summaryrefslogtreecommitdiff
path: root/deps/v8/src/builtins/builtins-call-gen.cc
blob: fd1ad5bb67c0de5dea4405b47df2d83cd10f1b3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/builtins/builtins-call-gen.h"

#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/codegen/macro-assembler.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/execution/protectors.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/arguments.h"
#include "src/objects/property-cell.h"
#include "src/objects/templates.h"

namespace v8 {
namespace internal {

void Builtins::Generate_CallFunction_ReceiverIsNullOrUndefined(
    MacroAssembler* masm) {
  Generate_CallFunction(masm, ConvertReceiverMode::kNullOrUndefined);
}

void Builtins::Generate_CallFunction_ReceiverIsNotNullOrUndefined(
    MacroAssembler* masm) {
  Generate_CallFunction(masm, ConvertReceiverMode::kNotNullOrUndefined);
}

void Builtins::Generate_CallFunction_ReceiverIsAny(MacroAssembler* masm) {
  Generate_CallFunction(masm, ConvertReceiverMode::kAny);
}

void Builtins::Generate_CallBoundFunction(MacroAssembler* masm) {
  Generate_CallBoundFunctionImpl(masm);
}

void Builtins::Generate_Call_ReceiverIsNullOrUndefined(MacroAssembler* masm) {
  Generate_Call(masm, ConvertReceiverMode::kNullOrUndefined);
}

void Builtins::Generate_Call_ReceiverIsNotNullOrUndefined(
    MacroAssembler* masm) {
  Generate_Call(masm, ConvertReceiverMode::kNotNullOrUndefined);
}

void Builtins::Generate_Call_ReceiverIsAny(MacroAssembler* masm) {
  Generate_Call(masm, ConvertReceiverMode::kAny);
}

void Builtins::Generate_CallVarargs(MacroAssembler* masm) {
  Generate_CallOrConstructVarargs(masm, masm->isolate()->builtins()->Call());
}

void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm) {
  Generate_CallOrConstructForwardVarargs(masm, CallOrConstructMode::kCall,
                                         masm->isolate()->builtins()->Call());
}

void Builtins::Generate_CallFunctionForwardVarargs(MacroAssembler* masm) {
  Generate_CallOrConstructForwardVarargs(
      masm, CallOrConstructMode::kCall,
      masm->isolate()->builtins()->CallFunction());
}

void CallOrConstructBuiltinsAssembler::CallOrConstructWithArrayLike(
    TNode<Object> target, SloppyTNode<Object> new_target,
    TNode<Object> arguments_list, TNode<Context> context) {
  Label if_done(this), if_arguments(this), if_array(this),
      if_holey_array(this, Label::kDeferred),
      if_runtime(this, Label::kDeferred);

  // Perform appropriate checks on {target} (and {new_target} first).
  if (new_target == nullptr) {
    // Check that {target} is Callable.
    Label if_target_callable(this),
        if_target_not_callable(this, Label::kDeferred);
    GotoIf(TaggedIsSmi(target), &if_target_not_callable);
    Branch(IsCallable(CAST(target)), &if_target_callable,
           &if_target_not_callable);
    BIND(&if_target_not_callable);
    {
      CallRuntime(Runtime::kThrowApplyNonFunction, context, target);
      Unreachable();
    }
    BIND(&if_target_callable);
  } else {
    // Check that {target} is a Constructor.
    Label if_target_constructor(this),
        if_target_not_constructor(this, Label::kDeferred);
    GotoIf(TaggedIsSmi(target), &if_target_not_constructor);
    Branch(IsConstructor(CAST(target)), &if_target_constructor,
           &if_target_not_constructor);
    BIND(&if_target_not_constructor);
    {
      CallRuntime(Runtime::kThrowNotConstructor, context, target);
      Unreachable();
    }
    BIND(&if_target_constructor);

    // Check that {new_target} is a Constructor.
    Label if_new_target_constructor(this),
        if_new_target_not_constructor(this, Label::kDeferred);
    GotoIf(TaggedIsSmi(new_target), &if_new_target_not_constructor);
    Branch(IsConstructor(CAST(new_target)), &if_new_target_constructor,
           &if_new_target_not_constructor);
    BIND(&if_new_target_not_constructor);
    {
      CallRuntime(Runtime::kThrowNotConstructor, context, new_target);
      Unreachable();
    }
    BIND(&if_new_target_constructor);
  }

  GotoIf(TaggedIsSmi(arguments_list), &if_runtime);

  TNode<Map> arguments_list_map = LoadMap(CAST(arguments_list));
  TNode<NativeContext> native_context = LoadNativeContext(context);

  // Check if {arguments_list} is an (unmodified) arguments object.
  TNode<Map> sloppy_arguments_map = CAST(
      LoadContextElement(native_context, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
  GotoIf(TaggedEqual(arguments_list_map, sloppy_arguments_map), &if_arguments);
  TNode<Map> strict_arguments_map = CAST(
      LoadContextElement(native_context, Context::STRICT_ARGUMENTS_MAP_INDEX));
  GotoIf(TaggedEqual(arguments_list_map, strict_arguments_map), &if_arguments);

  // Check if {arguments_list} is a fast JSArray.
  Branch(IsJSArrayMap(arguments_list_map), &if_array, &if_runtime);

  TVARIABLE(FixedArrayBase, var_elements);
  TVARIABLE(Int32T, var_length);
  BIND(&if_array);
  {
    TNode<JSObject> js_object = CAST(arguments_list);
    // Try to extract the elements from a JSArray object.
    var_elements = LoadElements(js_object);
    var_length =
        LoadAndUntagToWord32ObjectField(js_object, JSArray::kLengthOffset);

    // Holey arrays and double backing stores need special treatment.
    STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
    STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
    STATIC_ASSERT(PACKED_ELEMENTS == 2);
    STATIC_ASSERT(HOLEY_ELEMENTS == 3);
    STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
    STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
    STATIC_ASSERT(LAST_FAST_ELEMENTS_KIND == HOLEY_DOUBLE_ELEMENTS);

    TNode<Int32T> kind = LoadMapElementsKind(arguments_list_map);

    GotoIf(
        IsElementsKindGreaterThan(kind, LAST_ANY_NONEXTENSIBLE_ELEMENTS_KIND),
        &if_runtime);
    Branch(Word32And(kind, Int32Constant(1)), &if_holey_array, &if_done);
  }

  BIND(&if_holey_array);
  {
    // For holey JSArrays we need to check that the array prototype chain
    // protector is intact and our prototype is the Array.prototype actually.
    GotoIfNot(IsPrototypeInitialArrayPrototype(context, arguments_list_map),
              &if_runtime);
    Branch(IsNoElementsProtectorCellInvalid(), &if_runtime, &if_done);
  }

  BIND(&if_arguments);
  {
    TNode<JSArgumentsObject> js_arguments = CAST(arguments_list);
    // Try to extract the elements from an JSArgumentsObjectWithLength.
    TNode<Object> length = LoadObjectField(
        js_arguments, JSArgumentsObjectWithLength::kLengthOffset);
    TNode<FixedArrayBase> elements = LoadElements(js_arguments);
    TNode<Smi> elements_length = LoadFixedArrayBaseLength(elements);
    GotoIfNot(TaggedEqual(length, elements_length), &if_runtime);
    var_elements = elements;
    var_length = SmiToInt32(CAST(length));
    Goto(&if_done);
  }

  BIND(&if_runtime);
  {
    // Ask the runtime to create the list (actually a FixedArray).
    var_elements = CAST(CallRuntime(Runtime::kCreateListFromArrayLike, context,
                                    arguments_list));
    var_length = LoadAndUntagToWord32ObjectField(var_elements.value(),
                                                 FixedArray::kLengthOffset);
    Goto(&if_done);
  }

  // Tail call to the appropriate builtin (depending on whether we have
  // a {new_target} passed).
  BIND(&if_done);
  {
    Label if_not_double(this), if_double(this);
    TNode<Int32T> args_count = Int32Constant(0);  // args already on the stack

    TNode<Int32T> length = var_length.value();
    {
      Label normalize_done(this);
      CSA_ASSERT(this, Int32LessThanOrEqual(
                           length, Int32Constant(FixedArray::kMaxLength)));
      GotoIfNot(Word32Equal(length, Int32Constant(0)), &normalize_done);
      // Make sure we don't accidentally pass along the
      // empty_fixed_double_array since the tailed-called stubs cannot handle
      // the normalization yet.
      var_elements = EmptyFixedArrayConstant();
      Goto(&normalize_done);

      BIND(&normalize_done);
    }

    TNode<FixedArrayBase> elements = var_elements.value();
    Branch(IsFixedDoubleArray(elements), &if_double, &if_not_double);

    BIND(&if_not_double);
    {
      if (new_target == nullptr) {
        Callable callable = CodeFactory::CallVarargs(isolate());
        TailCallStub(callable, context, target, args_count, length, elements);
      } else {
        Callable callable = CodeFactory::ConstructVarargs(isolate());
        TailCallStub(callable, context, target, new_target, args_count, length,
                     elements);
      }
    }

    BIND(&if_double);
    {
      // Kind is hardcoded here because CreateListFromArrayLike will only
      // produce holey double arrays.
      CallOrConstructDoubleVarargs(target, new_target, CAST(elements), length,
                                   args_count, context,
                                   Int32Constant(HOLEY_DOUBLE_ELEMENTS));
    }
  }
}

// Takes a FixedArray of doubles and creates a new FixedArray with those doubles
// boxed as HeapNumbers, then tail calls CallVarargs/ConstructVarargs depending
// on whether {new_target} was passed.
void CallOrConstructBuiltinsAssembler::CallOrConstructDoubleVarargs(
    TNode<Object> target, SloppyTNode<Object> new_target,
    TNode<FixedDoubleArray> elements, TNode<Int32T> length,
    TNode<Int32T> args_count, TNode<Context> context, TNode<Int32T> kind) {
  const ElementsKind new_kind = PACKED_ELEMENTS;
  const WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER;
  CSA_ASSERT(this, Int32LessThanOrEqual(length,
                                        Int32Constant(FixedArray::kMaxLength)));
  TNode<IntPtrT> intptr_length = ChangeInt32ToIntPtr(length);
  CSA_ASSERT(this, WordNotEqual(intptr_length, IntPtrConstant(0)));

  // Allocate a new FixedArray of Objects.
  TNode<FixedArray> new_elements = CAST(AllocateFixedArray(
      new_kind, intptr_length, CodeStubAssembler::kAllowLargeObjectAllocation));
  // CopyFixedArrayElements does not distinguish between holey and packed for
  // its first argument, so we don't need to dispatch on {kind} here.
  CopyFixedArrayElements(PACKED_DOUBLE_ELEMENTS, elements, new_kind,
                         new_elements, intptr_length, intptr_length,
                         barrier_mode);
  if (new_target == nullptr) {
    Callable callable = CodeFactory::CallVarargs(isolate());
    TailCallStub(callable, context, target, args_count, length, new_elements);
  } else {
    Callable callable = CodeFactory::ConstructVarargs(isolate());
    TailCallStub(callable, context, target, new_target, args_count, length,
                 new_elements);
  }
}

void CallOrConstructBuiltinsAssembler::CallOrConstructWithSpread(
    TNode<Object> target, TNode<Object> new_target, TNode<Object> spread,
    TNode<Int32T> args_count, TNode<Context> context) {
  Label if_smiorobject(this), if_double(this),
      if_generic(this, Label::kDeferred);

  TVARIABLE(Int32T, var_length);
  TVARIABLE(FixedArrayBase, var_elements);
  TVARIABLE(Int32T, var_elements_kind);

  GotoIf(TaggedIsSmi(spread), &if_generic);
  TNode<Map> spread_map = LoadMap(CAST(spread));
  GotoIfNot(IsJSArrayMap(spread_map), &if_generic);
  TNode<JSArray> spread_array = CAST(spread);

  // Check that we have the original Array.prototype.
  GotoIfNot(IsPrototypeInitialArrayPrototype(context, spread_map), &if_generic);

  // Check that there are no elements on the Array.prototype chain.
  GotoIf(IsNoElementsProtectorCellInvalid(), &if_generic);

  // Check that the Array.prototype hasn't been modified in a way that would
  // affect iteration.
  TNode<PropertyCell> protector_cell = ArrayIteratorProtectorConstant();
  GotoIf(
      TaggedEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset),
                  SmiConstant(Protectors::kProtectorInvalid)),
      &if_generic);
  {
    // The fast-path accesses the {spread} elements directly.
    TNode<Int32T> spread_kind = LoadMapElementsKind(spread_map);
    var_elements_kind = spread_kind;
    var_length =
        LoadAndUntagToWord32ObjectField(spread_array, JSArray::kLengthOffset);
    var_elements = LoadElements(spread_array);

    // Check elements kind of {spread}.
    GotoIf(IsElementsKindLessThanOrEqual(spread_kind, HOLEY_ELEMENTS),
           &if_smiorobject);
    GotoIf(IsElementsKindLessThanOrEqual(spread_kind, LAST_FAST_ELEMENTS_KIND),
           &if_double);
    Branch(IsElementsKindLessThanOrEqual(spread_kind,
                                         LAST_ANY_NONEXTENSIBLE_ELEMENTS_KIND),
           &if_smiorobject, &if_generic);
  }

  BIND(&if_generic);
  {
    Label if_iterator_fn_not_callable(this, Label::kDeferred);
    TNode<Object> iterator_fn =
        GetProperty(context, spread, IteratorSymbolConstant());
    GotoIfNot(TaggedIsCallable(iterator_fn), &if_iterator_fn_not_callable);
    TNode<JSArray> list =
        CAST(CallBuiltin(Builtins::kIterableToListMayPreserveHoles, context,
                         spread, iterator_fn));
    var_length = LoadAndUntagToWord32ObjectField(list, JSArray::kLengthOffset);

    var_elements = LoadElements(list);
    var_elements_kind = LoadElementsKind(list);
    Branch(Int32LessThan(var_elements_kind.value(),
                         Int32Constant(PACKED_DOUBLE_ELEMENTS)),
           &if_smiorobject, &if_double);

    BIND(&if_iterator_fn_not_callable);
    ThrowTypeError(context, MessageTemplate::kIteratorSymbolNonCallable);
  }

  BIND(&if_smiorobject);
  {
    TNode<FixedArrayBase> elements = var_elements.value();
    TNode<Int32T> length = var_length.value();
    CSA_ASSERT(this, Int32LessThanOrEqual(
                         length, Int32Constant(FixedArray::kMaxLength)));

    if (new_target == nullptr) {
      Callable callable = CodeFactory::CallVarargs(isolate());
      TailCallStub(callable, context, target, args_count, length, elements);
    } else {
      Callable callable = CodeFactory::ConstructVarargs(isolate());
      TailCallStub(callable, context, target, new_target, args_count, length,
                   elements);
    }
  }

  BIND(&if_double);
  {
    GotoIf(Word32Equal(var_length.value(), Int32Constant(0)), &if_smiorobject);
    CallOrConstructDoubleVarargs(target, new_target, CAST(var_elements.value()),
                                 var_length.value(), args_count, context,
                                 var_elements_kind.value());
  }
}

TF_BUILTIN(CallWithArrayLike, CallOrConstructBuiltinsAssembler) {
  TNode<Object> target = CAST(Parameter(Descriptor::kTarget));
  SloppyTNode<Object> new_target = nullptr;
  TNode<Object> arguments_list = CAST(Parameter(Descriptor::kArgumentsList));
  TNode<Context> context = CAST(Parameter(Descriptor::kContext));
  CallOrConstructWithArrayLike(target, new_target, arguments_list, context);
}

TF_BUILTIN(CallWithSpread, CallOrConstructBuiltinsAssembler) {
  TNode<Object> target = CAST(Parameter(Descriptor::kTarget));
  SloppyTNode<Object> new_target = nullptr;
  TNode<Object> spread = CAST(Parameter(Descriptor::kSpread));
  TNode<Int32T> args_count =
      UncheckedCast<Int32T>(Parameter(Descriptor::kArgumentsCount));
  TNode<Context> context = CAST(Parameter(Descriptor::kContext));
  CallOrConstructWithSpread(target, new_target, spread, args_count, context);
}

TNode<JSReceiver> CallOrConstructBuiltinsAssembler::GetCompatibleReceiver(
    TNode<JSReceiver> receiver, TNode<HeapObject> signature,
    TNode<Context> context) {
  // Walk up the hidden prototype chain to find the compatible holder
  // for the {signature}, starting with the {receiver} itself.
  //
  // Be careful, these loops are hand-tuned for (close to) ideal CSA
  // code generation. Especially the sharing of the {var_template}
  // below is intentional (even though it reads a bit funny in the
  // first loop).
  TVARIABLE(HeapObject, var_holder, receiver);
  Label holder_loop(this, &var_holder), holder_found(this, &var_holder),
      holder_next(this, Label::kDeferred);
  Goto(&holder_loop);
  BIND(&holder_loop);
  {
    // Find the template to compare against the {signature}. We don't
    // bother checking that the template is a FunctionTemplateInfo here,
    // but instead do that as part of the template loop below. The only
    // thing we care about is that the template is actually a HeapObject.
    TNode<HeapObject> holder = var_holder.value();
    TVARIABLE(HeapObject, var_template, LoadMap(holder));
    Label template_map_loop(this, &var_template),
        template_loop(this, &var_template),
        template_from_closure(this, &var_template);
    Goto(&template_map_loop);
    BIND(&template_map_loop);
    {
      // Load the constructor field from the current map (in the
      // {var_template} variable), and see if that is a HeapObject.
      // If it's a Smi then it is non-instance prototype on some
      // initial map, which cannot be the case for API instances.
      TNode<Object> constructor = LoadObjectField(
          var_template.value(), Map::kConstructorOrBackPointerOffset);
      GotoIf(TaggedIsSmi(constructor), &holder_next);

      // Now there are three cases for {constructor} that we care
      // about here:
      //
      //  1. {constructor} is a JSFunction, and we can load the template
      //     from its SharedFunctionInfo::function_data field (which
      //     may not actually be a FunctionTemplateInfo).
      //  2. {constructor} is a Map, in which case it's not a constructor
      //     but a back-pointer and we follow that.
      //  3. {constructor} is a FunctionTemplateInfo (or some other
      //     HeapObject), in which case we can directly use that for
      //     the template loop below (non-FunctionTemplateInfo objects
      //     will be ruled out there).
      //
      var_template = CAST(constructor);
      TNode<Uint16T> template_type = LoadInstanceType(var_template.value());
      GotoIf(InstanceTypeEqual(template_type, JS_FUNCTION_TYPE),
             &template_from_closure);
      Branch(InstanceTypeEqual(template_type, MAP_TYPE), &template_map_loop,
             &template_loop);
    }

    BIND(&template_from_closure);
    {
      // The first case from above, where we load the template from the
      // SharedFunctionInfo of the closure. We only check that the
      // SharedFunctionInfo::function_data is a HeapObject and blindly
      // use that as a template, since a non-FunctionTemplateInfo objects
      // will be ruled out automatically by the template loop below.
      TNode<SharedFunctionInfo> template_shared =
          LoadObjectField<SharedFunctionInfo>(
              var_template.value(), JSFunction::kSharedFunctionInfoOffset);
      TNode<Object> template_data = LoadObjectField(
          template_shared, SharedFunctionInfo::kFunctionDataOffset);
      GotoIf(TaggedIsSmi(template_data), &holder_next);
      var_template = CAST(template_data);
      Goto(&template_loop);
    }

    BIND(&template_loop);
    {
      // This loop compares the template to the expected {signature},
      // following the chain of parent templates until it hits the
      // end, in which case we continue with the next holder (the
      // hidden prototype) if there's any.
      TNode<HeapObject> current = var_template.value();
      GotoIf(TaggedEqual(current, signature), &holder_found);

      GotoIfNot(IsFunctionTemplateInfoMap(LoadMap(current)), &holder_next);

      TNode<HeapObject> current_rare = LoadObjectField<HeapObject>(
          current, FunctionTemplateInfo::kRareDataOffset);
      GotoIf(IsUndefined(current_rare), &holder_next);
      var_template = LoadObjectField<HeapObject>(
          current_rare, FunctionTemplateRareData::kParentTemplateOffset);
      Goto(&template_loop);
    }

    BIND(&holder_next);
    {
      // Continue with the hidden prototype of the {holder} if it is a
      // JSGlobalProxy (the hidden prototype can either be null or a
      // JSObject in that case), or throw an illegal invocation exception,
      // since the receiver did not pass the {signature} check.
      TNode<Map> holder_map = LoadMap(holder);
      var_holder = LoadMapPrototype(holder_map);
      GotoIf(IsJSGlobalProxyMap(holder_map), &holder_loop);
      ThrowTypeError(context, MessageTemplate::kIllegalInvocation);
    }
  }

  BIND(&holder_found);
  return CAST(var_holder.value());
}

// This calls an API callback by passing a {FunctionTemplateInfo},
// does appropriate access and compatible receiver checks.
void CallOrConstructBuiltinsAssembler::CallFunctionTemplate(
    CallFunctionTemplateMode mode,
    TNode<FunctionTemplateInfo> function_template_info, TNode<IntPtrT> argc,
    TNode<Context> context) {
  CodeStubArguments args(this, argc);
  Label throw_illegal_invocation(this, Label::kDeferred);

  // For API callbacks the receiver is always a JSReceiver (since
  // they are treated like sloppy mode functions). We might need
  // to perform access checks in the current {context}, depending
  // on whether the "needs access check" bit is set on the receiver
  // _and_ the {function_template_info} doesn't have the "accepts
  // any receiver" bit set.
  TNode<JSReceiver> receiver = CAST(args.GetReceiver());
  if (mode == CallFunctionTemplateMode::kCheckAccess ||
      mode == CallFunctionTemplateMode::kCheckAccessAndCompatibleReceiver) {
    TNode<Map> receiver_map = LoadMap(receiver);
    Label receiver_needs_access_check(this, Label::kDeferred),
        receiver_done(this);
    GotoIfNot(
        IsSetWord32<Map::IsAccessCheckNeededBit>(LoadMapBitField(receiver_map)),
        &receiver_done);
    TNode<IntPtrT> function_template_info_flags = LoadAndUntagObjectField(
        function_template_info, FunctionTemplateInfo::kFlagOffset);
    Branch(IsSetWord(function_template_info_flags,
                     1 << FunctionTemplateInfo::kAcceptAnyReceiver),
           &receiver_done, &receiver_needs_access_check);

    BIND(&receiver_needs_access_check);
    {
      CallRuntime(Runtime::kAccessCheck, context, receiver);
      Goto(&receiver_done);
    }

    BIND(&receiver_done);
  }

  // Figure out the API holder for the {receiver} depending on the
  // {mode} and the signature on the {function_template_info}.
  TNode<JSReceiver> holder;
  if (mode == CallFunctionTemplateMode::kCheckAccess) {
    // We did the access check (including the ToObject) above, so
    // {receiver} is a JSReceiver at this point, and we don't need
    // to perform any "compatible receiver check", so {holder} is
    // actually the {receiver}.
    holder = receiver;
  } else {
    // If the {function_template_info} doesn't specify any signature, we
    // just use the receiver as the holder for the API callback, otherwise
    // we need to look for a compatible holder in the receiver's hidden
    // prototype chain.
    TNode<HeapObject> signature = LoadObjectField<HeapObject>(
        function_template_info, FunctionTemplateInfo::kSignatureOffset);
    holder = Select<JSReceiver>(
        IsUndefined(signature),  // --
        [&]() { return receiver; },
        [&]() { return GetCompatibleReceiver(receiver, signature, context); });
  }

  // Perform the actual API callback invocation via CallApiCallback.
  TNode<CallHandlerInfo> call_handler_info = LoadObjectField<CallHandlerInfo>(
      function_template_info, FunctionTemplateInfo::kCallCodeOffset);
  TNode<Foreign> foreign = LoadObjectField<Foreign>(
      call_handler_info, CallHandlerInfo::kJsCallbackOffset);
  TNode<RawPtrT> callback =
      LoadObjectField<RawPtrT>(foreign, Foreign::kForeignAddressOffset);
  TNode<Object> call_data =
      LoadObjectField<Object>(call_handler_info, CallHandlerInfo::kDataOffset);
  TailCallStub(CodeFactory::CallApiCallback(isolate()), context, callback, argc,
               call_data, holder);
}

TF_BUILTIN(CallFunctionTemplate_CheckAccess, CallOrConstructBuiltinsAssembler) {
  TNode<Context> context = CAST(Parameter(Descriptor::kContext));
  TNode<FunctionTemplateInfo> function_template_info =
      CAST(Parameter(Descriptor::kFunctionTemplateInfo));
  TNode<IntPtrT> argc =
      UncheckedCast<IntPtrT>(Parameter(Descriptor::kArgumentsCount));
  CallFunctionTemplate(CallFunctionTemplateMode::kCheckAccess,
                       function_template_info, argc, context);
}

TF_BUILTIN(CallFunctionTemplate_CheckCompatibleReceiver,
           CallOrConstructBuiltinsAssembler) {
  TNode<Context> context = CAST(Parameter(Descriptor::kContext));
  TNode<FunctionTemplateInfo> function_template_info =
      CAST(Parameter(Descriptor::kFunctionTemplateInfo));
  TNode<IntPtrT> argc =
      UncheckedCast<IntPtrT>(Parameter(Descriptor::kArgumentsCount));
  CallFunctionTemplate(CallFunctionTemplateMode::kCheckCompatibleReceiver,
                       function_template_info, argc, context);
}

TF_BUILTIN(CallFunctionTemplate_CheckAccessAndCompatibleReceiver,
           CallOrConstructBuiltinsAssembler) {
  TNode<Context> context = CAST(Parameter(Descriptor::kContext));
  TNode<FunctionTemplateInfo> function_template_info =
      CAST(Parameter(Descriptor::kFunctionTemplateInfo));
  TNode<IntPtrT> argc =
      UncheckedCast<IntPtrT>(Parameter(Descriptor::kArgumentsCount));
  CallFunctionTemplate(
      CallFunctionTemplateMode::kCheckAccessAndCompatibleReceiver,
      function_template_info, argc, context);
}

}  // namespace internal
}  // namespace v8