArrayElement(
      TNode<FixedArray> object, int index, SloppyTNode<Object> value,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
    return StoreFixedArrayElement(object, IntPtrConstant(index), value,
                                  barrier_mode);
  }

  Node* StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length);
  Node* StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements);

  void StoreFixedArrayOrPropertyArrayElement(
      Node* array, Node* index, Node* value,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  void StoreFixedArrayElement(
      TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS) {
    FixedArrayBoundsCheck(array, index, additional_offset, parameter_mode);
    StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
                                          additional_offset, parameter_mode);
  }

  void StorePropertyArrayElement(
      TNode<PropertyArray> array, Node* index, SloppyTNode<Object> value,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS) {
    StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
                                          additional_offset, parameter_mode);
  }

  void StoreFixedArrayElementSmi(
      TNode<FixedArray> array, TNode<Smi> index, TNode<Object> value,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
    StoreFixedArrayElement(array, index, value, barrier_mode, 0,
                           SMI_PARAMETERS);
  }

  void StoreFixedDoubleArrayElement(
      TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  Node* StoreFeedbackVectorSlot(
      Node* object, Node* index, Node* value,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  void EnsureArrayLengthWritable(TNode<Map> map, Label* bailout);

  // EnsureArrayPushable verifies that receiver with this map is:
  //   1. Is not a prototype.
  //   2. Is not a dictionary.
  //   3. Has a writeable length property.
  // It returns ElementsKind as a node for further division into cases.
  TNode<Int32T> EnsureArrayPushable(TNode<Map> map, Label* bailout);

  void TryStoreArrayElement(ElementsKind kind, ParameterMode mode,
                            Label* bailout, Node* elements, Node* index,
                            Node* value);
  // Consumes args into the array, and returns tagged new length.
  TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array,
                                CodeStubArguments* args,
                                TVariable<IntPtrT>* arg_index, Label* bailout);
  // Pushes value onto the end of array.
  void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value,
                          Label* bailout);

  void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
                                 Node* value);

  Node* AllocateCellWithValue(Node* value,
                              WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
  Node* AllocateSmiCell(int value = 0) {
    return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
  }

  Node* LoadCellValue(Node* cell);

  Node* StoreCellValue(Node* cell, Node* value,
                       WriteBarrierMode mode = UPDATE_WRITE_BARRIER);

  // Allocate a HeapNumber without initializing its value.
  TNode<HeapNumber> AllocateHeapNumber();
  // Allocate a HeapNumber with a specific value.
  TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value);
  TNode<HeapNumber> AllocateHeapNumberWithValue(double value) {
    return AllocateHeapNumberWithValue(Float64Constant(value));
  }

  // Allocate a MutableHeapNumber with a specific value.
  TNode<MutableHeapNumber> AllocateMutableHeapNumberWithValue(
      SloppyTNode<Float64T> value);

  // Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
  // Does not initialize the digits.
  TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
  // Like above, but allowing custom bitfield initialization.
  TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
  void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<WordT> bitfield);
  void StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
                        TNode<UintPtrT> digit);
  TNode<WordT> LoadBigIntBitfield(TNode<BigInt> bigint);
  TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, int digit_index);

  // Allocate a SeqOneByteString with the given length.
  TNode<String> AllocateSeqOneByteString(int length,
                                         AllocationFlags flags = kNone);
  TNode<String> AllocateSeqOneByteString(Node* context, TNode<Smi> length,
                                         AllocationFlags flags = kNone);
  // Allocate a SeqTwoByteString with the given length.
  TNode<String> AllocateSeqTwoByteString(int length,
                                         AllocationFlags flags = kNone);
  TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Smi> length,
                                         AllocationFlags flags = kNone);

  // Allocate a SlicedOneByteString with the given length, parent and offset.
  // |length| and |offset| are expected to be tagged.

  TNode<String> AllocateSlicedOneByteString(TNode<Smi> length,
                                            TNode<String> parent,
                                            TNode<Smi> offset);
  // Allocate a SlicedTwoByteString with the given length, parent and offset.
  // |length| and |offset| are expected to be tagged.
  TNode<String> AllocateSlicedTwoByteString(TNode<Smi> length,
                                            TNode<String> parent,
                                            TNode<Smi> offset);

  // Allocate a one-byte ConsString with the given length, first and second
  // parts. |length| is expected to be tagged, and |first| and |second| are
  // expected to be one-byte strings.
  TNode<String> AllocateOneByteConsString(TNode<Smi> length,
                                          TNode<String> first,
                                          TNode<String> second,
                                          AllocationFlags flags = kNone);
  // Allocate a two-byte ConsString with the given length, first and second
  // parts. |length| is expected to be tagged, and |first| and |second| are
  // expected to be two-byte strings.
  TNode<String> AllocateTwoByteConsString(TNode<Smi> length,
                                          TNode<String> first,
                                          TNode<String> second,
                                          AllocationFlags flags = kNone);

  // Allocate an appropriate one- or two-byte ConsString with the first and
  // second parts specified by |left| and |right|.
  TNode<String> NewConsString(Node* context, TNode<Smi> length,
                              TNode<String> left, TNode<String> right,
                              AllocationFlags flags = kNone);

  TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for);
  TNode<NameDictionary> AllocateNameDictionary(
      TNode<IntPtrT> at_least_space_for);
  TNode<NameDictionary> AllocateNameDictionaryWithCapacity(
      TNode<IntPtrT> capacity);
  TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary,
                                           Label* large_object_fallback);

  template <typename CollectionType>
  Node* AllocateOrderedHashTable();

  // Builds code that finds OrderedHashTable entry for a key with hash code
  // {hash} with using the comparison code generated by {key_compare}. The code
  // jumps to {entry_found} if the key is found, or to {not_found} if the key
  // was not found. In the {entry_found} branch, the variable
  // entry_start_position will be bound to the index of the entry (relative to
  // OrderedHashTable::kHashTableStartIndex).
  //
  // The {CollectionType} template parameter stands for the particular instance
  // of OrderedHashTable, it should be OrderedHashMap or OrderedHashSet.
  template <typename CollectionType>
  void FindOrderedHashTableEntry(
      Node* table, Node* hash,
      std::function<void(Node*, Label*, Label*)> key_compare,
      Variable* entry_start_position, Label* entry_found, Label* not_found);

  template <typename CollectionType>
  TNode<CollectionType> AllocateSmallOrderedHashTable(TNode<IntPtrT> capacity);

  Node* AllocateStruct(Node* map, AllocationFlags flags = kNone);
  void InitializeStructBody(Node* object, Node* map, Node* size,
                            int start_offset = Struct::kHeaderSize);

  Node* AllocateJSObjectFromMap(
      Node* map, Node* properties = nullptr, Node* elements = nullptr,
      AllocationFlags flags = kNone,
      SlackTrackingMode slack_tracking_mode = kNoSlackTracking);

  void InitializeJSObjectFromMap(
      Node* object, Node* map, Node* instance_size, Node* properties = nullptr,
      Node* elements = nullptr,
      SlackTrackingMode slack_tracking_mode = kNoSlackTracking);

  void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map,
                                               Node* instance_size);
  void InitializeJSObjectBodyNoSlackTracking(
      Node* object, Node* map, Node* instance_size,
      int start_offset = JSObject::kHeaderSize);

  // Allocate a JSArray without elements and initialize the header fields.
  Node* AllocateUninitializedJSArrayWithoutElements(
      Node* array_map, Node* length, Node* allocation_site = nullptr);
  // Allocate and return a JSArray with initialized header fields and its
  // uninitialized elements.
  // The ParameterMode argument is only used for the capacity parameter.
  std::pair<Node*, Node*> AllocateUninitializedJSArrayWithElements(
      ElementsKind kind, Node* array_map, Node* length, Node* allocation_site,
      Node* capacity, ParameterMode capacity_mode = INTPTR_PARAMETERS);
  // Allocate a JSArray and fill elements with the hole.
  // The ParameterMode argument is only used for the capacity parameter.
  Node* AllocateJSArray(ElementsKind kind, Node* array_map, Node* capacity,
                        Node* length, Node* allocation_site = nullptr,
                        ParameterMode capacity_mode = INTPTR_PARAMETERS);

  Node* AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
                        TNode<Smi> capacity, TNode<Smi> length) {
    return AllocateJSArray(kind, array_map, capacity, length, nullptr,
                           SMI_PARAMETERS);
  }

  Node* AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
                        TNode<IntPtrT> capacity, TNode<Smi> length) {
    return AllocateJSArray(kind, array_map, capacity, length, nullptr,
                           INTPTR_PARAMETERS);
  }

  Node* CloneFastJSArray(Node* context, Node* array,
                         ParameterMode mode = INTPTR_PARAMETERS,
                         Node* allocation_site = nullptr);

  Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count,
                           ParameterMode mode = INTPTR_PARAMETERS,
                           Node* capacity = nullptr,
                           Node* allocation_site = nullptr);

  TNode<FixedArrayBase> AllocateFixedArray(
      ElementsKind kind, Node* capacity, ParameterMode mode = INTPTR_PARAMETERS,
      AllocationFlags flags = kNone,
      SloppyTNode<Map> fixed_array_map = nullptr);

  TNode<FixedArrayBase> AllocateFixedArray(
      ElementsKind kind, TNode<IntPtrT> capacity, AllocationFlags flags,
      SloppyTNode<Map> fixed_array_map = nullptr) {
    return AllocateFixedArray(kind, capacity, INTPTR_PARAMETERS, flags,
                              fixed_array_map);
  }

  TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) {
    TNode<FixedArray> result = UncheckedCast<FixedArray>(
        AllocateFixedArray(PACKED_ELEMENTS, capacity,
                           AllocationFlag::kAllowLargeObjectAllocation));
    FillFixedArrayWithSmiZero(result, capacity);
    return result;
  }

  TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray(
      TNode<IntPtrT> capacity) {
    TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
        AllocateFixedArray(FLOAT64_ELEMENTS, capacity,
                           AllocationFlag::kAllowLargeObjectAllocation));
    FillFixedDoubleArrayWithZero(result, capacity);
    return result;
  }

  Node* AllocatePropertyArray(Node* capacity,
                              ParameterMode mode = INTPTR_PARAMETERS,
                              AllocationFlags flags = kNone);

  // Perform CreateArrayIterator (ES #sec-createarrayiterator).
  TNode<JSArrayIterator> CreateArrayIterator(TNode<Context> context,
                                             TNode<Object> object,
                                             IterationKind mode);

  Node* AllocateJSIteratorResult(Node* context, Node* value, Node* done);
  Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value);

  Node* ArraySpeciesCreate(TNode<Context> context, TNode<Object> originalArray,
                           TNode<Number> len);

  void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
                               Node* to_index,
                               Heap::RootListIndex value_root_index,
                               ParameterMode mode = INTPTR_PARAMETERS);

  // Uses memset to effectively initialize the given FixedArray with zeroes.
  void FillFixedArrayWithSmiZero(TNode<FixedArray> array,
                                 TNode<IntPtrT> length);
  void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array,
                                    TNode<IntPtrT> length);

  void FillPropertyArrayWithUndefined(Node* array, Node* from_index,
                                      Node* to_index,
                                      ParameterMode mode = INTPTR_PARAMETERS);

  void CopyPropertyArrayValues(
      Node* from_array, Node* to_array, Node* length,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      ParameterMode mode = INTPTR_PARAMETERS);

  // Copies all elements from |from_array| of |length| size to
  // |to_array| of the same size respecting the elements kind.
  void CopyFixedArrayElements(
      ElementsKind kind, Node* from_array, Node* to_array, Node* length,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      ParameterMode mode = INTPTR_PARAMETERS) {
    CopyFixedArrayElements(kind, from_array, kind, to_array,
                           IntPtrOrSmiConstant(0, mode), length, length,
                           barrier_mode, mode);
  }

  // Copies |element_count| elements from |from_array| starting from element
  // zero to |to_array| of |capacity| size respecting both array's elements
  // kinds.
  void CopyFixedArrayElements(
      ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
      Node* to_array, Node* element_count, Node* capacity,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      ParameterMode mode = INTPTR_PARAMETERS) {
    CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
                           IntPtrOrSmiConstant(0, mode), element_count,
                           capacity, barrier_mode, mode);
  }

  // Copies |element_count| elements from |from_array| starting from element
  // |first_element| to |to_array| of |capacity| size respecting both array's
  // elements kinds.
  void CopyFixedArrayElements(
      ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
      Node* to_array, Node* first_element, Node* element_count, Node* capacity,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
      ParameterMode mode = INTPTR_PARAMETERS);

  void CopyFixedArrayElements(
      ElementsKind from_kind, TNode<FixedArrayBase> from_array,
      ElementsKind to_kind, TNode<FixedArrayBase> to_array,
      TNode<Smi> first_element, TNode<Smi> element_count, TNode<Smi> capacity,
      WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
    CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
                           first_element, element_count, capacity, barrier_mode,
                           SMI_PARAMETERS);
  }

  TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base,
                                           Label* cast_fail);

  TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base,
                                                       Label* cast_fail) {
    GotoIf(WordNotEqual(LoadMap(base),
                        LoadRoot(Heap::kFixedDoubleArrayMapRootIndex)),
           cast_fail);
    return UncheckedCast<FixedDoubleArray>(base);
  }

  enum class ExtractFixedArrayFlag {
    kFixedArrays = 1,
    kFixedDoubleArrays = 2,
    kDontCopyCOW = 4,
    kNewSpaceAllocationOnly = 8,
    kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
    kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
  };

  typedef base::Flags<ExtractFixedArrayFlag> ExtractFixedArrayFlags;

  // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
  // FixedArray, including special appropriate handling for empty arrays and COW
  // arrays.
  //
  // * |source| is either a FixedArray or FixedDoubleArray from which to copy
  // elements.
  // * |first| is the starting element index to copy from, if nullptr is passed
  // then index zero is used by default.
  // * |count| is the number of elements to copy out of the source array
  // starting from and including the element indexed by |start|. If |count| is
  // nullptr, then all of the elements from |start| to the end of |source| are
  // copied.
  // * |capacity| determines the size of the allocated result array, with
  // |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
  // the destination array's capacity.
  // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
  // are detected and copied. Although it's always correct to pass
  // kAllFixedArrays, the generated code is more compact and efficient if the
  // caller can specify whether only FixedArrays or FixedDoubleArrays will be
  // passed as the |source| parameter.
  // * |parameter_mode| determines the parameter mode of |first|, |count| and
  // |capacity|.
  TNode<FixedArrayBase> ExtractFixedArray(
      Node* source, Node* first, Node* count = nullptr,
      Node* capacity = nullptr,
      ExtractFixedArrayFlags extract_flags =
          ExtractFixedArrayFlag::kAllFixedArrays,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  TNode<FixedArrayBase> ExtractFixedArray(
      TNode<FixedArrayBase> source, TNode<Smi> first, TNode<Smi> count,
      TNode<Smi> capacity,
      ExtractFixedArrayFlags extract_flags =
          ExtractFixedArrayFlag::kAllFixedArrays) {
    return ExtractFixedArray(source, first, count, capacity, extract_flags,
                             SMI_PARAMETERS);
  }

  // Copy the entire contents of a FixedArray or FixedDoubleArray to a new
  // array, including special appropriate handling for empty arrays and COW
  // arrays.
  //
  // * |source| is either a FixedArray or FixedDoubleArray from which to copy
  // elements.
  // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
  // are detected and copied. Although it's always correct to pass
  // kAllFixedArrays, the generated code is more compact and efficient if the
  // caller can specify whether only FixedArrays or FixedDoubleArrays will be
  // passed as the |source| parameter.
  Node* CloneFixedArray(Node* source,
                        ExtractFixedArrayFlags flags =
                            ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) {
    ParameterMode mode = OptimalParameterMode();
    return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr,
                             nullptr, flags, mode);
  }

  // Copies |character_count| elements from |from_string| to |to_string|
  // starting at the |from_index|'th character. |from_string| and |to_string|
  // can either be one-byte strings or two-byte strings, although if
  // |from_string| is two-byte, then |to_string| must be two-byte.
  // |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <=
  // |from_index| <= |from_index| + |character_count| <= from_string.length and
  // 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length.
  void CopyStringCharacters(Node* from_string, Node* to_string,
                            TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
                            TNode<IntPtrT> character_count,
                            String::Encoding from_encoding,
                            String::Encoding to_encoding);

  // Loads an element from |array| of |from_kind| elements by given |offset|
  // (NOTE: not index!), does a hole check if |if_hole| is provided and
  // converts the value so that it becomes ready for storing to array of
  // |to_kind| elements.
  Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
                                      ElementsKind from_kind,
                                      ElementsKind to_kind, Label* if_hole);

  Node* CalculateNewElementsCapacity(Node* old_capacity,
                                     ParameterMode mode = INTPTR_PARAMETERS);

  // Tries to grow the |elements| array of given |object| to store the |key|
  // or bails out if the growing gap is too big. Returns new elements.
  Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
                                Node* key, Label* bailout);

  // Tries to grow the |capacity|-length |elements| array of given |object|
  // to store the |key| or bails out if the growing gap is too big. Returns
  // new elements.
  Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
                                Node* key, Node* capacity, ParameterMode mode,
                                Label* bailout);

  // Grows elements capacity of given object. Returns new elements.
  Node* GrowElementsCapacity(Node* object, Node* elements,
                             ElementsKind from_kind, ElementsKind to_kind,
                             Node* capacity, Node* new_capacity,
                             ParameterMode mode, Label* bailout);

  // Given a need to grow by |growth|, allocate an appropriate new capacity
  // if necessary, and return a new elements FixedArray object. Label |bailout|
  // is followed for allocation failure.
  void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind,
                                    Node* array, Node* length,
                                    Variable* var_elements, Node* growth,
                                    Label* bailout);

  // Allocation site manipulation
  void InitializeAllocationMemento(Node* base_allocation,
                                   Node* base_allocation_size,
                                   Node* allocation_site);

  Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
  Node* TruncateTaggedToFloat64(Node* context, Node* value);
  Node* TruncateTaggedToWord32(Node* context, Node* value);
  void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number,
                              Variable* var_word32, Label* if_bigint,
                              Variable* var_bigint);
  void TaggedToWord32OrBigIntWithFeedback(
      Node* context, Node* value, Label* if_number, Variable* var_word32,
      Label* if_bigint, Variable* var_bigint, Variable* var_feedback);

  // Truncate the floating point value of a HeapNumber to an Int32.
  Node* TruncateHeapNumberValueToWord32(Node* object);

  // Conversions.
  void TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>& output,
                          Label* if_smi);
  void TryFloat64ToSmi(TNode<Float64T> number, TVariable<Smi>& output,
                       Label* if_smi);
  TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value);
  TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value);
  TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value);
  TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value);
  TNode<Float64T> ChangeNumberToFloat64(SloppyTNode<Number> value);
  TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value);

  void TaggedToNumeric(Node* context, Node* value, Label* done,
                       Variable* var_numeric);
  void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done,
                                   Variable* var_numeric,
                                   Variable* var_feedback);

  TNode<WordT> TimesPointerSize(SloppyTNode<WordT> value);
  TNode<IntPtrT> TimesPointerSize(TNode<IntPtrT> value) {
    return Signed(TimesPointerSize(implicit_cast<TNode<WordT>>(value)));
  }
  TNode<UintPtrT> TimesPointerSize(TNode<UintPtrT> value) {
    return Unsigned(TimesPointerSize(implicit_cast<TNode<WordT>>(value)));
  }
  TNode<WordT> TimesDoubleSize(SloppyTNode<WordT> value);
  TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) {
    return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
  }
  TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) {
    return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
  }

  // Type conversions.
  // Throws a TypeError for {method_name} if {value} is not coercible to Object,
  // or returns the {value} converted to a String otherwise.
  TNode<String> ToThisString(Node* context, Node* value,
                             char const* method_name);
  // Throws a TypeError for {method_name} if {value} is neither of the given
  // {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
  // returns the {value} (or wrapped value) otherwise.
  Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
                    char const* method_name);

  // Throws a TypeError for {method_name} if {value} is not of the given
  // instance type. Returns {value}'s map.
  Node* ThrowIfNotInstanceType(Node* context, Node* value,
                               InstanceType instance_type,
                               char const* method_name);
  // Throws a TypeError for {method_name} if {value} is not a JSReceiver.
  // Returns the {value}'s map.
  Node* ThrowIfNotJSReceiver(Node* context, Node* value,
                             MessageTemplate::Template msg_template,
                             const char* method_name = nullptr);

  void ThrowRangeError(Node* context, MessageTemplate::Template message,
                       Node* arg0 = nullptr, Node* arg1 = nullptr,
                       Node* arg2 = nullptr);
  void ThrowTypeError(Node* context, MessageTemplate::Template message,
                      char const* arg0 = nullptr, char const* arg1 = nullptr);
  void ThrowTypeError(Node* context, MessageTemplate::Template message,
                      Node* arg0, Node* arg1 = nullptr, Node* arg2 = nullptr);

  // Type checks.
  // Check whether the map is for an object with special properties, such as a
  // JSProxy or an object with interceptors.
  TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type);
  TNode<BoolT> IsAccessorInfo(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsAccessorPair(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsAllocationSite(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsAnyHeapNumber(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsNoElementsProtectorCellInvalid();
  TNode<BoolT> IsBigIntInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsBigInt(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsBoolean(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsCallableMap(SloppyTNode<Map> map);
  TNode<BoolT> IsCallable(SloppyTNode<HeapObject> object);
  TNode<BoolT> TaggedIsCallable(TNode<Object> object);
  TNode<BoolT> IsCell(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsCode(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsConsStringInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsConstructorMap(SloppyTNode<Map> map);
  TNode<BoolT> IsConstructor(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsDeprecatedMap(SloppyTNode<Map> map);
  TNode<BoolT> IsNameDictionary(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsGlobalDictionary(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsExtensibleMap(SloppyTNode<Map> map);
  TNode<BoolT> IsExternalStringInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsFastJSArray(SloppyTNode<Object> object,
                             SloppyTNode<Context> context);
  TNode<BoolT> IsFastJSArrayWithNoCustomIteration(TNode<Object> object,
                                                  TNode<Context> context);
  TNode<BoolT> IsFeedbackCell(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsFeedbackVector(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsContext(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsFixedArray(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsFixedArraySubclass(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsFixedArrayWithKind(SloppyTNode<HeapObject> object,
                                    ElementsKind kind);
  TNode<BoolT> IsFixedArrayWithKindOrEmpty(SloppyTNode<HeapObject> object,
                                           ElementsKind kind);
  TNode<BoolT> IsFixedDoubleArray(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsFixedTypedArray(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsFunctionWithPrototypeSlotMap(SloppyTNode<Map> map);
  TNode<BoolT> IsHashTable(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsEphemeronHashTable(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsHeapNumber(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsIndirectStringInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsJSArrayBuffer(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSDataView(TNode<HeapObject> object);
  TNode<BoolT> IsJSArrayInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsJSArrayMap(SloppyTNode<Map> map);
  TNode<BoolT> IsJSArray(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSArrayIterator(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSAsyncGeneratorObject(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSFunctionInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsAllocationSiteInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsJSFunctionMap(SloppyTNode<Map> map);
  TNode<BoolT> IsJSFunction(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSGeneratorObject(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSGlobalProxyInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsJSGlobalProxy(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSObjectInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsJSObjectMap(SloppyTNode<Map> map);
  TNode<BoolT> IsJSObject(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSPromiseMap(SloppyTNode<Map> map);
  TNode<BoolT> IsJSPromise(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSProxy(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSReceiverInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsJSReceiverMap(SloppyTNode<Map> map);
  TNode<BoolT> IsJSReceiver(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSRegExp(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSTypedArray(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsJSValueInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsJSValueMap(SloppyTNode<Map> map);
  TNode<BoolT> IsJSValue(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsMap(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsMutableHeapNumber(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsName(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsNativeContext(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsNullOrJSReceiver(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsNullOrUndefined(SloppyTNode<Object> object);
  TNode<BoolT> IsNumberDictionary(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsOneByteStringInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsPrimitiveInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsPrivateSymbol(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsPromiseCapability(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsPropertyArray(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsPropertyCell(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsPrototypeInitialArrayPrototype(SloppyTNode<Context> context,
                                                SloppyTNode<Map> map);
  TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context,
                                              SloppyTNode<Map> map);
  TNode<BoolT> IsSequentialStringInstanceType(
      SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsShortExternalStringInstanceType(
      SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type);
  TNode<BoolT> IsCustomElementsReceiverInstanceType(
      TNode<Int32T> instance_type);
  TNode<BoolT> IsSpecialReceiverMap(SloppyTNode<Map> map);
  // Returns true if the map corresponds to non-special fast or dictionary
  // object.
  TNode<BoolT> IsSimpleObjectMap(TNode<Map> map);
  TNode<BoolT> IsStringInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsString(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsSymbolInstanceType(SloppyTNode<Int32T> instance_type);
  TNode<BoolT> IsSymbol(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsUndetectableMap(SloppyTNode<Map> map);
  TNode<BoolT> IsNotWeakFixedArraySubclass(SloppyTNode<HeapObject> object);
  TNode<BoolT> IsZeroOrContext(SloppyTNode<Object> object);

  inline Node* IsSharedFunctionInfo(Node* object) {
    return IsSharedFunctionInfoMap(LoadMap(object));
  }

  TNode<BoolT> IsPromiseResolveProtectorCellInvalid();
  TNode<BoolT> IsPromiseThenProtectorCellInvalid();
  TNode<BoolT> IsArraySpeciesProtectorCellInvalid();
  TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid();
  TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid();

  // True iff |object| is a Smi or a HeapNumber.
  TNode<BoolT> IsNumber(SloppyTNode<Object> object);
  // True iff |object| is a Smi or a HeapNumber or a BigInt.
  TNode<BoolT> IsNumeric(SloppyTNode<Object> object);

  // True iff |number| is either a Smi, or a HeapNumber whose value is not
  // within Smi range.
  TNode<BoolT> IsNumberNormalized(SloppyTNode<Number> number);
  TNode<BoolT> IsNumberPositive(SloppyTNode<Number> number);
  TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number);

  // True iff {number} is non-negative and less or equal than 2**53-1.
  TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number);

  // True iff {number} represents an integer value.
  TNode<BoolT> IsInteger(TNode<Object> number);
  TNode<BoolT> IsInteger(TNode<HeapNumber> number);

  // True iff abs({number}) <= 2**53 -1
  TNode<BoolT> IsSafeInteger(TNode<Object> number);
  TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number);

  // True iff {number} represents a valid uint32t value.
  TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number);

  // True iff {number} is a positive number and a valid array index in the range
  // [0, 2^32-1).
  TNode<BoolT> IsNumberArrayIndex(TNode<Number> number);

  Node* FixedArraySizeDoesntFitInNewSpace(
      Node* element_count, int base_size = FixedArray::kHeaderSize,
      ParameterMode mode = INTPTR_PARAMETERS);

  // ElementsKind helpers:
  TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) {
    return Word32Equal(a, b);
  }
  bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; }
  Node* IsFastElementsKind(Node* elements_kind);
  bool IsFastElementsKind(ElementsKind kind) {
    return v8::internal::IsFastElementsKind(kind);
  }
  TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) {
    return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS));
  }
  TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind);
  bool IsDoubleElementsKind(ElementsKind kind) {
    return v8::internal::IsDoubleElementsKind(kind);
  }
  Node* IsFastSmiOrTaggedElementsKind(Node* elements_kind);
  Node* IsFastSmiElementsKind(Node* elements_kind);
  Node* IsHoleyFastElementsKind(Node* elements_kind);
  Node* IsElementsKindGreaterThan(Node* target_kind,
                                  ElementsKind reference_kind);

  // String helpers.
  // Load a character from a String (might flatten a ConsString).
  TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string,
                                 SloppyTNode<IntPtrT> index);
  // Return the single character string with only {code}.
  TNode<String> StringFromSingleCharCode(TNode<Int32T> code);

  // Return a new string object which holds a substring containing the range
  // [from,to[ of string.
  TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from,
                          TNode<IntPtrT> to);

  // Return a new string object produced by concatenating |first| with |second|.
  TNode<String> StringAdd(Node* context, TNode<String> first,
                          TNode<String> second, AllocationFlags flags = kNone);

  // Check if |string| is an indirect (thin or flat cons) string type that can
  // be dereferenced by DerefIndirectString.
  void BranchIfCanDerefIndirectString(Node* string, Node* instance_type,
                                      Label* can_deref, Label* cannot_deref);
  // Unpack an indirect (thin or flat cons) string type.
  void DerefIndirectString(Variable* var_string, Node* instance_type);
  // Check if |var_string| has an indirect (thin or flat cons) string type,
  // and unpack it if so.
  void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
                                Label* did_deref, Label* cannot_deref);
  // Check if |var_left| or |var_right| has an indirect (thin or flat cons)
  // string type, and unpack it/them if so. Fall through if nothing was done.
  void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
                                 Variable* var_right, Node* right_instance_type,
                                 Label* did_something);
  Node* DerefIndirectString(TNode<String> string, TNode<Int32T> instance_type,
                            Label* cannot_deref);

  TNode<String> StringFromSingleCodePoint(TNode<Int32T> codepoint,
                                          UnicodeEncoding encoding);

  // Type conversion helpers.
  enum class BigIntHandling { kConvertToNumber, kThrow };
  // Convert a String to a Number.
  TNode<Number> StringToNumber(TNode<String> input);
  // Convert a Number to a String.
  TNode<String> NumberToString(TNode<Number> input);
  // Convert an object to a name.
  TNode<Name> ToName(SloppyTNode<Context> context, SloppyTNode<Object> value);
  // Convert a Non-Number object to a Number.
  TNode<Number> NonNumberToNumber(
      SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
      BigIntHandling bigint_handling = BigIntHandling::kThrow);
  // Convert a Non-Number object to a Numeric.
  TNode<Numeric> NonNumberToNumeric(SloppyTNode<Context> context,
                                    SloppyTNode<HeapObject> input);
  // Convert any object to a Number.
  // Conforms to ES#sec-tonumber if {bigint_handling} == kThrow.
  // With {bigint_handling} == kConvertToNumber, matches behavior of
  // tc39.github.io/proposal-bigint/#sec-number-constructor-number-value.
  TNode<Number> ToNumber(
      SloppyTNode<Context> context, SloppyTNode<Object> input,
      BigIntHandling bigint_handling = BigIntHandling::kThrow);
  TNode<Number> ToNumber_Inline(SloppyTNode<Context> context,
                                SloppyTNode<Object> input);

  // Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers).
  // https://tc39.github.io/proposal-bigint/#sec-to-bigint
  TNode<BigInt> ToBigInt(SloppyTNode<Context> context,
                         SloppyTNode<Object> input);

  // Converts |input| to one of 2^32 integer values in the range 0 through
  // 2^32-1, inclusive.
  // ES#sec-touint32
  TNode<Number> ToUint32(SloppyTNode<Context> context,
                         SloppyTNode<Object> input);

  // Convert any object to a String.
  TNode<String> ToString(SloppyTNode<Context> context,
                         SloppyTNode<Object> input);
  TNode<String> ToString_Inline(SloppyTNode<Context> context,
                                SloppyTNode<Object> input);

  // Convert any object to a Primitive.
  Node* JSReceiverToPrimitive(Node* context, Node* input);

  TNode<JSReceiver> ToObject(SloppyTNode<Context> context,
                             SloppyTNode<Object> input);

  // Same as ToObject but avoids the Builtin call if |input| is already a
  // JSReceiver.
  TNode<JSReceiver> ToObject_Inline(TNode<Context> context,
                                    TNode<Object> input);

  enum ToIntegerTruncationMode {
    kNoTruncation,
    kTruncateMinusZero,
  };

  // ES6 7.1.17 ToIndex, but jumps to range_error if the result is not a Smi.
  TNode<Smi> ToSmiIndex(TNode<Object> input, TNode<Context> context,
                        Label* range_error);

  // ES6 7.1.15 ToLength, but jumps to range_error if the result is not a Smi.
  TNode<Smi> ToSmiLength(TNode<Object> input, TNode<Context> context,
                         Label* range_error);

  // ES6 7.1.15 ToLength, but with inlined fast path.
  TNode<Number> ToLength_Inline(SloppyTNode<Context> context,
                                SloppyTNode<Object> input);

  // ES6 7.1.4 ToInteger ( argument )
  TNode<Number> ToInteger_Inline(SloppyTNode<Context> context,
                                 SloppyTNode<Object> input,
                                 ToIntegerTruncationMode mode = kNoTruncation);
  TNode<Number> ToInteger(SloppyTNode<Context> context,
                          SloppyTNode<Object> input,
                          ToIntegerTruncationMode mode = kNoTruncation);

  // Returns a node that contains a decoded (unsigned!) value of a bit
  // field |BitField| in |word32|. Returns result as an uint32 node.
  template <typename BitField>
  TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32) {
    return DecodeWord32(word32, BitField::kShift, BitField::kMask);
  }

  // Returns a node that contains a decoded (unsigned!) value of a bit
  // field |BitField| in |word|. Returns result as a word-size node.
  template <typename BitField>
  TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word) {
    return DecodeWord(word, BitField::kShift, BitField::kMask);
  }

  // Returns a node that contains a decoded (unsigned!) value of a bit
  // field |BitField| in |word32|. Returns result as a word-size node.
  template <typename BitField>
  TNode<UintPtrT> DecodeWordFromWord32(SloppyTNode<Word32T> word32) {
    return DecodeWord<BitField>(ChangeUint32ToWord(word32));
  }

  // Returns a node that contains a decoded (unsigned!) value of a bit
  // field |BitField| in |word|. Returns result as an uint32 node.
  template <typename BitField>
  TNode<Uint32T> DecodeWord32FromWord(SloppyTNode<WordT> word) {
    return UncheckedCast<Uint32T>(
        TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word))));
  }

  // Decodes an unsigned (!) value from |word32| to an uint32 node.
  TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift,
                              uint32_t mask);

  // Decodes an unsigned (!) value from |word| to a word-size node.
  TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word, uint32_t shift,
                             uint32_t mask);

  // Returns a node that contains the updated values of a |BitField|.
  template <typename BitField>
  TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value) {
    return UpdateWord(word, value, BitField::kShift, BitField::kMask);
  }

  // Returns a node that contains the updated {value} inside {word} starting
  // at {shift} and fitting in {mask}.
  TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value, uint32_t shift,
                          uint32_t mask);

  // Returns true if any of the |T|'s bits in given |word32| are set.
  template <typename T>
  TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32) {
    return IsSetWord32(word32, T::kMask);
  }

  // Returns true if any of the mask's bits in given |word32| are set.
  TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
    return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
                          Int32Constant(0));
  }

  // Returns true if none of the mask's bits in given |word32| are set.
  TNode<BoolT> IsNotSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
    return Word32Equal(Word32And(word32, Int32Constant(mask)),
                       Int32Constant(0));
  }

  // Returns true if all of the mask's bits in a given |word32| are set.
  TNode<BoolT> IsAllSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
    TNode<Int32T> const_mask = Int32Constant(mask);
    return Word32Equal(Word32And(word32, const_mask), const_mask);
  }

  // Returns true if any of the |T|'s bits in given |word| are set.
  template <typename T>
  TNode<BoolT> IsSetWord(SloppyTNode<WordT> word) {
    return IsSetWord(word, T::kMask);
  }

  // Returns true if any of the mask's bits in given |word| are set.
  TNode<BoolT> IsSetWord(SloppyTNode<WordT> word, uint32_t mask) {
    return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
  }

  // Returns true if any of the mask's bit are set in the given Smi.
  // Smi-encoding of the mask is performed implicitly!
  TNode<BoolT> IsSetSmi(SloppyTNode<Smi> smi, int untagged_mask) {
    intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
    return WordNotEqual(
        WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
        IntPtrConstant(0));
  }

  // Returns true if all of the |T|'s bits in given |word32| are clear.
  template <typename T>
  TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32) {
    return IsClearWord32(word32, T::kMask);
  }

  // Returns true if all of the mask's bits in given |word32| are clear.
  TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
    return Word32Equal(Word32And(word32, Int32Constant(mask)),
                       Int32Constant(0));
  }

  // Returns true if all of the |T|'s bits in given |word| are clear.
  template <typename T>
  TNode<BoolT> IsClearWord(SloppyTNode<WordT> word) {
    return IsClearWord(word, T::kMask);
  }

  // Returns true if all of the mask's bits in given |word| are clear.
  TNode<BoolT> IsClearWord(SloppyTNode<WordT> word, uint32_t mask) {
    return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
  }

  void SetCounter(StatsCounter* counter, int value);
  void IncrementCounter(StatsCounter* counter, int delta);
  void DecrementCounter(StatsCounter* counter, int delta);

  void Increment(Variable* variable, int value = 1,
                 ParameterMode mode = INTPTR_PARAMETERS);
  void Decrement(Variable* variable, int value = 1,
                 ParameterMode mode = INTPTR_PARAMETERS) {
    Increment(variable, -value, mode);
  }

  // Generates "if (false) goto label" code. Useful for marking a label as
  // "live" to avoid assertion failures during graph building. In the resulting
  // code this check will be eliminated.
  void Use(Label* label);

  // Various building blocks for stubs doing property lookups.

  // |if_notinternalized| is optional; |if_bailout| will be used by default.
  void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
                 Label* if_keyisunique, Variable* var_unique, Label* if_bailout,
                 Label* if_notinternalized = nullptr);

  // Performs a hash computation and string table lookup for the given string,
  // and jumps to:
  // - |if_index| if the string is an array index like "123"; |var_index|
  //              will contain the intptr representation of that index.
  // - |if_internalized| if the string exists in the string table; the
  //                     internalized version will be in |var_internalized|.
  // - |if_not_internalized| if the string is not in the string table (but
  //                         does not add it).
  // - |if_bailout| for unsupported cases (e.g. uncachable array index).
  void TryInternalizeString(Node* string, Label* if_index, Variable* var_index,
                            Label* if_internalized, Variable* var_internalized,
                            Label* if_not_internalized, Label* if_bailout);

  // Calculates array index for given dictionary entry and entry field.
  // See Dictionary::EntryToIndex().
  template <typename Dictionary>
  TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry, int field_index);
  template <typename Dictionary>
  TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry) {
    return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
  }

  // Loads the details for the entry with the given key_index.
  // Returns an untagged int32.
  template <class ContainerType>
  TNode<Uint32T> LoadDetailsByKeyIndex(Node* container, Node* key_index) {
    static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
                  "Use the non-templatized version for DescriptorArray");
    const int kKeyToDetailsOffset =
        (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
        kPointerSize;
    return Unsigned(LoadAndUntagToWord32FixedArrayElement(
        CAST(container), key_index, kKeyToDetailsOffset));
  }

  // Loads the value for the entry with the given key_index.
  // Returns a tagged value.
  template <class ContainerType>
  TNode<Object> LoadValueByKeyIndex(Node* container, Node* key_index) {
    static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
                  "Use the non-templatized version for DescriptorArray");
    const int kKeyToValueOffset =
        (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
        kPointerSize;
    return LoadFixedArrayElement(CAST(container), key_index, kKeyToValueOffset);
  }

  TNode<Uint32T> LoadDetailsByKeyIndex(TNode<DescriptorArray> container,
                                       TNode<IntPtrT> key_index);
  TNode<Object> LoadValueByKeyIndex(TNode<DescriptorArray> container,
                                    TNode<IntPtrT> key_index);
  TNode<MaybeObject> LoadFieldTypeByKeyIndex(TNode<DescriptorArray> container,
                                             TNode<IntPtrT> key_index);

  // Stores the details for the entry with the given key_index.
  // |details| must be a Smi.
  template <class ContainerType>
  void StoreDetailsByKeyIndex(TNode<ContainerType> container,
                              TNode<IntPtrT> key_index, TNode<Smi> details) {
    const int kKeyToDetailsOffset =
        (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
        kPointerSize;
    StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
                           kKeyToDetailsOffset);
  }

  // Stores the value for the entry with the given key_index.
  template <class ContainerType>
  void StoreValueByKeyIndex(
      TNode<ContainerType> container, TNode<IntPtrT> key_index,
      TNode<Object> value,
      WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER) {
    const int kKeyToValueOffset =
        (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
        kPointerSize;
    StoreFixedArrayElement(container, key_index, value, write_barrier,
                           kKeyToValueOffset);
  }

  // Calculate a valid size for the a hash table.
  TNode<IntPtrT> HashTableComputeCapacity(TNode<IntPtrT> at_least_space_for);

  template <class Dictionary>
  TNode<Smi> GetNumberOfElements(TNode<Dictionary> dictionary) {
    return CAST(
        LoadFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex));
  }

  template <class Dictionary>
  void SetNumberOfElements(TNode<Dictionary> dictionary,
                           TNode<Smi> num_elements_smi) {
    StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex,
                           num_elements_smi, SKIP_WRITE_BARRIER);
  }

  template <class Dictionary>
  TNode<Smi> GetNumberOfDeletedElements(TNode<Dictionary> dictionary) {
    return CAST(LoadFixedArrayElement(
        dictionary, Dictionary::kNumberOfDeletedElementsIndex));
  }

  template <class Dictionary>
  void SetNumberOfDeletedElements(TNode<Dictionary> dictionary,
                                  TNode<Smi> num_deleted_smi) {
    StoreFixedArrayElement(dictionary,
                           Dictionary::kNumberOfDeletedElementsIndex,
                           num_deleted_smi, SKIP_WRITE_BARRIER);
  }

  template <class Dictionary>
  TNode<Smi> GetCapacity(TNode<Dictionary> dictionary) {
    return CAST(LoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex));
  }

  template <class Dictionary>
  TNode<Smi> GetNextEnumerationIndex(TNode<Dictionary> dictionary) {
    return CAST(LoadFixedArrayElement(dictionary,
                                      Dictionary::kNextEnumerationIndexIndex));
  }

  template <class Dictionary>
  void SetNextEnumerationIndex(TNode<Dictionary> dictionary,
                               TNode<Smi> next_enum_index_smi) {
    StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex,
                           next_enum_index_smi, SKIP_WRITE_BARRIER);
  }

  // Looks up an entry in a NameDictionaryBase successor. If the entry is found
  // control goes to {if_found} and {var_name_index} contains an index of the
  // key field of the entry found. If the key is not found control goes to
  // {if_not_found}.
  static const int kInlinedDictionaryProbes = 4;
  enum LookupMode { kFindExisting, kFindInsertionIndex };

  template <typename Dictionary>
  TNode<HeapObject> LoadName(TNode<HeapObject> key);

  template <typename Dictionary>
  void NameDictionaryLookup(TNode<Dictionary> dictionary,
                            TNode<Name> unique_name, Label* if_found,
                            TVariable<IntPtrT>* var_name_index,
                            Label* if_not_found,
                            int inlined_probes = kInlinedDictionaryProbes,
                            LookupMode mode = kFindExisting);

  Node* ComputeUnseededHash(Node* key);
  Node* ComputeSeededHash(Node* key);

  void NumberDictionaryLookup(TNode<NumberDictionary> dictionary,
                              TNode<IntPtrT> intptr_index, Label* if_found,
                              TVariable<IntPtrT>* var_entry,
                              Label* if_not_found);

  TNode<Object> BasicLoadNumberDictionaryElement(
      TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
      Label* not_data, Label* if_hole);
  void BasicStoreNumberDictionaryElement(TNode<NumberDictionary> dictionary,
                                         TNode<IntPtrT> intptr_index,
                                         TNode<Object> value, Label* not_data,
                                         Label* if_hole, Label* read_only);

  template <class Dictionary>
  void FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key,
                          TVariable<IntPtrT>* var_key_index);

  template <class Dictionary>
  void InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key,
                   TNode<Object> value, TNode<IntPtrT> index,
                   TNode<Smi> enum_index);

  template <class Dictionary>
  void Add(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value,
           Label* bailout);

  // Tries to check if {object} has own {unique_name} property.
  void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
                         Node* unique_name, Label* if_found,
                         Label* if_not_found, Label* if_bailout);

  // Operating mode for TryGetOwnProperty and CallGetterIfAccessor
  // kReturnAccessorPair is used when we're only getting the property descriptor
  enum GetOwnPropertyMode { kCallJSGetter, kReturnAccessorPair };
  // Tries to get {object}'s own {unique_name} property value. If the property
  // is an accessor then it also calls a getter. If the property is a double
  // field it re-wraps value in an immutable heap number.
  void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
                         Node* instance_type, Node* unique_name,
                         Label* if_found, Variable* var_value,
                         Label* if_not_found, Label* if_bailout);
  void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
                         Node* instance_type, Node* unique_name,
                         Label* if_found, Variable* var_value,
                         Variable* var_details, Variable* var_raw_value,
                         Label* if_not_found, Label* if_bailout,
                         GetOwnPropertyMode mode);

  TNode<Object> GetProperty(SloppyTNode<Context> context,
                            SloppyTNode<Object> receiver, Handle<Name> name) {
    return GetProperty(context, receiver, HeapConstant(name));
  }

  TNode<Object> GetProperty(SloppyTNode<Context> context,
                            SloppyTNode<Object> receiver,
                            SloppyTNode<Object> name) {
    return CallBuiltin(Builtins::kGetProperty, context, receiver, name);
  }

  TNode<Object> SetPropertyStrict(TNode<Context> context,
                                  TNode<Object> receiver, TNode<Object> key,
                                  TNode<Object> value) {
    return CallBuiltin(Builtins::kSetProperty, context, receiver, key, value);
  }

  Node* GetMethod(Node* context, Node* object, Handle<Name> name,
                  Label* if_null_or_undefined);

  template <class... TArgs>
  TNode<Object> CallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
                            TArgs... args) {
    DCHECK_IMPLIES(Builtins::KindOf(id) == Builtins::TFJ,
                   !Builtins::IsLazy(id));
    return CallStub<Object>(Builtins::CallableFor(isolate(), id), context,
                            args...);
  }

  template <class... TArgs>
  void TailCallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
                       TArgs... args) {
    DCHECK_IMPLIES(Builtins::KindOf(id) == Builtins::TFJ,
                   !Builtins::IsLazy(id));
    return TailCallStub(Builtins::CallableFor(isolate(), id), context, args...);
  }

  void LoadPropertyFromFastObject(Node* object, Node* map,
                                  TNode<DescriptorArray> descriptors,
                                  Node* name_index, Variable* var_details,
                                  Variable* var_value);

  void LoadPropertyFromFastObject(Node* object, Node* map,
                                  TNode<DescriptorArray> descriptors,
                                  Node* name_index, Node* details,
                                  Variable* var_value);

  void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
                                      Variable* var_details,
                                      Variable* var_value);

  void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
                                        Variable* var_details,
                                        Variable* var_value, Label* if_deleted);

  // Generic property lookup generator. If the {object} is fast and
  // {unique_name} property is found then the control goes to {if_found_fast}
  // label and {var_meta_storage} and {var_name_index} will contain
  // DescriptorArray and an index of the descriptor's name respectively.
  // If the {object} is slow or global then the control goes to {if_found_dict}
  // or {if_found_global} and the {var_meta_storage} and {var_name_index} will
  // contain a dictionary and an index of the key field of the found entry.
  // If property is not found or given lookup is not supported then
  // the control goes to {if_not_found} or {if_bailout} respectively.
  //
  // Note: this code does not check if the global dictionary points to deleted
  // entry! This has to be done by the caller.
  void TryLookupProperty(SloppyTNode<JSObject> object, SloppyTNode<Map> map,
                         SloppyTNode<Int32T> instance_type,
                         SloppyTNode<Name> unique_name, Label* if_found_fast,
                         Label* if_found_dict, Label* if_found_global,
                         TVariable<HeapObject>* var_meta_storage,
                         TVariable<IntPtrT>* var_name_index,
                         Label* if_not_found, Label* if_bailout);

  // This is a building block for TryLookupProperty() above. Supports only
  // non-special fast and dictionary objects.
  void TryLookupPropertyInSimpleObject(TNode<JSObject> object, TNode<Map> map,
                                       TNode<Name> unique_name,
                                       Label* if_found_fast,
                                       Label* if_found_dict,
                                       TVariable<HeapObject>* var_meta_storage,
                                       TVariable<IntPtrT>* var_name_index,
                                       Label* if_not_found);

  // This method jumps to if_found if the element is known to exist. To
  // if_absent if it's known to not exist. To if_not_found if the prototype
  // chain needs to be checked. And if_bailout if the lookup is unsupported.
  void TryLookupElement(Node* object, Node* map,
                        SloppyTNode<Int32T> instance_type,
                        SloppyTNode<IntPtrT> intptr_index, Label* if_found,
                        Label* if_absent, Label* if_not_found,
                        Label* if_bailout);

  // This is a type of a lookup in holder generator function. In case of a
  // property lookup the {key} is guaranteed to be an unique name and in case of
  // element lookup the key is an Int32 index.
  typedef std::function<void(Node* receiver, Node* holder, Node* map,
                             Node* instance_type, Node* key, Label* next_holder,
                             Label* if_bailout)>
      LookupInHolder;

  // For integer indexed exotic cases, check if the given string cannot be a
  // special index. If we are not sure that the given string is not a special
  // index with a simple check, return False. Note that "False" return value
  // does not mean that the name_string is a special index in the current
  // implementation.
  void BranchIfMaybeSpecialIndex(TNode<String> name_string,
                                 Label* if_maybe_special_index,
                                 Label* if_not_special_index);

  // Generic property prototype chain lookup generator.
  // For properties it generates lookup using given {lookup_property_in_holder}
  // and for elements it uses {lookup_element_in_holder}.
  // Upon reaching the end of prototype chain the control goes to {if_end}.
  // If it can't handle the case {receiver}/{key} case then the control goes
  // to {if_bailout}.
  // If {if_proxy} is nullptr, proxies go to if_bailout.
  void TryPrototypeChainLookup(Node* receiver, Node* key,
                               const LookupInHolder& lookup_property_in_holder,
                               const LookupInHolder& lookup_element_in_holder,
                               Label* if_end, Label* if_bailout,
                               Label* if_proxy = nullptr);

  // Instanceof helpers.
  // Returns true if {object} has {prototype} somewhere in it's prototype
  // chain, otherwise false is returned. Might cause arbitrary side effects
  // due to [[GetPrototypeOf]] invocations.
  Node* HasInPrototypeChain(Node* context, Node* object, Node* prototype);
  // ES6 section 7.3.19 OrdinaryHasInstance (C, O)
  Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);

  // Load type feedback vector from the stub caller's frame.
  TNode<FeedbackVector> LoadFeedbackVectorForStub();

  // Load type feedback vector for the given closure.
  TNode<FeedbackVector> LoadFeedbackVector(SloppyTNode<JSFunction> closure,
                                           Label* if_undefined = nullptr);

  // Update the type feedback vector.
  void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);

  // Report that there was a feedback update, performing any tasks that should
  // be done after a feedback update.
  void ReportFeedbackUpdate(SloppyTNode<FeedbackVector> feedback_vector,
                            SloppyTNode<IntPtrT> slot_id, const char* reason);

  // Combine the new feedback with the existing_feedback. Do nothing if
  // existing_feedback is nullptr.
  void CombineFeedback(Variable* existing_feedback, int feedback);
  void CombineFeedback(Variable* existing_feedback, Node* feedback);

  // Overwrite the existing feedback with new_feedback. Do nothing if
  // existing_feedback is nullptr.
  void OverwriteFeedback(Variable* existing_feedback, int new_feedback);

  // Check if a property name might require protector invalidation when it is
  // used for a property store or deletion.
  void CheckForAssociatedProtector(Node* name, Label* if_protector);

  TNode<Map> LoadReceiverMap(SloppyTNode<Object> receiver);

  // Emits keyed sloppy arguments load. Returns either the loaded value.
  Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
    return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout);
  }

  // Emits keyed sloppy arguments store.
  void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
                                 Label* bailout) {
    DCHECK_NOT_NULL(value);
    EmitKeyedSloppyArguments(receiver, key, value, bailout);
  }

  // Loads script context from the script context table.
  TNode<Context> LoadScriptContext(TNode<Context> context,
                                   TNode<IntPtrT> context_index);

  Node* Int32ToUint8Clamped(Node* int32_value);
  Node* Float64ToUint8Clamped(Node* float64_value);

  Node* PrepareValueForWriteToTypedArray(TNode<Object> input,
                                         ElementsKind elements_kind,
                                         TNode<Context> context);

  // Store value to an elements array with given elements kind.
  void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
                    ParameterMode mode);

  void EmitBigTypedArrayElementStore(TNode<JSTypedArray> object,
                                     TNode<FixedTypedArrayBase> elements,
                                     TNode<IntPtrT> intptr_key,
                                     TNode<Object> value,
                                     TNode<Context> context,
                                     Label* opt_if_neutered);
  // Part of the above, refactored out to reuse in another place
  void EmitBigTypedArrayElementStore(TNode<FixedTypedArrayBase> elements,
                                     TNode<RawPtrT> backing_store,
                                     TNode<IntPtrT> offset,
                                     TNode<BigInt> bigint_value);

  void EmitElementStore(Node* object, Node* key, Node* value, bool is_jsarray,
                        ElementsKind elements_kind,
                        KeyedAccessStoreMode store_mode, Label* bailout,
                        Node* context);

  Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
                             KeyedAccessStoreMode store_mode, Node* length,
                             Node* key, ParameterMode mode, bool is_js_array,
                             Label* bailout);

  Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
                            Node* length, ParameterMode mode, Label* bailout);

  void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
                              ElementsKind to_kind, bool is_jsarray,
                              Label* bailout);

  void TrapAllocationMemento(Node* object, Label* memento_found);

  TNode<IntPtrT> PageFromAddress(TNode<IntPtrT> address);

  // Store a weak in-place reference into the FeedbackVector.
  TNode<MaybeObject> StoreWeakReferenceInFeedbackVector(
      SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
      SloppyTNode<HeapObject> value, int additional_offset = 0,
      ParameterMode parameter_mode = INTPTR_PARAMETERS);

  // Create a new AllocationSite and install it into a feedback vector.
  TNode<AllocationSite> CreateAllocationSiteInFeedbackVector(
      SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot);

  // TODO(ishell, cbruni): Change to HasBoilerplate.
  TNode<BoolT> NotHasBoilerplate(TNode<Object> maybe_literal_site);
  TNode<Smi> LoadTransitionInfo(TNode<AllocationSite> allocation_site);
  TNode<JSObject> LoadBoilerplate(TNode<AllocationSite> allocation_site);
  TNode<Int32T> LoadElementsKind(TNode<AllocationSite> allocation_site);

  enum class IndexAdvanceMode { kPre, kPost };

  typedef std::function<void(Node* index)> FastLoopBody;

  Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
                      Node* end_index, const FastLoopBody& body, int increment,
                      ParameterMode parameter_mode,
                      IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);

  Node* BuildFastLoop(Node* start_index, Node* end_index,
                      const FastLoopBody& body, int increment,
                      ParameterMode parameter_mode,
                      IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
    return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
                         increment, parameter_mode, advance_mode);
  }

  enum class ForEachDirection { kForward, kReverse };

  typedef std::function<void(Node* fixed_array, Node* offset)>
      FastFixedArrayForEachBody;

  void BuildFastFixedArrayForEach(
      const CodeStubAssembler::VariableList& vars, Node* fixed_array,
      ElementsKind kind, Node* first_element_inclusive,
      Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
      ParameterMode mode = INTPTR_PARAMETERS,
      ForEachDirection direction = ForEachDirection::kReverse);

  void BuildFastFixedArrayForEach(
      Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
      Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
      ParameterMode mode = INTPTR_PARAMETERS,
      ForEachDirection direction = ForEachDirection::kReverse) {
    CodeStubAssembler::VariableList list(0, zone());
    BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
                               last_element_exclusive, body, mode, direction);
  }

  TNode<IntPtrT> GetArrayAllocationSize(Node* element_count, ElementsKind kind,
                                        ParameterMode mode, int header_size) {
    return ElementOffsetFromIndex(element_count, kind, mode, header_size);
  }

  TNode<IntPtrT> GetFixedArrayAllocationSize(Node* element_count,
                                             ElementsKind kind,
                                             ParameterMode mode) {
    return GetArrayAllocationSize(element_count, kind, mode,
                                  FixedArray::kHeaderSize);
  }

  TNode<IntPtrT> GetPropertyArrayAllocationSize(Node* element_count,
                                                ParameterMode mode) {
    return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, mode,
                                  PropertyArray::kHeaderSize);
  }

  void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
                                               Label* doesnt_fit, int base_size,
                                               ParameterMode mode);

  void InitializeFieldsWithRoot(Node* object, Node* start_offset,
                                Node* end_offset, Heap::RootListIndex root);

  Node* RelationalComparison(Operation op, Node* left, Node* right,
                             Node* context,
                             Variable* var_type_feedback = nullptr);

  void BranchIfNumberRelationalComparison(Operation op, Node* left, Node* right,
                                          Label* if_true, Label* if_false);

  void BranchIfNumberLessThan(Node* left, Node* right, Label* if_true,
                              Label* if_false) {
    BranchIfNumberRelationalComparison(Operation::kLessThan, left, right,
                                       if_true, if_false);
  }

  void BranchIfNumberLessThanOrEqual(Node* left, Node* right, Label* if_true,
                                     Label* if_false) {
    BranchIfNumberRelationalComparison(Operation::kLessThanOrEqual, left, right,
                                       if_true, if_false);
  }

  void BranchIfNumberGreaterThan(Node* left, Node* right, Label* if_true,
                                 Label* if_false) {
    BranchIfNumberRelationalComparison(Operation::kGreaterThan, left, right,
                                       if_true, if_false);
  }

  void BranchIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_true,
                                        Label* if_false) {
    BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
                                       right, if_true, if_false);
  }

  void BranchIfAccessorPair(Node* value, Label* if_accessor_pair,
                            Label* if_not_accessor_pair) {
    GotoIf(TaggedIsSmi(value), if_not_accessor_pair);
    Branch(IsAccessorPair(value), if_accessor_pair, if_not_accessor_pair);
  }

  void GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_false);

  Node* Equal(Node* lhs, Node* rhs, Node* context,
              Variable* var_type_feedback = nullptr);

  Node* StrictEqual(Node* lhs, Node* rhs,
                    Variable* var_type_feedback = nullptr);

  // ECMA#sec-samevalue
  // Similar to StrictEqual except that NaNs are treated as equal and minus zero
  // differs from positive zero.
  void BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false);

  enum HasPropertyLookupMode { kHasProperty, kForInHasProperty };

  TNode<Oddball> HasProperty(SloppyTNode<Context> context,
                             SloppyTNode<Object> object,
                             SloppyTNode<Object> key,
                             HasPropertyLookupMode mode);

  Node* Typeof(Node* value);

  TNode<Object> GetSuperConstructor(SloppyTNode<Context> context,
                                    SloppyTNode<JSFunction> active_function);

  TNode<Object> SpeciesConstructor(SloppyTNode<Context> context,
                                   SloppyTNode<Object> object,
                                   SloppyTNode<Object> default_constructor);

  Node* InstanceOf(Node* object, Node* callable, Node* context);

  // Debug helpers
  Node* IsDebugActive();

  TNode<BoolT> IsRuntimeCallStatsEnabled();

  // TypedArray/ArrayBuffer helpers
  Node* IsDetachedBuffer(Node* buffer);
  void ThrowIfArrayBufferIsDetached(SloppyTNode<Context> context,
                                    TNode<JSArrayBuffer> array_buffer,
                                    const char* method_name);
  void ThrowIfArrayBufferViewBufferIsDetached(
      SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
      const char* method_name);
  TNode<JSArrayBuffer> LoadArrayBufferViewBuffer(
      TNode<JSArrayBufferView> array_buffer_view);
  TNode<RawPtrT> LoadArrayBufferBackingStore(TNode<JSArrayBuffer> array_buffer);

  TNode<IntPtrT> ElementOffsetFromIndex(Node* index, ElementsKind kind,
                                        ParameterMode mode, int base_size = 0);

  // Check that a field offset is within the bounds of the an object.
  TNode<BoolT> IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
                                SloppyTNode<IntPtrT> length, int header_size,
                                ElementsKind kind = HOLEY_ELEMENTS);

  // Load a builtin's code from the builtin array in the isolate.
  TNode<Code> LoadBuiltin(TNode<Smi> builtin_id);

  // Figure out the SFI's code object using its data field.
  // If |if_compile_lazy| is provided then the execution will go to the given
  // label in case of an CompileLazy code object.
  TNode<Code> GetSharedFunctionInfoCode(
      SloppyTNode<SharedFunctionInfo> shared_info,
      Label* if_compile_lazy = nullptr);

  Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
                                          Node* context);

  // Promise helpers
  Node* IsPromiseHookEnabled();
  Node* HasAsyncEventDelegate();
  Node* IsPromiseHookEnabledOrHasAsyncEventDelegate();

  // Helpers for StackFrame markers.
  Node* MarkerIsFrameType(Node* marker_or_function,
                          StackFrame::Type frame_type);
  Node* MarkerIsNotFrameType(Node* marker_or_function,
                             StackFrame::Type frame_type);

  // for..in helpers
  void CheckPrototypeEnumCache(Node* receiver, Node* receiver_map,
                               Label* if_fast, Label* if_slow);
  Node* CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime);

  TNode<IntPtrT> GetArgumentsLength(CodeStubArguments* args);
  TNode<Object> GetArgumentValue(CodeStubArguments* args, TNode<IntPtrT> index);

  // Support for printf-style debugging
  void Print(const char* s);
  void Print(const char* prefix, Node* tagged_value);
  inline void Print(SloppyTNode<Object> tagged_value) {
    return Print(nullptr, tagged_value);
  }
  inline void Print(TNode<MaybeObject> tagged_value) {
    return Print(nullptr, tagged_value);
  }

  template <class... TArgs>
  Node* MakeTypeError(MessageTemplate::Template message, Node* context,
                      TArgs... args) {
    STATIC_ASSERT(sizeof...(TArgs) <= 3);
    Node* const make_type_error = LoadContextElement(
        LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
    return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
                  UndefinedConstant(), SmiConstant(message), args...);
  }

  void Abort(AbortReason reason) {
    CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason));
    Unreachable();
  }

  bool ConstexprBoolNot(bool value) { return !value; }

  bool ConstexprInt31Equal(int31_t a, int31_t b) { return a == b; }

  void PerformStackCheck(TNode<Context> context);

 protected:
  // Implements DescriptorArray::Search().
  void DescriptorLookup(SloppyTNode<Name> unique_name,
                        SloppyTNode<DescriptorArray> descriptors,
                        SloppyTNode<Uint32T> bitfield3, Label* if_found,
                        TVariable<IntPtrT>* var_name_index,
                        Label* if_not_found);

  // Implements TransitionArray::SearchName() - searches for first transition
  // entry with given name (note that there could be multiple entries with
  // the same name).
  void TransitionLookup(SloppyTNode<Name> unique_name,
                        SloppyTNode<TransitionArray> transitions,
                        Label* if_found, TVariable<IntPtrT>* var_name_index,
                        Label* if_not_found);

  // Implements generic search procedure like i::Search<Array>().
  template <typename Array>
  void Lookup(TNode<Name> unique_name, TNode<Array> array,
              TNode<Uint32T> number_of_valid_entries, Label* if_found,
              TVariable<IntPtrT>* var_name_index, Label* if_not_found);

  // Implements generic linear search procedure like i::LinearSearch<Array>().
  template <typename Array>
  void LookupLinear(TNode<Name> unique_name, TNode<Array> array,
                    TNode<Uint32T> number_of_valid_entries, Label* if_found,
                    TVariable<IntPtrT>* var_name_index, Label* if_not_found);

  // Implements generic binary search procedure like i::BinarySearch<Array>().
  template <typename Array>
  void LookupBinary(TNode<Name> unique_name, TNode<Array> array,
                    TNode<Uint32T> number_of_valid_entries, Label* if_found,
                    TVariable<IntPtrT>* var_name_index, Label* if_not_found);

  // Converts [Descriptor/Transition]Array entry number to a fixed array index.
  template <typename Array>
  TNode<IntPtrT> EntryIndexToIndex(TNode<Uint32T> entry_index);

  // Implements [Descriptor/Transition]Array::ToKeyIndex.
  template <typename Array>
  TNode<IntPtrT> ToKeyIndex(TNode<Uint32T> entry_index);

  // Implements [Descriptor/Transition]Array::GetKey.
  template <typename Array>
  TNode<Name> GetKey(TNode<Array> array, TNode<Uint32T> entry_index);

  // Implements DescriptorArray::GetDetails.
  TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors,
                                           TNode<Uint32T> descriptor_number);

  typedef std::function<void(TNode<UintPtrT> descriptor_key_index)>
      ForEachDescriptorBodyFunction;

  void DescriptorArrayForEach(VariableList& variable_list,
                              TNode<Uint32T> start_descriptor,
                              TNode<Uint32T> end_descriptor,
                              const ForEachDescriptorBodyFunction& body);

  TNode<Object> CallGetterIfAccessor(Node* value, Node* details, Node* context,
                                     Node* receiver, Label* if_bailout,
                                     GetOwnPropertyMode mode = kCallJSGetter);

  TNode<IntPtrT> TryToIntptr(Node* key, Label* miss);

  void BranchIfPrototypesHaveNoElements(Node* receiver_map,
                                        Label* definitely_no_elements,
                                        Label* possibly_elements);

  void InitializeFunctionContext(Node* native_context, Node* context,
                                 int slots);

 private:
  friend class CodeStubArguments;

  void HandleBreakOnNode();

  Node* AllocateRawDoubleAligned(Node* size_in_bytes, AllocationFlags flags,
                                 Node* top_address, Node* limit_address);
  Node* AllocateRawUnaligned(Node* size_in_bytes, AllocationFlags flags,
                             Node* top_adddress, Node* limit_address);
  Node* AllocateRaw(Node* size_in_bytes, AllocationFlags flags,
                    Node* top_address, Node* limit_address);
  // Allocate and return a JSArray of given total size in bytes with header
  // fields initialized.
  Node* AllocateUninitializedJSArray(Node* array_map, Node* length,
                                     Node* allocation_site,
                                     Node* size_in_bytes);

  TNode<BoolT> IsValidSmi(TNode<Smi> smi);
  Node* SmiShiftBitsConstant();

  // Emits keyed sloppy arguments load if the |value| is nullptr or store
  // otherwise. Returns either the loaded value or |value|.
  Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
                                 Label* bailout);

  TNode<String> AllocateSlicedString(Heap::RootListIndex map_root_index,
                                     TNode<Smi> length, TNode<String> parent,
                                     TNode<Smi> offset);

  TNode<String> AllocateConsString(Heap::RootListIndex map_root_index,
                                   TNode<Smi> length, TNode<String> first,
                                   TNode<String> second, AllocationFlags flags);

  // Allocate a MutableHeapNumber without initializing its value.
  TNode<MutableHeapNumber> AllocateMutableHeapNumber();

  Node* SelectImpl(TNode<BoolT> condition, const NodeGenerator& true_body,
                   const NodeGenerator& false_body, MachineRepresentation rep);

  // Implements [Descriptor/Transition]Array::number_of_entries.
  template <typename Array>
  TNode<Uint32T> NumberOfEntries(TNode<Array> array);

  // Implements [Descriptor/Transition]Array::GetSortedKeyIndex.
  template <typename Array>
  TNode<Uint32T> GetSortedKeyIndex(TNode<Array> descriptors,
                                   TNode<Uint32T> entry_index);

  TNode<Smi> CollectFeedbackForString(SloppyTNode<Int32T> instance_type);
  void GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal,
                          Variable* var_type_feedback = nullptr);
  TNode<String> AllocAndCopyStringCharacters(Node* from,
                                             Node* from_instance_type,
                                             TNode<IntPtrT> from_index,
                                             TNode<Smi> character_count);

  static const int kElementLoopUnrollThreshold = 8;

  // {convert_bigint} is only meaningful when {mode} == kToNumber.
  Node* NonNumberToNumberOrNumeric(
      Node* context, Node* input, Object::Conversion mode,
      BigIntHandling bigint_handling = BigIntHandling::kThrow);

  void TaggedToNumeric(Node* context, Node* value, Label* done,
                       Variable* var_numeric, Variable* var_feedback);

  template <Object::Conversion conversion>
  void TaggedToWord32OrBigIntImpl(Node* context, Node* value, Label* if_number,
                                  Variable* var_word32,
                                  Label* if_bigint = nullptr,
                                  Variable* var_bigint = nullptr,
                                  Variable* var_feedback = nullptr);
};

class CodeStubArguments {
 public:
  typedef compiler::Node Node;
  template <class T>
  using TNode = compiler::TNode<T>;
  template <class T>
  using SloppyTNode = compiler::SloppyTNode<T>;
  enum ReceiverMode { kHasReceiver, kNoReceiver };

  // |argc| is an intptr value which specifies the number of arguments passed
  // to the builtin excluding the receiver. The arguments will include a
  // receiver iff |receiver_mode| is kHasReceiver.
  CodeStubArguments(CodeStubAssembler* assembler, Node* argc,
                    ReceiverMode receiver_mode = ReceiverMode::kHasReceiver)
      : CodeStubArguments(assembler, argc, nullptr,
                          CodeStubAssembler::INTPTR_PARAMETERS, receiver_mode) {
  }

  // |argc| is either a smi or intptr depending on |param_mode|. The arguments
  // include a receiver iff |receiver_mode| is kHasReceiver.
  CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
                    CodeStubAssembler::ParameterMode param_mode,
                    ReceiverMode receiver_mode = ReceiverMode::kHasReceiver);

  TNode<Object> GetReceiver() const;
  // Replaces receiver argument on the expression stack. Should be used only
  // for manipulating arguments in trampoline builtins before tail calling
  // further with passing all the JS arguments as is.
  void SetReceiver(TNode<Object> object) const;

  TNode<RawPtr<Object>> AtIndexPtr(
      Node* index, CodeStubAssembler::ParameterMode mode =
                       CodeStubAssembler::INTPTR_PARAMETERS) const;

  // |index| is zero-based and does not include the receiver
  TNode<Object> AtIndex(Node* index,
                        CodeStubAssembler::ParameterMode mode =
                            CodeStubAssembler::INTPTR_PARAMETERS) const;

  TNode<Object> AtIndex(int index) const;

  TNode<Object> GetOptionalArgumentValue(int index) {
    return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
  }
  TNode<Object> GetOptionalArgumentValue(int index,
                                         TNode<Object> default_value);

  Node* GetLength(CodeStubAssembler::ParameterMode mode) const {
    DCHECK_EQ(mode, argc_mode_);
    return argc_;
  }

  TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index) {
    return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
  }
  TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index,
                                         TNode<Object> default_value);
  TNode<IntPtrT> GetLength() const {
    DCHECK_EQ(argc_mode_, CodeStubAssembler::INTPTR_PARAMETERS);
    return assembler_->UncheckedCast<IntPtrT>(argc_);
  }

  typedef std::function<void(Node* arg)> ForEachBodyFunction;

  // Iteration doesn't include the receiver. |first| and |last| are zero-based.
  void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
               Node* last = nullptr,
               CodeStubAssembler::ParameterMode mode =
                   CodeStubAssembler::INTPTR_PARAMETERS) {
    CodeStubAssembler::VariableList list(0, assembler_->zone());
    ForEach(list, body, first, last);
  }

  // Iteration doesn't include the receiver. |first| and |last| are zero-based.
  void ForEach(const CodeStubAssembler::VariableList& vars,
               const ForEachBodyFunction& body, Node* first = nullptr,
               Node* last = nullptr,
               CodeStubAssembler::ParameterMode mode =
                   CodeStubAssembler::INTPTR_PARAMETERS);

  void PopAndReturn(Node* value);

 private:
  Node* GetArguments();

  CodeStubAssembler* assembler_;
  CodeStubAssembler::ParameterMode argc_mode_;
  ReceiverMode receiver_mode_;
  Node* argc_;
  TNode<RawPtr<Object>> arguments_;
  Node* fp_;
};

class ToDirectStringAssembler : public CodeStubAssembler {
 private:
  enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING };

 public:
  enum Flag {
    kDontUnpackSlicedStrings = 1 << 0,
  };
  typedef base::Flags<Flag> Flags;

  ToDirectStringAssembler(compiler::CodeAssemblerState* state, Node* string,
                          Flags flags = Flags());

  // Converts flat cons, thin, and sliced strings and returns the direct
  // string. The result can be either a sequential or external string.
  // Jumps to if_bailout if the string if the string is indirect and cannot
  // be unpacked.
  TNode<String> TryToDirect(Label* if_bailout);

  // Returns a pointer to the beginning of the string data.
  // Jumps to if_bailout if the external string cannot be unpacked.
  TNode<RawPtrT> PointerToData(Label* if_bailout) {
    return TryToSequential(PTR_TO_DATA, if_bailout);
  }

  // Returns a pointer that, offset-wise, looks like a String.
  // Jumps to if_bailout if the external string cannot be unpacked.
  TNode<RawPtrT> PointerToString(Label* if_bailout) {
    return TryToSequential(PTR_TO_STRING, if_bailout);
  }

  Node* string() { return var_string_.value(); }
  Node* instance_type() { return var_instance_type_.value(); }
  TNode<IntPtrT> offset() {
    return UncheckedCast<IntPtrT>(var_offset_.value());
  }
  Node* is_external() { return var_is_external_.value(); }

 private:
  TNode<RawPtrT> TryToSequential(StringPointerKind ptr_kind, Label* if_bailout);

  Variable var_string_;
  Variable var_instance_type_;
  Variable var_offset_;
  Variable var_is_external_;

  const Flags flags_;
};


DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags);

}  // namespace internal
}  // namespace v8
#endif  // V8_CODE_STUB_ASSEMBLER_H_