summaryrefslogtreecommitdiff
path: root/deps/v8/src/base/bits.h
blob: 4ba3c47ad96acb1d4923ca8493ca024070e99259 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_BASE_BITS_H_
#define V8_BASE_BITS_H_

#include <stdint.h>
#include "src/base/macros.h"
#if V8_CC_MSVC
#include <intrin.h>
#endif
#if V8_OS_WIN32
#include "src/base/win32-headers.h"
#endif

namespace v8 {
namespace base {
namespace bits {

// CountPopulation32(value) returns the number of bits set in |value|.
inline unsigned CountPopulation32(uint32_t value) {
#if V8_HAS_BUILTIN_POPCOUNT
  return __builtin_popcount(value);
#else
  value = ((value >> 1) & 0x55555555) + (value & 0x55555555);
  value = ((value >> 2) & 0x33333333) + (value & 0x33333333);
  value = ((value >> 4) & 0x0f0f0f0f) + (value & 0x0f0f0f0f);
  value = ((value >> 8) & 0x00ff00ff) + (value & 0x00ff00ff);
  value = ((value >> 16) & 0x0000ffff) + (value & 0x0000ffff);
  return static_cast<unsigned>(value);
#endif
}


// CountPopulation64(value) returns the number of bits set in |value|.
inline unsigned CountPopulation64(uint64_t value) {
#if V8_HAS_BUILTIN_POPCOUNT
  return __builtin_popcountll(value);
#else
  return CountPopulation32(static_cast<uint32_t>(value)) +
         CountPopulation32(static_cast<uint32_t>(value >> 32));
#endif
}


// Overloaded versions of CountPopulation32/64.
inline unsigned CountPopulation(uint32_t value) {
  return CountPopulation32(value);
}


inline unsigned CountPopulation(uint64_t value) {
  return CountPopulation64(value);
}


// CountLeadingZeros32(value) returns the number of zero bits following the most
// significant 1 bit in |value| if |value| is non-zero, otherwise it returns 32.
inline unsigned CountLeadingZeros32(uint32_t value) {
#if V8_HAS_BUILTIN_CLZ
  return value ? __builtin_clz(value) : 32;
#elif V8_CC_MSVC
  unsigned long result;  // NOLINT(runtime/int)
  if (!_BitScanReverse(&result, value)) return 32;
  return static_cast<unsigned>(31 - result);
#else
  value = value | (value >> 1);
  value = value | (value >> 2);
  value = value | (value >> 4);
  value = value | (value >> 8);
  value = value | (value >> 16);
  return CountPopulation32(~value);
#endif
}


// CountLeadingZeros64(value) returns the number of zero bits following the most
// significant 1 bit in |value| if |value| is non-zero, otherwise it returns 64.
inline unsigned CountLeadingZeros64(uint64_t value) {
#if V8_HAS_BUILTIN_CLZ
  return value ? __builtin_clzll(value) : 64;
#else
  value = value | (value >> 1);
  value = value | (value >> 2);
  value = value | (value >> 4);
  value = value | (value >> 8);
  value = value | (value >> 16);
  value = value | (value >> 32);
  return CountPopulation64(~value);
#endif
}


// CountTrailingZeros32(value) returns the number of zero bits preceding the
// least significant 1 bit in |value| if |value| is non-zero, otherwise it
// returns 32.
inline unsigned CountTrailingZeros32(uint32_t value) {
#if V8_HAS_BUILTIN_CTZ
  return value ? __builtin_ctz(value) : 32;
#elif V8_CC_MSVC
  unsigned long result;  // NOLINT(runtime/int)
  if (!_BitScanForward(&result, value)) return 32;
  return static_cast<unsigned>(result);
#else
  if (value == 0) return 32;
  unsigned count = 0;
  for (value ^= value - 1; value >>= 1; ++count) {
  }
  return count;
#endif
}


// CountTrailingZeros64(value) returns the number of zero bits preceding the
// least significant 1 bit in |value| if |value| is non-zero, otherwise it
// returns 64.
inline unsigned CountTrailingZeros64(uint64_t value) {
#if V8_HAS_BUILTIN_CTZ
  return value ? __builtin_ctzll(value) : 64;
#else
  if (value == 0) return 64;
  unsigned count = 0;
  for (value ^= value - 1; value >>= 1; ++count) {
  }
  return count;
#endif
}


// Returns true iff |value| is a power of 2.
inline bool IsPowerOfTwo32(uint32_t value) {
  return value && !(value & (value - 1));
}


// Returns true iff |value| is a power of 2.
inline bool IsPowerOfTwo64(uint64_t value) {
  return value && !(value & (value - 1));
}


// RoundUpToPowerOfTwo32(value) returns the smallest power of two which is
// greater than or equal to |value|. If you pass in a |value| that is already a
// power of two, it is returned as is. |value| must be less than or equal to
// 0x80000000u. Implementation is from "Hacker's Delight" by Henry S. Warren,
// Jr., figure 3-3, page 48, where the function is called clp2.
uint32_t RoundUpToPowerOfTwo32(uint32_t value);


// RoundDownToPowerOfTwo32(value) returns the greatest power of two which is
// less than or equal to |value|. If you pass in a |value| that is already a
// power of two, it is returned as is.
inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) {
  if (value > 0x80000000u) return 0x80000000u;
  uint32_t result = RoundUpToPowerOfTwo32(value);
  if (result > value) result >>= 1;
  return result;
}


// Precondition: 0 <= shift < 32
inline uint32_t RotateRight32(uint32_t value, uint32_t shift) {
  if (shift == 0) return value;
  return (value >> shift) | (value << (32 - shift));
}

// Precondition: 0 <= shift < 32
inline uint32_t RotateLeft32(uint32_t value, uint32_t shift) {
  if (shift == 0) return value;
  return (value << shift) | (value >> (32 - shift));
}

// Precondition: 0 <= shift < 64
inline uint64_t RotateRight64(uint64_t value, uint64_t shift) {
  if (shift == 0) return value;
  return (value >> shift) | (value << (64 - shift));
}

// Precondition: 0 <= shift < 64
inline uint64_t RotateLeft64(uint64_t value, uint64_t shift) {
  if (shift == 0) return value;
  return (value << shift) | (value >> (64 - shift));
}


// SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed summation resulted in an overflow.
inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
#if V8_HAS_BUILTIN_SADD_OVERFLOW
  return __builtin_sadd_overflow(lhs, rhs, val);
#else
  uint32_t res = static_cast<uint32_t>(lhs) + static_cast<uint32_t>(rhs);
  *val = bit_cast<int32_t>(res);
  return ((res ^ lhs) & (res ^ rhs) & (1U << 31)) != 0;
#endif
}


// SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed subtraction resulted in an overflow.
inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
#if V8_HAS_BUILTIN_SSUB_OVERFLOW
  return __builtin_ssub_overflow(lhs, rhs, val);
#else
  uint32_t res = static_cast<uint32_t>(lhs) - static_cast<uint32_t>(rhs);
  *val = bit_cast<int32_t>(res);
  return ((res ^ lhs) & (res ^ ~rhs) & (1U << 31)) != 0;
#endif
}


// SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed summation resulted in an overflow.
inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
  uint64_t res = static_cast<uint64_t>(lhs) + static_cast<uint64_t>(rhs);
  *val = bit_cast<int64_t>(res);
  return ((res ^ lhs) & (res ^ rhs) & (1ULL << 63)) != 0;
}


// SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed subtraction resulted in an overflow.
inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
  uint64_t res = static_cast<uint64_t>(lhs) - static_cast<uint64_t>(rhs);
  *val = bit_cast<int64_t>(res);
  return ((res ^ lhs) & (res ^ ~rhs) & (1ULL << 63)) != 0;
}


// SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and
// |rhs|, extracts the most significant 32 bits of the result, and returns
// those.
int32_t SignedMulHigh32(int32_t lhs, int32_t rhs);


// SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values
// |lhs| and |rhs|, extracts the most significant 32 bits of the result, and
// adds the accumulate value |acc|.
int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs, int32_t acc);


// SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
// truncated to int32. If |rhs| is zero, then zero is returned. If |lhs|
// is minint and |rhs| is -1, it returns minint.
int32_t SignedDiv32(int32_t lhs, int32_t rhs);


// SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
// truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs|
// is -1, it returns zero.
int32_t SignedMod32(int32_t lhs, int32_t rhs);


// UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs|
// and |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the unsigned summation resulted in an overflow.
inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) {
#if V8_HAS_BUILTIN_SADD_OVERFLOW
  return __builtin_uadd_overflow(lhs, rhs, val);
#else
  *val = lhs + rhs;
  return *val < (lhs | rhs);
#endif
}


// UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
// truncated to uint32. If |rhs| is zero, then zero is returned.
inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) {
  return rhs ? lhs / rhs : 0u;
}


// UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
// truncated to uint32. If |rhs| is zero, then zero is returned.
inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) {
  return rhs ? lhs % rhs : 0u;
}

}  // namespace bits
}  // namespace base
}  // namespace v8

#endif  // V8_BASE_BITS_H_