summaryrefslogtreecommitdiff
path: root/deps/v8/src/base/hashmap.h
blob: e3c47de6d7d8af647d6baa6b5069e4290a5ede2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// The reason we write our own hash map instead of using unordered_map in STL,
// is that STL containers use a mutex pool on debug build, which will lead to
// deadlock when we are using async signal handler.

#ifndef V8_BASE_HASHMAP_H_
#define V8_BASE_HASHMAP_H_

#include <stdlib.h>

#include "src/base/bits.h"
#include "src/base/logging.h"

namespace v8 {
namespace base {

class DefaultAllocationPolicy {
 public:
  V8_INLINE void* New(size_t size) { return malloc(size); }
  V8_INLINE static void Delete(void* p) { free(p); }
};

template <class AllocationPolicy>
class TemplateHashMapImpl {
 public:
  typedef bool (*MatchFun)(void* key1, void* key2);

  // The default capacity.  This is used by the call sites which want
  // to pass in a non-default AllocationPolicy but want to use the
  // default value of capacity specified by the implementation.
  static const uint32_t kDefaultHashMapCapacity = 8;

  // initial_capacity is the size of the initial hash map;
  // it must be a power of 2 (and thus must not be 0).
  TemplateHashMapImpl(MatchFun match,
                      uint32_t capacity = kDefaultHashMapCapacity,
                      AllocationPolicy allocator = AllocationPolicy());

  ~TemplateHashMapImpl();

  // HashMap entries are (key, value, hash) triplets.
  // Some clients may not need to use the value slot
  // (e.g. implementers of sets, where the key is the value).
  struct Entry {
    void* key;
    void* value;
    uint32_t hash;  // The full hash value for key
  };

  // If an entry with matching key is found, returns that entry.
  // Otherwise, NULL is returned.
  Entry* Lookup(void* key, uint32_t hash) const;

  // If an entry with matching key is found, returns that entry.
  // If no matching entry is found, a new entry is inserted with
  // corresponding key, key hash, and NULL value.
  Entry* LookupOrInsert(void* key, uint32_t hash,
                        AllocationPolicy allocator = AllocationPolicy());

  Entry* InsertNew(void* key, uint32_t hash,
                   AllocationPolicy allocator = AllocationPolicy());

  // Removes the entry with matching key.
  // It returns the value of the deleted entry
  // or null if there is no value for such key.
  void* Remove(void* key, uint32_t hash);

  // Empties the hash map (occupancy() == 0).
  void Clear();

  // The number of (non-empty) entries in the table.
  uint32_t occupancy() const { return occupancy_; }

  // The capacity of the table. The implementation
  // makes sure that occupancy is at most 80% of
  // the table capacity.
  uint32_t capacity() const { return capacity_; }

  // Iteration
  //
  // for (Entry* p = map.Start(); p != NULL; p = map.Next(p)) {
  //   ...
  // }
  //
  // If entries are inserted during iteration, the effect of
  // calling Next() is undefined.
  Entry* Start() const;
  Entry* Next(Entry* p) const;

  // Some match functions defined for convenience.
  static bool PointersMatch(void* key1, void* key2) { return key1 == key2; }

 private:
  MatchFun match_;
  Entry* map_;
  uint32_t capacity_;
  uint32_t occupancy_;

  Entry* map_end() const { return map_ + capacity_; }
  Entry* Probe(void* key, uint32_t hash) const;
  void Initialize(uint32_t capacity, AllocationPolicy allocator);
  void Resize(AllocationPolicy allocator);
};

typedef TemplateHashMapImpl<DefaultAllocationPolicy> HashMap;

template <class AllocationPolicy>
TemplateHashMapImpl<AllocationPolicy>::TemplateHashMapImpl(
    MatchFun match, uint32_t initial_capacity, AllocationPolicy allocator) {
  match_ = match;
  Initialize(initial_capacity, allocator);
}

template <class AllocationPolicy>
TemplateHashMapImpl<AllocationPolicy>::~TemplateHashMapImpl() {
  AllocationPolicy::Delete(map_);
}

template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Lookup(void* key, uint32_t hash) const {
  Entry* p = Probe(key, hash);
  return p->key != NULL ? p : NULL;
}

template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::LookupOrInsert(
    void* key, uint32_t hash, AllocationPolicy allocator) {
  // Find a matching entry.
  Entry* p = Probe(key, hash);
  if (p->key != NULL) {
    return p;
  }

  return InsertNew(key, hash, allocator);
}

template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::InsertNew(void* key, uint32_t hash,
                                                 AllocationPolicy allocator) {
  // Find a matching entry.
  Entry* p = Probe(key, hash);
  DCHECK(p->key == NULL);

  // No entry found; insert one.
  p->key = key;
  p->value = NULL;
  p->hash = hash;
  occupancy_++;

  // Grow the map if we reached >= 80% occupancy.
  if (occupancy_ + occupancy_ / 4 >= capacity_) {
    Resize(allocator);
    p = Probe(key, hash);
  }

  return p;
}

template <class AllocationPolicy>
void* TemplateHashMapImpl<AllocationPolicy>::Remove(void* key, uint32_t hash) {
  // Lookup the entry for the key to remove.
  Entry* p = Probe(key, hash);
  if (p->key == NULL) {
    // Key not found nothing to remove.
    return NULL;
  }

  void* value = p->value;
  // To remove an entry we need to ensure that it does not create an empty
  // entry that will cause the search for another entry to stop too soon. If all
  // the entries between the entry to remove and the next empty slot have their
  // initial position inside this interval, clearing the entry to remove will
  // not break the search. If, while searching for the next empty entry, an
  // entry is encountered which does not have its initial position between the
  // entry to remove and the position looked at, then this entry can be moved to
  // the place of the entry to remove without breaking the search for it. The
  // entry made vacant by this move is now the entry to remove and the process
  // starts over.
  // Algorithm from http://en.wikipedia.org/wiki/Open_addressing.

  // This guarantees loop termination as there is at least one empty entry so
  // eventually the removed entry will have an empty entry after it.
  DCHECK(occupancy_ < capacity_);

  // p is the candidate entry to clear. q is used to scan forwards.
  Entry* q = p;  // Start at the entry to remove.
  while (true) {
    // Move q to the next entry.
    q = q + 1;
    if (q == map_end()) {
      q = map_;
    }

    // All entries between p and q have their initial position between p and q
    // and the entry p can be cleared without breaking the search for these
    // entries.
    if (q->key == NULL) {
      break;
    }

    // Find the initial position for the entry at position q.
    Entry* r = map_ + (q->hash & (capacity_ - 1));

    // If the entry at position q has its initial position outside the range
    // between p and q it can be moved forward to position p and will still be
    // found. There is now a new candidate entry for clearing.
    if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) {
      *p = *q;
      p = q;
    }
  }

  // Clear the entry which is allowed to en emptied.
  p->key = NULL;
  occupancy_--;
  return value;
}

template <class AllocationPolicy>
void TemplateHashMapImpl<AllocationPolicy>::Clear() {
  // Mark all entries as empty.
  const Entry* end = map_end();
  for (Entry* p = map_; p < end; p++) {
    p->key = NULL;
  }
  occupancy_ = 0;
}

template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Start() const {
  return Next(map_ - 1);
}

template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Next(Entry* p) const {
  const Entry* end = map_end();
  DCHECK(map_ - 1 <= p && p < end);
  for (p++; p < end; p++) {
    if (p->key != NULL) {
      return p;
    }
  }
  return NULL;
}

template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Probe(void* key, uint32_t hash) const {
  DCHECK(key != NULL);

  DCHECK(base::bits::IsPowerOfTwo32(capacity_));
  Entry* p = map_ + (hash & (capacity_ - 1));
  const Entry* end = map_end();
  DCHECK(map_ <= p && p < end);

  DCHECK(occupancy_ < capacity_);  // Guarantees loop termination.
  while (p->key != NULL && (hash != p->hash || !match_(key, p->key))) {
    p++;
    if (p >= end) {
      p = map_;
    }
  }

  return p;
}

template <class AllocationPolicy>
void TemplateHashMapImpl<AllocationPolicy>::Initialize(
    uint32_t capacity, AllocationPolicy allocator) {
  DCHECK(base::bits::IsPowerOfTwo32(capacity));
  map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry)));
  if (map_ == NULL) {
    FATAL("Out of memory: HashMap::Initialize");
    return;
  }
  capacity_ = capacity;
  Clear();
}

template <class AllocationPolicy>
void TemplateHashMapImpl<AllocationPolicy>::Resize(AllocationPolicy allocator) {
  Entry* map = map_;
  uint32_t n = occupancy_;

  // Allocate larger map.
  Initialize(capacity_ * 2, allocator);

  // Rehash all current entries.
  for (Entry* p = map; n > 0; p++) {
    if (p->key != NULL) {
      Entry* entry = LookupOrInsert(p->key, p->hash, allocator);
      entry->value = p->value;
      n--;
    }
  }

  // Delete old map.
  AllocationPolicy::Delete(map);
}

// A hash map for pointer keys and values with an STL-like interface.
template <class Key, class Value, class AllocationPolicy>
class TemplateHashMap : private TemplateHashMapImpl<AllocationPolicy> {
 public:
  STATIC_ASSERT(sizeof(Key*) == sizeof(void*));    // NOLINT
  STATIC_ASSERT(sizeof(Value*) == sizeof(void*));  // NOLINT
  struct value_type {
    Key* first;
    Value* second;
  };

  class Iterator {
   public:
    Iterator& operator++() {
      entry_ = map_->Next(entry_);
      return *this;
    }

    value_type* operator->() { return reinterpret_cast<value_type*>(entry_); }
    bool operator!=(const Iterator& other) { return entry_ != other.entry_; }

   private:
    Iterator(const TemplateHashMapImpl<AllocationPolicy>* map,
             typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry)
        : map_(map), entry_(entry) {}

    const TemplateHashMapImpl<AllocationPolicy>* map_;
    typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry_;

    friend class TemplateHashMap;
  };

  TemplateHashMap(
      typename TemplateHashMapImpl<AllocationPolicy>::MatchFun match,
      AllocationPolicy allocator = AllocationPolicy())
      : TemplateHashMapImpl<AllocationPolicy>(
            match,
            TemplateHashMapImpl<AllocationPolicy>::kDefaultHashMapCapacity,
            allocator) {}

  Iterator begin() const { return Iterator(this, this->Start()); }
  Iterator end() const { return Iterator(this, NULL); }
  Iterator find(Key* key, bool insert = false,
                AllocationPolicy allocator = AllocationPolicy()) {
    if (insert) {
      return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator));
    }
    return Iterator(this, this->Lookup(key, key->Hash()));
  }
};

}  // namespace base
}  // namespace v8

#endif  // V8_BASE_HASHMAP_H_