aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/base/small-vector.h
blob: 5138e65ab531763bdcb9f93c43eeca4ff3a1d6b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_BASE_SMALL_VECTOR_H_
#define V8_BASE_SMALL_VECTOR_H_

#include <type_traits>

#include "src/base/bits.h"
#include "src/base/macros.h"

namespace v8 {
namespace base {

// Minimal SmallVector implementation. Uses inline storage first, switches to
// malloc when it overflows.
template <typename T, size_t kInlineSize>
class SmallVector {
  // Currently only support trivially copyable and trivially destructible data
  // types, as it uses memcpy to copy elements and never calls destructors.
  ASSERT_TRIVIALLY_COPYABLE(T);
  STATIC_ASSERT(std::is_trivially_destructible<T>::value);

 public:
  SmallVector() = default;
  SmallVector(const SmallVector& other) V8_NOEXCEPT { *this = other; }
  SmallVector(SmallVector&& other) V8_NOEXCEPT { *this = std::move(other); }

  ~SmallVector() {
    if (is_big()) free(begin_);
  }

  SmallVector& operator=(const SmallVector& other) V8_NOEXCEPT {
    if (this == &other) return *this;
    size_t other_size = other.size();
    if (capacity() < other_size) {
      // Create large-enough heap-allocated storage.
      if (is_big()) free(begin_);
      begin_ = reinterpret_cast<T*>(malloc(sizeof(T) * other_size));
      end_of_storage_ = begin_ + other_size;
    }
    memcpy(begin_, other.begin_, sizeof(T) * other_size);
    end_ = begin_ + other_size;
    return *this;
  }

  SmallVector& operator=(SmallVector&& other) V8_NOEXCEPT {
    if (this == &other) return *this;
    if (other.is_big()) {
      if (is_big()) free(begin_);
      begin_ = other.begin_;
      end_ = other.end_;
      end_of_storage_ = other.end_of_storage_;
      other.reset();
    } else {
      DCHECK_GE(capacity(), other.size());  // Sanity check.
      size_t other_size = other.size();
      memcpy(begin_, other.begin_, sizeof(T) * other_size);
      end_ = begin_ + other_size;
    }
    return *this;
  }

  T* data() const { return begin_; }
  T* begin() const { return begin_; }
  T* end() const { return end_; }
  size_t size() const { return end_ - begin_; }
  bool empty() const { return end_ == begin_; }
  size_t capacity() const { return end_of_storage_ - begin_; }

  T& back() {
    DCHECK_NE(0, size());
    return end_[-1];
  }

  T& operator[](size_t index) {
    DCHECK_GT(size(), index);
    return begin_[index];
  }

  const T& operator[](size_t index) const {
    DCHECK_GT(size(), index);
    return begin_[index];
  }

  template <typename... Args>
  void emplace_back(Args&&... args) {
    if (V8_UNLIKELY(end_ == end_of_storage_)) Grow();
    new (end_) T(std::forward<Args>(args)...);
    ++end_;
  }

  void pop_back(size_t count = 1) {
    DCHECK_GE(size(), count);
    end_ -= count;
  }

  void resize_no_init(size_t new_size) {
    // Resizing without initialization is safe if T is trivially copyable.
    ASSERT_TRIVIALLY_COPYABLE(T);
    if (new_size > capacity()) Grow(new_size);
    end_ = begin_ + new_size;
  }

  // Clear without freeing any storage.
  void clear() { end_ = begin_; }

  // Clear and go back to inline storage.
  void reset() {
    begin_ = inline_storage_begin();
    end_ = begin_;
    end_of_storage_ = begin_ + kInlineSize;
  }

 private:
  T* begin_ = inline_storage_begin();
  T* end_ = begin_;
  T* end_of_storage_ = begin_ + kInlineSize;
  typename std::aligned_storage<sizeof(T) * kInlineSize, alignof(T)>::type
      inline_storage_;

  void Grow(size_t min_capacity = 0) {
    size_t in_use = end_ - begin_;
    size_t new_capacity =
        base::bits::RoundUpToPowerOfTwo(std::max(min_capacity, 2 * capacity()));
    T* new_storage = reinterpret_cast<T*>(malloc(sizeof(T) * new_capacity));
    memcpy(new_storage, begin_, sizeof(T) * in_use);
    if (is_big()) free(begin_);
    begin_ = new_storage;
    end_ = new_storage + in_use;
    end_of_storage_ = new_storage + new_capacity;
  }

  bool is_big() const { return begin_ != inline_storage_begin(); }

  T* inline_storage_begin() { return reinterpret_cast<T*>(&inline_storage_); }
  const T* inline_storage_begin() const {
    return reinterpret_cast<const T*>(&inline_storage_);
  }
};

}  // namespace base
}  // namespace v8

#endif  // V8_BASE_SMALL_VECTOR_H_