summaryrefslogtreecommitdiff
path: root/deps/v8/src/ast/ast.h
blob: bd52d1b2c04065fe9c543166e5d63345d14a58de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_AST_AST_H_
#define V8_AST_AST_H_

#include <memory>

#include "src/ast/ast-value-factory.h"
#include "src/ast/modules.h"
#include "src/ast/variables.h"
#include "src/base/threaded-list.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/label.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/objects/literal-objects.h"
#include "src/objects/smi.h"
#include "src/parsing/token.h"
#include "src/runtime/runtime.h"

namespace v8 {
namespace internal {

// The abstract syntax tree is an intermediate, light-weight
// representation of the parsed JavaScript code suitable for
// compilation to native code.

// Nodes are allocated in a separate zone, which allows faster
// allocation and constant-time deallocation of the entire syntax
// tree.


// ----------------------------------------------------------------------------
// Nodes of the abstract syntax tree. Only concrete classes are
// enumerated here.

#define DECLARATION_NODE_LIST(V) \
  V(VariableDeclaration)         \
  V(FunctionDeclaration)

#define ITERATION_NODE_LIST(V) \
  V(DoWhileStatement)          \
  V(WhileStatement)            \
  V(ForStatement)              \
  V(ForInStatement)            \
  V(ForOfStatement)

#define BREAKABLE_NODE_LIST(V) \
  V(Block)                     \
  V(SwitchStatement)

#define STATEMENT_NODE_LIST(V)    \
  ITERATION_NODE_LIST(V)          \
  BREAKABLE_NODE_LIST(V)          \
  V(ExpressionStatement)          \
  V(EmptyStatement)               \
  V(SloppyBlockFunctionStatement) \
  V(IfStatement)                  \
  V(ContinueStatement)            \
  V(BreakStatement)               \
  V(ReturnStatement)              \
  V(WithStatement)                \
  V(TryCatchStatement)            \
  V(TryFinallyStatement)          \
  V(DebuggerStatement)            \
  V(InitializeClassMembersStatement)

#define LITERAL_NODE_LIST(V) \
  V(RegExpLiteral)           \
  V(ObjectLiteral)           \
  V(ArrayLiteral)

#define EXPRESSION_NODE_LIST(V) \
  LITERAL_NODE_LIST(V)          \
  V(Assignment)                 \
  V(Await)                      \
  V(BinaryOperation)            \
  V(NaryOperation)              \
  V(Call)                       \
  V(CallNew)                    \
  V(CallRuntime)                \
  V(ClassLiteral)               \
  V(CompareOperation)           \
  V(CompoundAssignment)         \
  V(Conditional)                \
  V(CountOperation)             \
  V(DoExpression)               \
  V(EmptyParentheses)           \
  V(FunctionLiteral)            \
  V(GetTemplateObject)          \
  V(ImportCallExpression)       \
  V(Literal)                    \
  V(NativeFunctionLiteral)      \
  V(Property)                   \
  V(ResolvedProperty)           \
  V(Spread)                     \
  V(StoreInArrayLiteral)        \
  V(SuperCallReference)         \
  V(SuperPropertyReference)     \
  V(TemplateLiteral)            \
  V(ThisExpression)             \
  V(Throw)                      \
  V(UnaryOperation)             \
  V(VariableProxy)              \
  V(Yield)                      \
  V(YieldStar)

#define FAILURE_NODE_LIST(V) V(FailureExpression)

#define AST_NODE_LIST(V)                        \
  DECLARATION_NODE_LIST(V)                      \
  STATEMENT_NODE_LIST(V)                        \
  EXPRESSION_NODE_LIST(V)

// Forward declarations
class AstNode;
class AstNodeFactory;
class Declaration;
class BreakableStatement;
class Expression;
class IterationStatement;
class MaterializedLiteral;
class NestedVariableDeclaration;
class ProducedPreparseData;
class Statement;

#define DEF_FORWARD_DECLARATION(type) class type;
AST_NODE_LIST(DEF_FORWARD_DECLARATION)
FAILURE_NODE_LIST(DEF_FORWARD_DECLARATION)
#undef DEF_FORWARD_DECLARATION

class AstNode: public ZoneObject {
 public:
#define DECLARE_TYPE_ENUM(type) k##type,
  enum NodeType : uint8_t {
    AST_NODE_LIST(DECLARE_TYPE_ENUM) /* , */
    FAILURE_NODE_LIST(DECLARE_TYPE_ENUM)
  };
#undef DECLARE_TYPE_ENUM

  void* operator new(size_t size, Zone* zone) { return zone->New(size); }

  NodeType node_type() const { return NodeTypeField::decode(bit_field_); }
  int position() const { return position_; }

#ifdef DEBUG
  void Print(Isolate* isolate);
#endif  // DEBUG

  // Type testing & conversion functions overridden by concrete subclasses.
#define DECLARE_NODE_FUNCTIONS(type) \
  V8_INLINE bool Is##type() const;   \
  V8_INLINE type* As##type();        \
  V8_INLINE const type* As##type() const;
  AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
  FAILURE_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS

  IterationStatement* AsIterationStatement();
  MaterializedLiteral* AsMaterializedLiteral();

 private:
  // Hidden to prevent accidental usage. It would have to load the
  // current zone from the TLS.
  void* operator new(size_t size);

  int position_;
  class NodeTypeField : public BitField<NodeType, 0, 6> {};

 protected:
  uint32_t bit_field_;
  static const uint8_t kNextBitFieldIndex = NodeTypeField::kNext;

  AstNode(int position, NodeType type)
      : position_(position), bit_field_(NodeTypeField::encode(type)) {}
};


class Statement : public AstNode {
 protected:
  Statement(int position, NodeType type) : AstNode(position, type) {}

  static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex;
};


class Expression : public AstNode {
 public:
  enum Context {
    // Not assigned a context yet, or else will not be visited during
    // code generation.
    kUninitialized,
    // Evaluated for its side effects.
    kEffect,
    // Evaluated for its value (and side effects).
    kValue,
    // Evaluated for control flow (and side effects).
    kTest
  };

  // True iff the expression is a valid reference expression.
  bool IsValidReferenceExpression() const;

  // True iff the expression is a private name.
  bool IsPrivateName() const;

  // Helpers for ToBoolean conversion.
  bool ToBooleanIsTrue() const;
  bool ToBooleanIsFalse() const;

  // Symbols that cannot be parsed as array indices are considered property
  // names.  We do not treat symbols that can be array indexes as property
  // names because [] for string objects is handled only by keyed ICs.
  bool IsPropertyName() const;

  // True iff the expression is a class or function expression without
  // a syntactic name.
  bool IsAnonymousFunctionDefinition() const;

  // True iff the expression is a concise method definition.
  bool IsConciseMethodDefinition() const;

  // True iff the expression is an accessor function definition.
  bool IsAccessorFunctionDefinition() const;

  // True iff the expression is a literal represented as a smi.
  bool IsSmiLiteral() const;

  // True iff the expression is a literal represented as a number.
  V8_EXPORT_PRIVATE bool IsNumberLiteral() const;

  // True iff the expression is a string literal.
  bool IsStringLiteral() const;

  // True iff the expression is the null literal.
  bool IsNullLiteral() const;

  // True iff the expression is the hole literal.
  bool IsTheHoleLiteral() const;

  // True if we can prove that the expression is the undefined literal. Note
  // that this also checks for loads of the global "undefined" variable.
  bool IsUndefinedLiteral() const;

  bool IsCompileTimeValue();

  bool IsPattern() {
    STATIC_ASSERT(kObjectLiteral + 1 == kArrayLiteral);
    return IsInRange(node_type(), kObjectLiteral, kArrayLiteral);
  }

  bool is_parenthesized() const {
    return IsParenthesizedField::decode(bit_field_);
  }

  void mark_parenthesized() {
    bit_field_ = IsParenthesizedField::update(bit_field_, true);
  }

  void clear_parenthesized() {
    bit_field_ = IsParenthesizedField::update(bit_field_, false);
  }

 private:
  class IsParenthesizedField
      : public BitField<bool, AstNode::kNextBitFieldIndex, 1> {};

 protected:
  Expression(int pos, NodeType type) : AstNode(pos, type) {
    DCHECK(!is_parenthesized());
  }

  static const uint8_t kNextBitFieldIndex = IsParenthesizedField::kNext;
};

class FailureExpression : public Expression {
 private:
  friend class AstNodeFactory;
  FailureExpression() : Expression(kNoSourcePosition, kFailureExpression) {}
};

// V8's notion of BreakableStatement does not correspond to the notion of
// BreakableStatement in ECMAScript. In V8, the idea is that a
// BreakableStatement is a statement that can be the target of a break
// statement.  The BreakableStatement AST node carries a list of labels, any of
// which can be used as an argument to the break statement in order to target
// it.
//
// Since we don't want to attach a list of labels to all kinds of statements, we
// only declare switchs, loops, and blocks as BreakableStatements.  This means
// that we implement breaks targeting other statement forms as breaks targeting
// a substatement thereof. For instance, in "foo: if (b) { f(); break foo; }" we
// pretend that foo is the label of the inner block. That's okay because one
// can't observe the difference.
//
// This optimization makes it harder to detect invalid continue labels, see the
// need for own_labels in IterationStatement.
//
class BreakableStatement : public Statement {
 public:
  enum BreakableType {
    TARGET_FOR_ANONYMOUS,
    TARGET_FOR_NAMED_ONLY
  };

  // A list of all labels declared on the path up to the previous
  // BreakableStatement (if any).
  //
  // Example: "l1: for (;;) l2: l3: { l4: if (b) l5: { s } }"
  // labels() of the ForStatement will be l1.
  // labels() of the Block { l4: ... } will be l2, l3.
  // labels() of the Block { s } will be l4, l5.
  ZonePtrList<const AstRawString>* labels() const;

  // Testers.
  bool is_target_for_anonymous() const {
    return BreakableTypeField::decode(bit_field_) == TARGET_FOR_ANONYMOUS;
  }

 private:
  class BreakableTypeField
      : public BitField<BreakableType, Statement::kNextBitFieldIndex, 1> {};

 protected:
  BreakableStatement(BreakableType breakable_type, int position, NodeType type)
      : Statement(position, type) {
    bit_field_ |= BreakableTypeField::encode(breakable_type);
  }

  static const uint8_t kNextBitFieldIndex = BreakableTypeField::kNext;
};

class Block : public BreakableStatement {
 public:
  ZonePtrList<Statement>* statements() { return &statements_; }
  bool ignore_completion_value() const {
    return IgnoreCompletionField::decode(bit_field_);
  }

  inline ZonePtrList<const AstRawString>* labels() const;

  Scope* scope() const { return scope_; }
  void set_scope(Scope* scope) { scope_ = scope; }

  void InitializeStatements(const ScopedPtrList<Statement>& statements,
                            Zone* zone) {
    DCHECK_EQ(0, statements_.length());
    statements.CopyTo(&statements_, zone);
  }

 private:
  friend class AstNodeFactory;

  ZonePtrList<Statement> statements_;
  Scope* scope_;

  class IgnoreCompletionField
      : public BitField<bool, BreakableStatement::kNextBitFieldIndex, 1> {};
  class IsLabeledField
      : public BitField<bool, IgnoreCompletionField::kNext, 1> {};

 protected:
  Block(Zone* zone, ZonePtrList<const AstRawString>* labels, int capacity,
        bool ignore_completion_value)
      : BreakableStatement(TARGET_FOR_NAMED_ONLY, kNoSourcePosition, kBlock),
        statements_(capacity, zone),
        scope_(nullptr) {
    bit_field_ |= IgnoreCompletionField::encode(ignore_completion_value) |
                  IsLabeledField::encode(labels != nullptr);
  }

  Block(ZonePtrList<const AstRawString>* labels, bool ignore_completion_value)
      : Block(nullptr, labels, 0, ignore_completion_value) {}
};

class LabeledBlock final : public Block {
 private:
  friend class AstNodeFactory;
  friend class Block;

  LabeledBlock(Zone* zone, ZonePtrList<const AstRawString>* labels,
               int capacity, bool ignore_completion_value)
      : Block(zone, labels, capacity, ignore_completion_value),
        labels_(labels) {
    DCHECK_NOT_NULL(labels);
    DCHECK_GT(labels->length(), 0);
  }

  LabeledBlock(ZonePtrList<const AstRawString>* labels,
               bool ignore_completion_value)
      : LabeledBlock(nullptr, labels, 0, ignore_completion_value) {}

  ZonePtrList<const AstRawString>* labels_;
};

inline ZonePtrList<const AstRawString>* Block::labels() const {
  if (IsLabeledField::decode(bit_field_)) {
    return static_cast<const LabeledBlock*>(this)->labels_;
  }
  return nullptr;
}

class DoExpression final : public Expression {
 public:
  Block* block() { return block_; }
  VariableProxy* result() { return result_; }

 private:
  friend class AstNodeFactory;

  DoExpression(Block* block, VariableProxy* result, int pos)
      : Expression(pos, kDoExpression), block_(block), result_(result) {
    DCHECK_NOT_NULL(block_);
    DCHECK_NOT_NULL(result_);
  }

  Block* block_;
  VariableProxy* result_;
};


class Declaration : public AstNode {
 public:
  using List = base::ThreadedList<Declaration>;

  Variable* var() const { return var_; }
  void set_var(Variable* var) { var_ = var; }

 protected:
  Declaration(int pos, NodeType type) : AstNode(pos, type), next_(nullptr) {}

 private:
  Variable* var_;
  // Declarations list threaded through the declarations.
  Declaration** next() { return &next_; }
  Declaration* next_;
  friend List;
  friend base::ThreadedListTraits<Declaration>;
};

class VariableDeclaration : public Declaration {
 public:
  inline NestedVariableDeclaration* AsNested();

 private:
  friend class AstNodeFactory;

  class IsNestedField
      : public BitField<bool, Declaration::kNextBitFieldIndex, 1> {};

 protected:
  explicit VariableDeclaration(int pos, bool is_nested = false)
      : Declaration(pos, kVariableDeclaration) {
    bit_field_ = IsNestedField::update(bit_field_, is_nested);
  }

  static const uint8_t kNextBitFieldIndex = IsNestedField::kNext;
};

// For var declarations that appear in a block scope.
// Only distinguished from VariableDeclaration during Scope analysis,
// so it doesn't get its own NodeType.
class NestedVariableDeclaration final : public VariableDeclaration {
 public:
  Scope* scope() const { return scope_; }

 private:
  friend class AstNodeFactory;

  NestedVariableDeclaration(Scope* scope, int pos)
      : VariableDeclaration(pos, true), scope_(scope) {}

  // Nested scope from which the declaration originated.
  Scope* scope_;
};

inline NestedVariableDeclaration* VariableDeclaration::AsNested() {
  return IsNestedField::decode(bit_field_)
             ? static_cast<NestedVariableDeclaration*>(this)
             : nullptr;
}

class FunctionDeclaration final : public Declaration {
 public:
  FunctionLiteral* fun() const { return fun_; }

 private:
  friend class AstNodeFactory;

  FunctionDeclaration(FunctionLiteral* fun, int pos)
      : Declaration(pos, kFunctionDeclaration), fun_(fun) {}

  FunctionLiteral* fun_;
};


class IterationStatement : public BreakableStatement {
 public:
  Statement* body() const { return body_; }
  void set_body(Statement* s) { body_ = s; }

  ZonePtrList<const AstRawString>* labels() const { return labels_; }

  // A list of all labels that the iteration statement is directly prefixed
  // with, i.e.  all the labels that a continue statement in the body can use to
  // continue this iteration statement. This is always a subset of {labels}.
  //
  // Example: "l1: { l2: if (b) l3: l4: for (;;) s }"
  // labels() of the Block will be l1.
  // labels() of the ForStatement will be l2, l3, l4.
  // own_labels() of the ForStatement will be l3, l4.
  ZonePtrList<const AstRawString>* own_labels() const { return own_labels_; }

 protected:
  IterationStatement(ZonePtrList<const AstRawString>* labels,
                     ZonePtrList<const AstRawString>* own_labels, int pos,
                     NodeType type)
      : BreakableStatement(TARGET_FOR_ANONYMOUS, pos, type),
        labels_(labels),
        own_labels_(own_labels),
        body_(nullptr) {}
  void Initialize(Statement* body) { body_ = body; }

  static const uint8_t kNextBitFieldIndex =
      BreakableStatement::kNextBitFieldIndex;

 private:
  ZonePtrList<const AstRawString>* labels_;
  ZonePtrList<const AstRawString>* own_labels_;
  Statement* body_;
};


class DoWhileStatement final : public IterationStatement {
 public:
  void Initialize(Expression* cond, Statement* body) {
    IterationStatement::Initialize(body);
    cond_ = cond;
  }

  Expression* cond() const { return cond_; }

 private:
  friend class AstNodeFactory;

  DoWhileStatement(ZonePtrList<const AstRawString>* labels,
                   ZonePtrList<const AstRawString>* own_labels, int pos)
      : IterationStatement(labels, own_labels, pos, kDoWhileStatement),
        cond_(nullptr) {}

  Expression* cond_;
};


class WhileStatement final : public IterationStatement {
 public:
  void Initialize(Expression* cond, Statement* body) {
    IterationStatement::Initialize(body);
    cond_ = cond;
  }

  Expression* cond() const { return cond_; }

 private:
  friend class AstNodeFactory;

  WhileStatement(ZonePtrList<const AstRawString>* labels,
                 ZonePtrList<const AstRawString>* own_labels, int pos)
      : IterationStatement(labels, own_labels, pos, kWhileStatement),
        cond_(nullptr) {}

  Expression* cond_;
};


class ForStatement final : public IterationStatement {
 public:
  void Initialize(Statement* init, Expression* cond, Statement* next,
                  Statement* body) {
    IterationStatement::Initialize(body);
    init_ = init;
    cond_ = cond;
    next_ = next;
  }

  Statement* init() const { return init_; }
  Expression* cond() const { return cond_; }
  Statement* next() const { return next_; }

 private:
  friend class AstNodeFactory;

  ForStatement(ZonePtrList<const AstRawString>* labels,
               ZonePtrList<const AstRawString>* own_labels, int pos)
      : IterationStatement(labels, own_labels, pos, kForStatement),
        init_(nullptr),
        cond_(nullptr),
        next_(nullptr) {}

  Statement* init_;
  Expression* cond_;
  Statement* next_;
};

// Shared class for for-in and for-of statements.
class ForEachStatement : public IterationStatement {
 public:
  enum VisitMode {
    ENUMERATE,   // for (each in subject) body;
    ITERATE      // for (each of subject) body;
  };

  using IterationStatement::Initialize;

  static const char* VisitModeString(VisitMode mode) {
    return mode == ITERATE ? "for-of" : "for-in";
  }

  void Initialize(Expression* each, Expression* subject, Statement* body) {
    IterationStatement::Initialize(body);
    each_ = each;
    subject_ = subject;
  }

  Expression* each() const { return each_; }
  Expression* subject() const { return subject_; }

 protected:
  friend class AstNodeFactory;

  ForEachStatement(ZonePtrList<const AstRawString>* labels,
                   ZonePtrList<const AstRawString>* own_labels, int pos,
                   NodeType type)
      : IterationStatement(labels, own_labels, pos, type),
        each_(nullptr),
        subject_(nullptr) {}

  Expression* each_;
  Expression* subject_;
};

class ForInStatement final : public ForEachStatement {
 private:
  friend class AstNodeFactory;

  ForInStatement(ZonePtrList<const AstRawString>* labels,
                 ZonePtrList<const AstRawString>* own_labels, int pos)
      : ForEachStatement(labels, own_labels, pos, kForInStatement) {}
};

enum class IteratorType { kNormal, kAsync };
class ForOfStatement final : public ForEachStatement {
 public:
  IteratorType type() const { return type_; }

 private:
  friend class AstNodeFactory;

  ForOfStatement(ZonePtrList<const AstRawString>* labels,
                 ZonePtrList<const AstRawString>* own_labels, int pos,
                 IteratorType type)
      : ForEachStatement(labels, own_labels, pos, kForOfStatement),
        type_(type) {}

  IteratorType type_;
};

class ExpressionStatement final : public Statement {
 public:
  void set_expression(Expression* e) { expression_ = e; }
  Expression* expression() const { return expression_; }

 private:
  friend class AstNodeFactory;

  ExpressionStatement(Expression* expression, int pos)
      : Statement(pos, kExpressionStatement), expression_(expression) {}

  Expression* expression_;
};


class JumpStatement : public Statement {
 protected:
  JumpStatement(int pos, NodeType type) : Statement(pos, type) {}
};


class ContinueStatement final : public JumpStatement {
 public:
  IterationStatement* target() const { return target_; }

 private:
  friend class AstNodeFactory;

  ContinueStatement(IterationStatement* target, int pos)
      : JumpStatement(pos, kContinueStatement), target_(target) {}

  IterationStatement* target_;
};


class BreakStatement final : public JumpStatement {
 public:
  BreakableStatement* target() const { return target_; }

 private:
  friend class AstNodeFactory;

  BreakStatement(BreakableStatement* target, int pos)
      : JumpStatement(pos, kBreakStatement), target_(target) {}

  BreakableStatement* target_;
};


class ReturnStatement final : public JumpStatement {
 public:
  enum Type { kNormal, kAsyncReturn };
  Expression* expression() const { return expression_; }

  Type type() const { return TypeField::decode(bit_field_); }
  bool is_async_return() const { return type() == kAsyncReturn; }

  int end_position() const { return end_position_; }

 private:
  friend class AstNodeFactory;

  ReturnStatement(Expression* expression, Type type, int pos, int end_position)
      : JumpStatement(pos, kReturnStatement),
        expression_(expression),
        end_position_(end_position) {
    bit_field_ |= TypeField::encode(type);
  }

  Expression* expression_;
  int end_position_;

  class TypeField
      : public BitField<Type, JumpStatement::kNextBitFieldIndex, 1> {};
};


class WithStatement final : public Statement {
 public:
  Scope* scope() { return scope_; }
  Expression* expression() const { return expression_; }
  Statement* statement() const { return statement_; }
  void set_statement(Statement* s) { statement_ = s; }

 private:
  friend class AstNodeFactory;

  WithStatement(Scope* scope, Expression* expression, Statement* statement,
                int pos)
      : Statement(pos, kWithStatement),
        scope_(scope),
        expression_(expression),
        statement_(statement) {}

  Scope* scope_;
  Expression* expression_;
  Statement* statement_;
};

class CaseClause final : public ZoneObject {
 public:
  bool is_default() const { return label_ == nullptr; }
  Expression* label() const {
    DCHECK(!is_default());
    return label_;
  }
  ZonePtrList<Statement>* statements() { return &statements_; }

 private:
  friend class AstNodeFactory;

  CaseClause(Zone* zone, Expression* label,
             const ScopedPtrList<Statement>& statements);

  Expression* label_;
  ZonePtrList<Statement> statements_;
};


class SwitchStatement final : public BreakableStatement {
 public:
  ZonePtrList<const AstRawString>* labels() const { return labels_; }

  Expression* tag() const { return tag_; }
  void set_tag(Expression* t) { tag_ = t; }

  ZonePtrList<CaseClause>* cases() { return &cases_; }

 private:
  friend class AstNodeFactory;

  SwitchStatement(Zone* zone, ZonePtrList<const AstRawString>* labels,
                  Expression* tag, int pos)
      : BreakableStatement(TARGET_FOR_ANONYMOUS, pos, kSwitchStatement),
        labels_(labels),
        tag_(tag),
        cases_(4, zone) {}

  ZonePtrList<const AstRawString>* labels_;
  Expression* tag_;
  ZonePtrList<CaseClause> cases_;
};


// If-statements always have non-null references to their then- and
// else-parts. When parsing if-statements with no explicit else-part,
// the parser implicitly creates an empty statement. Use the
// HasThenStatement() and HasElseStatement() functions to check if a
// given if-statement has a then- or an else-part containing code.
class IfStatement final : public Statement {
 public:
  bool HasThenStatement() const { return !then_statement_->IsEmptyStatement(); }
  bool HasElseStatement() const { return !else_statement_->IsEmptyStatement(); }

  Expression* condition() const { return condition_; }
  Statement* then_statement() const { return then_statement_; }
  Statement* else_statement() const { return else_statement_; }

  void set_then_statement(Statement* s) { then_statement_ = s; }
  void set_else_statement(Statement* s) { else_statement_ = s; }

 private:
  friend class AstNodeFactory;

  IfStatement(Expression* condition, Statement* then_statement,
              Statement* else_statement, int pos)
      : Statement(pos, kIfStatement),
        condition_(condition),
        then_statement_(then_statement),
        else_statement_(else_statement) {}

  Expression* condition_;
  Statement* then_statement_;
  Statement* else_statement_;
};


class TryStatement : public Statement {
 public:
  Block* try_block() const { return try_block_; }
  void set_try_block(Block* b) { try_block_ = b; }

 protected:
  TryStatement(Block* try_block, int pos, NodeType type)
      : Statement(pos, type), try_block_(try_block) {}

 private:
  Block* try_block_;
};


class TryCatchStatement final : public TryStatement {
 public:
  Scope* scope() { return scope_; }
  Block* catch_block() const { return catch_block_; }
  void set_catch_block(Block* b) { catch_block_ = b; }

  // Prediction of whether exceptions thrown into the handler for this try block
  // will be caught.
  //
  // BytecodeGenerator tracks the state of catch prediction, which can change
  // with each TryCatchStatement encountered. The tracked catch prediction is
  // later compiled into the code's handler table. The runtime uses this
  // information to implement a feature that notifies the debugger when an
  // uncaught exception is thrown, _before_ the exception propagates to the top.
  //
  // If this try/catch statement is meant to rethrow (HandlerTable::UNCAUGHT),
  // the catch prediction value is set to the same value as the surrounding
  // catch prediction.
  //
  // Since it's generally undecidable whether an exception will be caught, our
  // prediction is only an approximation.
  // ---------------------------------------------------------------------------
  inline HandlerTable::CatchPrediction GetCatchPrediction(
      HandlerTable::CatchPrediction outer_catch_prediction) const {
    if (catch_prediction_ == HandlerTable::UNCAUGHT) {
      return outer_catch_prediction;
    }
    return catch_prediction_;
  }

  // Indicates whether or not code should be generated to clear the pending
  // exception. The pending exception is cleared for cases where the exception
  // is not guaranteed to be rethrown, indicated by the value
  // HandlerTable::UNCAUGHT. If both the current and surrounding catch handler's
  // are predicted uncaught, the exception is not cleared.
  //
  // If this handler is not going to simply rethrow the exception, this method
  // indicates that the isolate's pending exception message should be cleared
  // before executing the catch_block.
  // In the normal use case, this flag is always on because the message object
  // is not needed anymore when entering the catch block and should not be
  // kept alive.
  // The use case where the flag is off is when the catch block is guaranteed
  // to rethrow the caught exception (using %ReThrow), which reuses the
  // pending message instead of generating a new one.
  // (When the catch block doesn't rethrow but is guaranteed to perform an
  // ordinary throw, not clearing the old message is safe but not very
  // useful.)
  inline bool ShouldClearPendingException(
      HandlerTable::CatchPrediction outer_catch_prediction) const {
    return catch_prediction_ != HandlerTable::UNCAUGHT ||
           outer_catch_prediction != HandlerTable::UNCAUGHT;
  }

 private:
  friend class AstNodeFactory;

  TryCatchStatement(Block* try_block, Scope* scope, Block* catch_block,
                    HandlerTable::CatchPrediction catch_prediction, int pos)
      : TryStatement(try_block, pos, kTryCatchStatement),
        scope_(scope),
        catch_block_(catch_block),
        catch_prediction_(catch_prediction) {}

  Scope* scope_;
  Block* catch_block_;
  HandlerTable::CatchPrediction catch_prediction_;
};


class TryFinallyStatement final : public TryStatement {
 public:
  Block* finally_block() const { return finally_block_; }
  void set_finally_block(Block* b) { finally_block_ = b; }

 private:
  friend class AstNodeFactory;

  TryFinallyStatement(Block* try_block, Block* finally_block, int pos)
      : TryStatement(try_block, pos, kTryFinallyStatement),
        finally_block_(finally_block) {}

  Block* finally_block_;
};


class DebuggerStatement final : public Statement {
 private:
  friend class AstNodeFactory;

  explicit DebuggerStatement(int pos) : Statement(pos, kDebuggerStatement) {}
};


class EmptyStatement final : public Statement {
 private:
  friend class AstNodeFactory;
  EmptyStatement() : Statement(kNoSourcePosition, kEmptyStatement) {}
};


// Delegates to another statement, which may be overwritten.
// This was introduced to implement ES2015 Annex B3.3 for conditionally making
// sloppy-mode block-scoped functions have a var binding, which is changed
// from one statement to another during parsing.
class SloppyBlockFunctionStatement final : public Statement {
 public:
  Statement* statement() const { return statement_; }
  void set_statement(Statement* statement) { statement_ = statement; }
  Scope* scope() const { return var_->scope(); }
  Variable* var() const { return var_; }
  Token::Value init() const { return TokenField::decode(bit_field_); }
  const AstRawString* name() const { return var_->raw_name(); }
  SloppyBlockFunctionStatement** next() { return &next_; }

 private:
  friend class AstNodeFactory;

  class TokenField
      : public BitField<Token::Value, Statement::kNextBitFieldIndex, 8> {};

  SloppyBlockFunctionStatement(int pos, Variable* var, Token::Value init,
                               Statement* statement)
      : Statement(pos, kSloppyBlockFunctionStatement),
        var_(var),
        statement_(statement),
        next_(nullptr) {
    bit_field_ = TokenField::update(bit_field_, init);
  }

  Variable* var_;
  Statement* statement_;
  SloppyBlockFunctionStatement* next_;
};


class Literal final : public Expression {
 public:
  enum Type {
    kSmi,
    kHeapNumber,
    kBigInt,
    kString,
    kSymbol,
    kBoolean,
    kUndefined,
    kNull,
    kTheHole,
  };

  Type type() const { return TypeField::decode(bit_field_); }

  // Returns true if literal represents a property name (i.e. cannot be parsed
  // as array indices).
  bool IsPropertyName() const;

  // Returns true if literal represents an array index.
  // Note, that in general the following statement is not true:
  //   key->IsPropertyName() != key->AsArrayIndex(...)
  // but for non-computed LiteralProperty properties the following is true:
  //   property->key()->IsPropertyName() != property->key()->AsArrayIndex(...)
  bool AsArrayIndex(uint32_t* index) const;

  const AstRawString* AsRawPropertyName() {
    DCHECK(IsPropertyName());
    return string_;
  }

  Smi AsSmiLiteral() const {
    DCHECK_EQ(kSmi, type());
    return Smi::FromInt(smi_);
  }

  // Returns true if literal represents a Number.
  bool IsNumber() const { return type() == kHeapNumber || type() == kSmi; }
  double AsNumber() const {
    DCHECK(IsNumber());
    switch (type()) {
      case kSmi:
        return smi_;
      case kHeapNumber:
        return number_;
      default:
        UNREACHABLE();
    }
  }

  AstBigInt AsBigInt() const {
    DCHECK_EQ(type(), kBigInt);
    return bigint_;
  }

  bool IsString() const { return type() == kString; }
  const AstRawString* AsRawString() {
    DCHECK_EQ(type(), kString);
    return string_;
  }

  AstSymbol AsSymbol() {
    DCHECK_EQ(type(), kSymbol);
    return symbol_;
  }

  V8_EXPORT_PRIVATE bool ToBooleanIsTrue() const;
  bool ToBooleanIsFalse() const { return !ToBooleanIsTrue(); }

  bool ToUint32(uint32_t* value) const;

  // Returns an appropriate Object representing this Literal, allocating
  // a heap object if needed.
  Handle<Object> BuildValue(Isolate* isolate) const;

  // Support for using Literal as a HashMap key. NOTE: Currently, this works
  // only for string and number literals!
  uint32_t Hash();
  static bool Match(void* literal1, void* literal2);

 private:
  friend class AstNodeFactory;

  class TypeField : public BitField<Type, Expression::kNextBitFieldIndex, 4> {};

  Literal(int smi, int position) : Expression(position, kLiteral), smi_(smi) {
    bit_field_ = TypeField::update(bit_field_, kSmi);
  }

  Literal(double number, int position)
      : Expression(position, kLiteral), number_(number) {
    bit_field_ = TypeField::update(bit_field_, kHeapNumber);
  }

  Literal(AstBigInt bigint, int position)
      : Expression(position, kLiteral), bigint_(bigint) {
    bit_field_ = TypeField::update(bit_field_, kBigInt);
  }

  Literal(const AstRawString* string, int position)
      : Expression(position, kLiteral), string_(string) {
    bit_field_ = TypeField::update(bit_field_, kString);
  }

  Literal(AstSymbol symbol, int position)
      : Expression(position, kLiteral), symbol_(symbol) {
    bit_field_ = TypeField::update(bit_field_, kSymbol);
  }

  Literal(bool boolean, int position)
      : Expression(position, kLiteral), boolean_(boolean) {
    bit_field_ = TypeField::update(bit_field_, kBoolean);
  }

  Literal(Type type, int position) : Expression(position, kLiteral) {
    DCHECK(type == kNull || type == kUndefined || type == kTheHole);
    bit_field_ = TypeField::update(bit_field_, type);
  }

  union {
    const AstRawString* string_;
    int smi_;
    double number_;
    AstSymbol symbol_;
    AstBigInt bigint_;
    bool boolean_;
  };
};

// Base class for literals that need space in the type feedback vector.
class MaterializedLiteral : public Expression {
 public:
  // A Materializedliteral is simple if the values consist of only
  // constants and simple object and array literals.
  bool IsSimple() const;

 protected:
  MaterializedLiteral(int pos, NodeType type) : Expression(pos, type) {}

  friend class CompileTimeValue;
  friend class ArrayLiteral;
  friend class ObjectLiteral;

  // Populate the depth field and any flags the literal has, returns the depth.
  int InitDepthAndFlags();

  bool NeedsInitialAllocationSite();

  // Populate the constant properties/elements fixed array.
  void BuildConstants(Isolate* isolate);

  // If the expression is a literal, return the literal value;
  // if the expression is a materialized literal and is_simple
  // then return an Array or Object Boilerplate Description
  // Otherwise, return undefined literal as the placeholder
  // in the object literal boilerplate.
  Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
};

// Node for capturing a regexp literal.
class RegExpLiteral final : public MaterializedLiteral {
 public:
  Handle<String> pattern() const { return pattern_->string(); }
  const AstRawString* raw_pattern() const { return pattern_; }
  int flags() const { return flags_; }

 private:
  friend class AstNodeFactory;

  RegExpLiteral(const AstRawString* pattern, int flags, int pos)
      : MaterializedLiteral(pos, kRegExpLiteral),
        flags_(flags),
        pattern_(pattern) {}

  int const flags_;
  const AstRawString* const pattern_;
};

// Base class for Array and Object literals, providing common code for handling
// nested subliterals.
class AggregateLiteral : public MaterializedLiteral {
 public:
  enum Flags {
    kNoFlags = 0,
    kIsShallow = 1,
    kDisableMementos = 1 << 1,
    kNeedsInitialAllocationSite = 1 << 2,
  };

  bool is_initialized() const { return 0 < depth_; }
  int depth() const {
    DCHECK(is_initialized());
    return depth_;
  }

  bool is_shallow() const { return depth() == 1; }
  bool needs_initial_allocation_site() const {
    return NeedsInitialAllocationSiteField::decode(bit_field_);
  }

  int ComputeFlags(bool disable_mementos = false) const {
    int flags = kNoFlags;
    if (is_shallow()) flags |= kIsShallow;
    if (disable_mementos) flags |= kDisableMementos;
    if (needs_initial_allocation_site()) flags |= kNeedsInitialAllocationSite;
    return flags;
  }

  // An AggregateLiteral is simple if the values consist of only
  // constants and simple object and array literals.
  bool is_simple() const { return IsSimpleField::decode(bit_field_); }

 private:
  int depth_ : 31;
  class NeedsInitialAllocationSiteField
      : public BitField<bool, MaterializedLiteral::kNextBitFieldIndex, 1> {};
  class IsSimpleField
      : public BitField<bool, NeedsInitialAllocationSiteField::kNext, 1> {};

 protected:
  friend class AstNodeFactory;
  AggregateLiteral(int pos, NodeType type)
      : MaterializedLiteral(pos, type), depth_(0) {
    bit_field_ |= NeedsInitialAllocationSiteField::encode(false) |
                  IsSimpleField::encode(false);
  }

  void set_is_simple(bool is_simple) {
    bit_field_ = IsSimpleField::update(bit_field_, is_simple);
  }

  void set_depth(int depth) {
    DCHECK(!is_initialized());
    depth_ = depth;
  }

  void set_needs_initial_allocation_site(bool required) {
    bit_field_ = NeedsInitialAllocationSiteField::update(bit_field_, required);
  }

  static const uint8_t kNextBitFieldIndex = IsSimpleField::kNext;
};

// Common supertype for ObjectLiteralProperty and ClassLiteralProperty
class LiteralProperty : public ZoneObject {
 public:
  Expression* key() const { return key_and_is_computed_name_.GetPointer(); }
  Expression* value() const { return value_; }

  bool is_computed_name() const {
    return key_and_is_computed_name_.GetPayload();
  }
  bool NeedsSetFunctionName() const;

 protected:
  LiteralProperty(Expression* key, Expression* value, bool is_computed_name)
      : key_and_is_computed_name_(key, is_computed_name), value_(value) {}

  PointerWithPayload<Expression, bool, 1> key_and_is_computed_name_;
  Expression* value_;
};

// Property is used for passing information
// about an object literal's properties from the parser
// to the code generator.
class ObjectLiteralProperty final : public LiteralProperty {
 public:
  enum Kind : uint8_t {
    CONSTANT,              // Property with constant value (compile time).
    COMPUTED,              // Property with computed value (execution time).
    MATERIALIZED_LITERAL,  // Property value is a materialized literal.
    GETTER,
    SETTER,     // Property is an accessor function.
    PROTOTYPE,  // Property is __proto__.
    SPREAD
  };

  Kind kind() const { return kind_; }

  bool IsCompileTimeValue() const;

  void set_emit_store(bool emit_store);
  bool emit_store() const;

  bool IsNullPrototype() const {
    return IsPrototype() && value()->IsNullLiteral();
  }
  bool IsPrototype() const { return kind() == PROTOTYPE; }

 private:
  friend class AstNodeFactory;

  ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
                        bool is_computed_name);
  ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
                        Expression* value, bool is_computed_name);

  Kind kind_;
  bool emit_store_;
};


// An object literal has a boilerplate object that is used
// for minimizing the work when constructing it at runtime.
class ObjectLiteral final : public AggregateLiteral {
 public:
  using Property = ObjectLiteralProperty;

  Handle<ObjectBoilerplateDescription> boilerplate_description() const {
    DCHECK(!boilerplate_description_.is_null());
    return boilerplate_description_;
  }
  int properties_count() const { return boilerplate_properties_; }
  const ZonePtrList<Property>* properties() const { return &properties_; }
  bool has_elements() const { return HasElementsField::decode(bit_field_); }
  bool has_rest_property() const {
    return HasRestPropertyField::decode(bit_field_);
  }
  bool fast_elements() const { return FastElementsField::decode(bit_field_); }
  bool has_null_prototype() const {
    return HasNullPrototypeField::decode(bit_field_);
  }

  bool is_empty() const {
    DCHECK(is_initialized());
    return !has_elements() && properties_count() == 0 &&
           properties()->length() == 0;
  }

  bool IsEmptyObjectLiteral() const {
    return is_empty() && !has_null_prototype();
  }

  // Populate the depth field and flags, returns the depth.
  int InitDepthAndFlags();

  // Get the boilerplate description, populating it if necessary.
  Handle<ObjectBoilerplateDescription> GetOrBuildBoilerplateDescription(
      Isolate* isolate) {
    if (boilerplate_description_.is_null()) {
      BuildBoilerplateDescription(isolate);
    }
    return boilerplate_description();
  }

  // Populate the boilerplate description.
  void BuildBoilerplateDescription(Isolate* isolate);

  // Mark all computed expressions that are bound to a key that
  // is shadowed by a later occurrence of the same key. For the
  // marked expressions, no store code is emitted.
  void CalculateEmitStore(Zone* zone);

  // Determines whether the {CreateShallowObjectLiteratal} builtin can be used.
  bool IsFastCloningSupported() const;

  // Assemble bitfield of flags for the CreateObjectLiteral helper.
  int ComputeFlags(bool disable_mementos = false) const {
    int flags = AggregateLiteral::ComputeFlags(disable_mementos);
    if (fast_elements()) flags |= kFastElements;
    if (has_null_prototype()) flags |= kHasNullPrototype;
    return flags;
  }

  int EncodeLiteralType() {
    int flags = kNoFlags;
    if (fast_elements()) flags |= kFastElements;
    if (has_null_prototype()) flags |= kHasNullPrototype;
    return flags;
  }

  enum Flags {
    kFastElements = 1 << 3,
    kHasNullPrototype = 1 << 4,
  };
  STATIC_ASSERT(
      static_cast<int>(AggregateLiteral::kNeedsInitialAllocationSite) <
      static_cast<int>(kFastElements));

  struct Accessors: public ZoneObject {
    Accessors() : getter(nullptr), setter(nullptr) {}
    ObjectLiteralProperty* getter;
    ObjectLiteralProperty* setter;
  };

 private:
  friend class AstNodeFactory;

  ObjectLiteral(Zone* zone, const ScopedPtrList<Property>& properties,
                uint32_t boilerplate_properties, int pos,
                bool has_rest_property)
      : AggregateLiteral(pos, kObjectLiteral),
        boilerplate_properties_(boilerplate_properties),
        properties_(0, nullptr) {
    bit_field_ |= HasElementsField::encode(false) |
                  HasRestPropertyField::encode(has_rest_property) |
                  FastElementsField::encode(false) |
                  HasNullPrototypeField::encode(false);
    properties.CopyTo(&properties_, zone);
  }

  void InitFlagsForPendingNullPrototype(int i);

  void set_has_elements(bool has_elements) {
    bit_field_ = HasElementsField::update(bit_field_, has_elements);
  }
  void set_fast_elements(bool fast_elements) {
    bit_field_ = FastElementsField::update(bit_field_, fast_elements);
  }
  void set_has_null_protoype(bool has_null_prototype) {
    bit_field_ = HasNullPrototypeField::update(bit_field_, has_null_prototype);
  }

  uint32_t boilerplate_properties_;
  Handle<ObjectBoilerplateDescription> boilerplate_description_;
  ZoneList<Property*> properties_;

  class HasElementsField
      : public BitField<bool, AggregateLiteral::kNextBitFieldIndex, 1> {};
  class HasRestPropertyField
      : public BitField<bool, HasElementsField::kNext, 1> {};
  class FastElementsField
      : public BitField<bool, HasRestPropertyField::kNext, 1> {};
  class HasNullPrototypeField
      : public BitField<bool, FastElementsField::kNext, 1> {};
};

// An array literal has a literals object that is used
// for minimizing the work when constructing it at runtime.
class ArrayLiteral final : public AggregateLiteral {
 public:
  Handle<ArrayBoilerplateDescription> boilerplate_description() const {
    return boilerplate_description_;
  }

  const ZonePtrList<Expression>* values() const { return &values_; }

  int first_spread_index() const { return first_spread_index_; }

  // Populate the depth field and flags, returns the depth.
  int InitDepthAndFlags();

  // Get the boilerplate description, populating it if necessary.
  Handle<ArrayBoilerplateDescription> GetOrBuildBoilerplateDescription(
      Isolate* isolate) {
    if (boilerplate_description_.is_null()) {
      BuildBoilerplateDescription(isolate);
    }
    return boilerplate_description();
  }

  // Populate the boilerplate description.
  void BuildBoilerplateDescription(Isolate* isolate);

  // Determines whether the {CreateShallowArrayLiteral} builtin can be used.
  bool IsFastCloningSupported() const;

  // Assemble bitfield of flags for the CreateArrayLiteral helper.
  int ComputeFlags(bool disable_mementos = false) const {
    return AggregateLiteral::ComputeFlags(disable_mementos);
  }

 private:
  friend class AstNodeFactory;

  ArrayLiteral(Zone* zone, const ScopedPtrList<Expression>& values,
               int first_spread_index, int pos)
      : AggregateLiteral(pos, kArrayLiteral),
        first_spread_index_(first_spread_index),
        values_(0, nullptr) {
    values.CopyTo(&values_, zone);
  }

  int first_spread_index_;
  Handle<ArrayBoilerplateDescription> boilerplate_description_;
  ZonePtrList<Expression> values_;
};

enum class HoleCheckMode { kRequired, kElided };

class ThisExpression final : public Expression {
 private:
  friend class AstNodeFactory;
  ThisExpression() : Expression(kNoSourcePosition, kThisExpression) {}
};

class VariableProxy final : public Expression {
 public:
  bool IsValidReferenceExpression() const { return !is_new_target(); }

  Handle<String> name() const { return raw_name()->string(); }
  const AstRawString* raw_name() const {
    return is_resolved() ? var_->raw_name() : raw_name_;
  }

  Variable* var() const {
    DCHECK(is_resolved());
    return var_;
  }
  void set_var(Variable* v) {
    DCHECK(!is_resolved());
    DCHECK_NOT_NULL(v);
    var_ = v;
  }

  Scanner::Location location() {
    return Scanner::Location(position(), position() + raw_name()->length());
  }

  bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
  void set_is_assigned() {
    bit_field_ = IsAssignedField::update(bit_field_, true);
    if (is_resolved()) {
      var()->SetMaybeAssigned();
    }
  }

  bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
  void set_is_resolved() {
    bit_field_ = IsResolvedField::update(bit_field_, true);
  }

  bool is_new_target() const { return IsNewTargetField::decode(bit_field_); }
  void set_is_new_target() {
    bit_field_ = IsNewTargetField::update(bit_field_, true);
  }

  HoleCheckMode hole_check_mode() const {
    HoleCheckMode mode = HoleCheckModeField::decode(bit_field_);
    DCHECK_IMPLIES(mode == HoleCheckMode::kRequired,
                   var()->binding_needs_init() ||
                       var()->local_if_not_shadowed()->binding_needs_init());
    return mode;
  }
  void set_needs_hole_check() {
    bit_field_ =
        HoleCheckModeField::update(bit_field_, HoleCheckMode::kRequired);
  }

  bool IsPrivateName() const {
    return raw_name()->length() > 0 && raw_name()->FirstCharacter() == '#';
  }

  // Bind this proxy to the variable var.
  void BindTo(Variable* var);

  V8_INLINE VariableProxy* next_unresolved() { return next_unresolved_; }
  V8_INLINE bool is_removed_from_unresolved() const {
    return IsRemovedFromUnresolvedField::decode(bit_field_);
  }

  void mark_removed_from_unresolved() {
    bit_field_ = IsRemovedFromUnresolvedField::update(bit_field_, true);
  }

  // Provides filtered access to the unresolved variable proxy threaded list.
  struct UnresolvedNext {
    static VariableProxy** filter(VariableProxy** t) {
      VariableProxy** n = t;
      // Skip over possibly removed values.
      while (*n != nullptr && (*n)->is_removed_from_unresolved()) {
        n = (*n)->next();
      }
      return n;
    }

    static VariableProxy** start(VariableProxy** head) { return filter(head); }

    static VariableProxy** next(VariableProxy* t) { return filter(t->next()); }
  };

 private:
  friend class AstNodeFactory;

  VariableProxy(Variable* var, int start_position);

  VariableProxy(const AstRawString* name, VariableKind variable_kind,
                int start_position)
      : Expression(start_position, kVariableProxy),
        raw_name_(name),
        next_unresolved_(nullptr) {
    DCHECK_NE(THIS_VARIABLE, variable_kind);
    bit_field_ |= IsAssignedField::encode(false) |
                  IsResolvedField::encode(false) |
                  IsRemovedFromUnresolvedField::encode(false) |
                  HoleCheckModeField::encode(HoleCheckMode::kElided);
  }

  explicit VariableProxy(const VariableProxy* copy_from);

  class IsAssignedField
      : public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
  class IsResolvedField : public BitField<bool, IsAssignedField::kNext, 1> {};
  class IsRemovedFromUnresolvedField
      : public BitField<bool, IsResolvedField::kNext, 1> {};
  class IsNewTargetField
      : public BitField<bool, IsRemovedFromUnresolvedField::kNext, 1> {};
  class HoleCheckModeField
      : public BitField<HoleCheckMode, IsNewTargetField::kNext, 1> {};

  union {
    const AstRawString* raw_name_;  // if !is_resolved_
    Variable* var_;                 // if is_resolved_
  };

  V8_INLINE VariableProxy** next() { return &next_unresolved_; }
  VariableProxy* next_unresolved_;

  friend base::ThreadedListTraits<VariableProxy>;
};

// Assignments to a property will use one of several types of property access.
// Otherwise, the assignment is to a non-property (a global, a local slot, a
// parameter slot, or a destructuring pattern).
enum AssignType {
  NON_PROPERTY,          // destructuring
  NAMED_PROPERTY,        // obj.key
  KEYED_PROPERTY,        // obj[key]
  NAMED_SUPER_PROPERTY,  // super.key
  KEYED_SUPER_PROPERTY,  // super[key]
  PRIVATE_METHOD         // obj.#key: #key is a private method
};

class Property final : public Expression {
 public:
  bool IsValidReferenceExpression() const { return true; }

  Expression* obj() const { return obj_; }
  Expression* key() const { return key_; }

  bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); }
  bool IsPrivateReference() const { return key()->IsPrivateName(); }

  // Returns the properties assign type.
  static AssignType GetAssignType(Property* property) {
    if (property == nullptr) return NON_PROPERTY;
    if (property->IsPrivateReference()) {
      DCHECK(!property->IsSuperAccess());
      VariableProxy* proxy = property->key()->AsVariableProxy();
      DCHECK_NOT_NULL(proxy);
      Variable* var = proxy->var();
      // Use KEYED_PROPERTY for private fields.
      return var->requires_brand_check() ? PRIVATE_METHOD : KEYED_PROPERTY;
    }
    bool super_access = property->IsSuperAccess();
    return (property->key()->IsPropertyName())
               ? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
               : (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
  }

 private:
  friend class AstNodeFactory;

  Property(Expression* obj, Expression* key, int pos)
      : Expression(pos, kProperty), obj_(obj), key_(key) {
  }

  Expression* obj_;
  Expression* key_;
};

// ResolvedProperty pairs a receiver field with a value field. It allows Call
// to support arbitrary receivers while still taking advantage of TypeFeedback.
class ResolvedProperty final : public Expression {
 public:
  VariableProxy* object() const { return object_; }
  VariableProxy* property() const { return property_; }

  void set_object(VariableProxy* e) { object_ = e; }
  void set_property(VariableProxy* e) { property_ = e; }

 private:
  friend class AstNodeFactory;

  ResolvedProperty(VariableProxy* obj, VariableProxy* property, int pos)
      : Expression(pos, kResolvedProperty), object_(obj), property_(property) {}

  VariableProxy* object_;
  VariableProxy* property_;
};

class Call final : public Expression {
 public:
  Expression* expression() const { return expression_; }
  const ZonePtrList<Expression>* arguments() const { return &arguments_; }

  bool is_possibly_eval() const {
    return IsPossiblyEvalField::decode(bit_field_);
  }

  bool is_tagged_template() const {
    return IsTaggedTemplateField::decode(bit_field_);
  }

  bool only_last_arg_is_spread() {
    return !arguments_.is_empty() && arguments_.last()->IsSpread();
  }

  enum CallType {
    GLOBAL_CALL,
    WITH_CALL,
    NAMED_PROPERTY_CALL,
    KEYED_PROPERTY_CALL,
    NAMED_SUPER_PROPERTY_CALL,
    KEYED_SUPER_PROPERTY_CALL,
    PRIVATE_CALL,
    SUPER_CALL,
    RESOLVED_PROPERTY_CALL,
    OTHER_CALL
  };

  enum PossiblyEval {
    IS_POSSIBLY_EVAL,
    NOT_EVAL,
  };

  // Helpers to determine how to handle the call.
  CallType GetCallType() const;

  enum class TaggedTemplateTag { kTrue };

 private:
  friend class AstNodeFactory;

  Call(Zone* zone, Expression* expression,
       const ScopedPtrList<Expression>& arguments, int pos,
       PossiblyEval possibly_eval)
      : Expression(pos, kCall),
        expression_(expression),
        arguments_(0, nullptr) {
    bit_field_ |=
        IsPossiblyEvalField::encode(possibly_eval == IS_POSSIBLY_EVAL) |
        IsTaggedTemplateField::encode(false);
    arguments.CopyTo(&arguments_, zone);
  }

  Call(Zone* zone, Expression* expression,
       const ScopedPtrList<Expression>& arguments, int pos,
       TaggedTemplateTag tag)
      : Expression(pos, kCall),
        expression_(expression),
        arguments_(0, nullptr) {
    bit_field_ |= IsPossiblyEvalField::encode(false) |
                  IsTaggedTemplateField::encode(true);
    arguments.CopyTo(&arguments_, zone);
  }

  class IsPossiblyEvalField
      : public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
  class IsTaggedTemplateField
      : public BitField<bool, IsPossiblyEvalField::kNext, 1> {};

  Expression* expression_;
  ZonePtrList<Expression> arguments_;
};


class CallNew final : public Expression {
 public:
  Expression* expression() const { return expression_; }
  const ZonePtrList<Expression>* arguments() const { return &arguments_; }

  bool only_last_arg_is_spread() {
    return !arguments_.is_empty() && arguments_.last()->IsSpread();
  }

 private:
  friend class AstNodeFactory;

  CallNew(Zone* zone, Expression* expression,
          const ScopedPtrList<Expression>& arguments, int pos)
      : Expression(pos, kCallNew),
        expression_(expression),
        arguments_(0, nullptr) {
    arguments.CopyTo(&arguments_, zone);
  }

  Expression* expression_;
  ZonePtrList<Expression> arguments_;
};

// The CallRuntime class does not represent any official JavaScript
// language construct. Instead it is used to call a C or JS function
// with a set of arguments. This is used from the builtins that are
// implemented in JavaScript.
class CallRuntime final : public Expression {
 public:
  const ZonePtrList<Expression>* arguments() const { return &arguments_; }
  bool is_jsruntime() const { return function_ == nullptr; }

  int context_index() const {
    DCHECK(is_jsruntime());
    return context_index_;
  }
  const Runtime::Function* function() const {
    DCHECK(!is_jsruntime());
    return function_;
  }

  const char* debug_name();

 private:
  friend class AstNodeFactory;

  CallRuntime(Zone* zone, const Runtime::Function* function,
              const ScopedPtrList<Expression>& arguments, int pos)
      : Expression(pos, kCallRuntime),
        function_(function),
        arguments_(0, nullptr) {
    arguments.CopyTo(&arguments_, zone);
  }
  CallRuntime(Zone* zone, int context_index,
              const ScopedPtrList<Expression>& arguments, int pos)
      : Expression(pos, kCallRuntime),
        context_index_(context_index),
        function_(nullptr),
        arguments_(0, nullptr) {
    arguments.CopyTo(&arguments_, zone);
  }

  int context_index_;
  const Runtime::Function* function_;
  ZonePtrList<Expression> arguments_;
};


class UnaryOperation final : public Expression {
 public:
  Token::Value op() const { return OperatorField::decode(bit_field_); }
  Expression* expression() const { return expression_; }

 private:
  friend class AstNodeFactory;

  UnaryOperation(Token::Value op, Expression* expression, int pos)
      : Expression(pos, kUnaryOperation), expression_(expression) {
    bit_field_ |= OperatorField::encode(op);
    DCHECK(Token::IsUnaryOp(op));
  }

  Expression* expression_;

  class OperatorField
      : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};


class BinaryOperation final : public Expression {
 public:
  Token::Value op() const { return OperatorField::decode(bit_field_); }
  Expression* left() const { return left_; }
  Expression* right() const { return right_; }

  // Returns true if one side is a Smi literal, returning the other side's
  // sub-expression in |subexpr| and the literal Smi in |literal|.
  bool IsSmiLiteralOperation(Expression** subexpr, Smi* literal);

 private:
  friend class AstNodeFactory;

  BinaryOperation(Token::Value op, Expression* left, Expression* right, int pos)
      : Expression(pos, kBinaryOperation), left_(left), right_(right) {
    bit_field_ |= OperatorField::encode(op);
    DCHECK(Token::IsBinaryOp(op));
  }

  Expression* left_;
  Expression* right_;

  class OperatorField
      : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};

class NaryOperation final : public Expression {
 public:
  Token::Value op() const { return OperatorField::decode(bit_field_); }
  Expression* first() const { return first_; }
  Expression* subsequent(size_t index) const {
    return subsequent_[index].expression;
  }

  size_t subsequent_length() const { return subsequent_.size(); }
  int subsequent_op_position(size_t index) const {
    return subsequent_[index].op_position;
  }

  void AddSubsequent(Expression* expr, int pos) {
    subsequent_.emplace_back(expr, pos);
  }

 private:
  friend class AstNodeFactory;

  NaryOperation(Zone* zone, Token::Value op, Expression* first,
                size_t initial_subsequent_size)
      : Expression(first->position(), kNaryOperation),
        first_(first),
        subsequent_(zone) {
    bit_field_ |= OperatorField::encode(op);
    DCHECK(Token::IsBinaryOp(op));
    DCHECK_NE(op, Token::EXP);
    subsequent_.reserve(initial_subsequent_size);
  }

  // Nary operations store the first (lhs) child expression inline, and the
  // child expressions (rhs of each op) are stored out-of-line, along with
  // their operation's position. Note that the Nary operation expression's
  // position has no meaning.
  //
  // So an nary add:
  //
  //    expr + expr + expr + ...
  //
  // is stored as:
  //
  //    (expr) [(+ expr), (+ expr), ...]
  //    '-.--' '-----------.-----------'
  //    first    subsequent entry list

  Expression* first_;

  struct NaryOperationEntry {
    Expression* expression;
    int op_position;
    NaryOperationEntry(Expression* e, int pos)
        : expression(e), op_position(pos) {}
  };
  ZoneVector<NaryOperationEntry> subsequent_;

  class OperatorField
      : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};

class CountOperation final : public Expression {
 public:
  bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
  bool is_postfix() const { return !is_prefix(); }

  Token::Value op() const { return TokenField::decode(bit_field_); }

  Expression* expression() const { return expression_; }

 private:
  friend class AstNodeFactory;

  CountOperation(Token::Value op, bool is_prefix, Expression* expr, int pos)
      : Expression(pos, kCountOperation), expression_(expr) {
    bit_field_ |= IsPrefixField::encode(is_prefix) | TokenField::encode(op);
  }

  class IsPrefixField
      : public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
  class TokenField : public BitField<Token::Value, IsPrefixField::kNext, 7> {};

  Expression* expression_;
};


class CompareOperation final : public Expression {
 public:
  Token::Value op() const { return OperatorField::decode(bit_field_); }
  Expression* left() const { return left_; }
  Expression* right() const { return right_; }

  // Match special cases.
  bool IsLiteralCompareTypeof(Expression** expr, Literal** literal);
  bool IsLiteralCompareUndefined(Expression** expr);
  bool IsLiteralCompareNull(Expression** expr);

 private:
  friend class AstNodeFactory;

  CompareOperation(Token::Value op, Expression* left, Expression* right,
                   int pos)
      : Expression(pos, kCompareOperation), left_(left), right_(right) {
    bit_field_ |= OperatorField::encode(op);
    DCHECK(Token::IsCompareOp(op));
  }

  Expression* left_;
  Expression* right_;

  class OperatorField
      : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};


class Spread final : public Expression {
 public:
  Expression* expression() const { return expression_; }

  int expression_position() const { return expr_pos_; }

 private:
  friend class AstNodeFactory;

  Spread(Expression* expression, int pos, int expr_pos)
      : Expression(pos, kSpread),
        expr_pos_(expr_pos),
        expression_(expression) {}

  int expr_pos_;
  Expression* expression_;
};

// The StoreInArrayLiteral node corresponds to the StaInArrayLiteral bytecode.
// It is used in the rewriting of destructuring assignments that contain an
// array rest pattern.
class StoreInArrayLiteral final : public Expression {
 public:
  Expression* array() const { return array_; }
  Expression* index() const { return index_; }
  Expression* value() const { return value_; }

 private:
  friend class AstNodeFactory;

  StoreInArrayLiteral(Expression* array, Expression* index, Expression* value,
                      int position)
      : Expression(position, kStoreInArrayLiteral),
        array_(array),
        index_(index),
        value_(value) {}

  Expression* array_;
  Expression* index_;
  Expression* value_;
};

class Conditional final : public Expression {
 public:
  Expression* condition() const { return condition_; }
  Expression* then_expression() const { return then_expression_; }
  Expression* else_expression() const { return else_expression_; }

 private:
  friend class AstNodeFactory;

  Conditional(Expression* condition, Expression* then_expression,
              Expression* else_expression, int position)
      : Expression(position, kConditional),
        condition_(condition),
        then_expression_(then_expression),
        else_expression_(else_expression) {}

  Expression* condition_;
  Expression* then_expression_;
  Expression* else_expression_;
};

class Assignment : public Expression {
 public:
  Token::Value op() const { return TokenField::decode(bit_field_); }
  Expression* target() const { return target_; }
  Expression* value() const { return value_; }

  // The assignment was generated as part of block-scoped sloppy-mode
  // function hoisting, see
  // ES#sec-block-level-function-declarations-web-legacy-compatibility-semantics
  LookupHoistingMode lookup_hoisting_mode() const {
    return static_cast<LookupHoistingMode>(
        LookupHoistingModeField::decode(bit_field_));
  }
  void set_lookup_hoisting_mode(LookupHoistingMode mode) {
    bit_field_ =
        LookupHoistingModeField::update(bit_field_, static_cast<bool>(mode));
  }

 protected:
  Assignment(NodeType type, Token::Value op, Expression* target,
             Expression* value, int pos);

 private:
  friend class AstNodeFactory;

  class TokenField
      : public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
  class LookupHoistingModeField : public BitField<bool, TokenField::kNext, 1> {
  };

  Expression* target_;
  Expression* value_;
};

class CompoundAssignment final : public Assignment {
 public:
  BinaryOperation* binary_operation() const { return binary_operation_; }

 private:
  friend class AstNodeFactory;

  CompoundAssignment(Token::Value op, Expression* target, Expression* value,
                     int pos, BinaryOperation* binary_operation)
      : Assignment(kCompoundAssignment, op, target, value, pos),
        binary_operation_(binary_operation) {}

  BinaryOperation* binary_operation_;
};

// There are several types of Suspend node:
//
// Yield
// YieldStar
// Await
//
// Our Yield is different from the JS yield in that it "returns" its argument as
// is, without wrapping it in an iterator result object.  Such wrapping, if
// desired, must be done beforehand (see the parser).
class Suspend : public Expression {
 public:
  // With {kNoControl}, the {Suspend} behaves like yield, except that it never
  // throws and never causes the current generator to return. This is used to
  // desugar yield*.
  // TODO(caitp): remove once yield* desugaring for async generators is handled
  // in BytecodeGenerator.
  enum OnAbruptResume { kOnExceptionThrow, kNoControl };

  Expression* expression() const { return expression_; }
  OnAbruptResume on_abrupt_resume() const {
    return OnAbruptResumeField::decode(bit_field_);
  }

 private:
  friend class AstNodeFactory;
  friend class Yield;
  friend class YieldStar;
  friend class Await;

  Suspend(NodeType node_type, Expression* expression, int pos,
          OnAbruptResume on_abrupt_resume)
      : Expression(pos, node_type), expression_(expression) {
    bit_field_ |= OnAbruptResumeField::encode(on_abrupt_resume);
  }

  Expression* expression_;

  class OnAbruptResumeField
      : public BitField<OnAbruptResume, Expression::kNextBitFieldIndex, 1> {};
};

class Yield final : public Suspend {
 private:
  friend class AstNodeFactory;
  Yield(Expression* expression, int pos, OnAbruptResume on_abrupt_resume)
      : Suspend(kYield, expression, pos, on_abrupt_resume) {}
};

class YieldStar final : public Suspend {
 private:
  friend class AstNodeFactory;
  YieldStar(Expression* expression, int pos)
      : Suspend(kYieldStar, expression, pos,
                Suspend::OnAbruptResume::kNoControl) {}
};

class Await final : public Suspend {
 private:
  friend class AstNodeFactory;

  Await(Expression* expression, int pos)
      : Suspend(kAwait, expression, pos, Suspend::kOnExceptionThrow) {}
};

class Throw final : public Expression {
 public:
  Expression* exception() const { return exception_; }

 private:
  friend class AstNodeFactory;

  Throw(Expression* exception, int pos)
      : Expression(pos, kThrow), exception_(exception) {}

  Expression* exception_;
};


class FunctionLiteral final : public Expression {
 public:
  enum FunctionType {
    kAnonymousExpression,
    kNamedExpression,
    kDeclaration,
    kAccessorOrMethod,
    kWrapped,
  };

  enum ParameterFlag : uint8_t {
    kNoDuplicateParameters,
    kHasDuplicateParameters
  };
  enum EagerCompileHint : uint8_t { kShouldEagerCompile, kShouldLazyCompile };

  // Empty handle means that the function does not have a shared name (i.e.
  // the name will be set dynamically after creation of the function closure).
  MaybeHandle<String> name() const {
    return raw_name_ ? raw_name_->string() : MaybeHandle<String>();
  }
  Handle<String> name(Isolate* isolate) const;
  bool has_shared_name() const { return raw_name_ != nullptr; }
  const AstConsString* raw_name() const { return raw_name_; }
  void set_raw_name(const AstConsString* name) { raw_name_ = name; }
  DeclarationScope* scope() const { return scope_; }
  ZonePtrList<Statement>* body() { return &body_; }
  void set_function_token_position(int pos) { function_token_position_ = pos; }
  int function_token_position() const { return function_token_position_; }
  int start_position() const;
  int end_position() const;
  bool is_declaration() const { return function_type() == kDeclaration; }
  bool is_named_expression() const {
    return function_type() == kNamedExpression;
  }
  bool is_anonymous_expression() const {
    return function_type() == kAnonymousExpression;
  }

  void mark_as_oneshot_iife() {
    bit_field_ = OneshotIIFEBit::update(bit_field_, true);
  }
  bool is_oneshot_iife() const { return OneshotIIFEBit::decode(bit_field_); }
  bool is_toplevel() const {
    return function_literal_id() == kFunctionLiteralIdTopLevel;
  }
  bool is_wrapped() const { return function_type() == kWrapped; }
  V8_EXPORT_PRIVATE LanguageMode language_mode() const;

  static bool NeedsHomeObject(Expression* expr);

  void add_expected_properties(int number_properties) {
    expected_property_count_ += number_properties;
  }
  int expected_property_count() { return expected_property_count_; }
  int parameter_count() { return parameter_count_; }
  int function_length() { return function_length_; }

  bool AllowsLazyCompilation();

  bool CanSuspend() {
    if (suspend_count() > 0) {
      DCHECK(IsResumableFunction(kind()));
      return true;
    }
    return false;
  }

  // We can safely skip the arguments adaptor frame setup even
  // in case of arguments mismatches for strict mode functions,
  // as long as there's
  //
  //   1. no use of the arguments object (either explicitly or
  //      potentially implicitly via a direct eval() call), and
  //   2. rest parameters aren't being used in the function.
  //
  // See http://bit.ly/v8-faster-calls-with-arguments-mismatch
  // for the details here (https://crbug.com/v8/8895).
  bool SafeToSkipArgumentsAdaptor() const;

  // Returns either name or inferred name as a cstring.
  std::unique_ptr<char[]> GetDebugName() const;

  Handle<String> inferred_name() const {
    if (!inferred_name_.is_null()) {
      DCHECK_NULL(raw_inferred_name_);
      return inferred_name_;
    }
    if (raw_inferred_name_ != nullptr) {
      return raw_inferred_name_->string();
    }
    UNREACHABLE();
  }
  const AstConsString* raw_inferred_name() { return raw_inferred_name_; }

  // Only one of {set_inferred_name, set_raw_inferred_name} should be called.
  void set_inferred_name(Handle<String> inferred_name);
  void set_raw_inferred_name(const AstConsString* raw_inferred_name);

  bool pretenure() const { return Pretenure::decode(bit_field_); }
  void set_pretenure() { bit_field_ = Pretenure::update(bit_field_, true); }

  bool has_duplicate_parameters() const {
    // Not valid for lazy functions.
    DCHECK(ShouldEagerCompile());
    return HasDuplicateParameters::decode(bit_field_);
  }

  // This is used as a heuristic on when to eagerly compile a function
  // literal. We consider the following constructs as hints that the
  // function will be called immediately:
  // - (function() { ... })();
  // - var x = function() { ... }();
  V8_EXPORT_PRIVATE bool ShouldEagerCompile() const;
  V8_EXPORT_PRIVATE void SetShouldEagerCompile();

  FunctionType function_type() const {
    return FunctionTypeBits::decode(bit_field_);
  }
  FunctionKind kind() const;

  bool dont_optimize() {
    return dont_optimize_reason() != BailoutReason::kNoReason;
  }
  BailoutReason dont_optimize_reason() {
    return DontOptimizeReasonField::decode(bit_field_);
  }
  void set_dont_optimize_reason(BailoutReason reason) {
    bit_field_ = DontOptimizeReasonField::update(bit_field_, reason);
  }

  bool IsAnonymousFunctionDefinition() const {
    return is_anonymous_expression();
  }

  int suspend_count() { return suspend_count_; }
  void set_suspend_count(int suspend_count) { suspend_count_ = suspend_count; }

  int return_position() {
    return std::max(
        start_position(),
        end_position() - (HasBracesField::decode(bit_field_) ? 1 : 0));
  }

  int function_literal_id() const { return function_literal_id_; }
  void set_function_literal_id(int function_literal_id) {
    function_literal_id_ = function_literal_id;
  }

  void set_requires_instance_members_initializer(bool value) {
    bit_field_ = RequiresInstanceMembersInitializer::update(bit_field_, value);
  }
  bool requires_instance_members_initializer() const {
    return RequiresInstanceMembersInitializer::decode(bit_field_);
  }

  bool requires_brand_initialization() const;

  ProducedPreparseData* produced_preparse_data() const {
    return produced_preparse_data_;
  }

 private:
  friend class AstNodeFactory;

  FunctionLiteral(Zone* zone, const AstRawString* name,
                  AstValueFactory* ast_value_factory, DeclarationScope* scope,
                  const ScopedPtrList<Statement>& body,
                  int expected_property_count, int parameter_count,
                  int function_length, FunctionType function_type,
                  ParameterFlag has_duplicate_parameters,
                  EagerCompileHint eager_compile_hint, int position,
                  bool has_braces, int function_literal_id,
                  ProducedPreparseData* produced_preparse_data = nullptr)
      : Expression(position, kFunctionLiteral),
        expected_property_count_(expected_property_count),
        parameter_count_(parameter_count),
        function_length_(function_length),
        function_token_position_(kNoSourcePosition),
        suspend_count_(0),
        function_literal_id_(function_literal_id),
        raw_name_(name ? ast_value_factory->NewConsString(name) : nullptr),
        scope_(scope),
        body_(0, nullptr),
        raw_inferred_name_(ast_value_factory->empty_cons_string()),
        produced_preparse_data_(produced_preparse_data) {
    bit_field_ |=
        FunctionTypeBits::encode(function_type) | Pretenure::encode(false) |
        HasDuplicateParameters::encode(has_duplicate_parameters ==
                                       kHasDuplicateParameters) |
        DontOptimizeReasonField::encode(BailoutReason::kNoReason) |
        RequiresInstanceMembersInitializer::encode(false) |
        HasBracesField::encode(has_braces) | OneshotIIFEBit::encode(false);
    if (eager_compile_hint == kShouldEagerCompile) SetShouldEagerCompile();
    body.CopyTo(&body_, zone);
  }

  class FunctionTypeBits
      : public BitField<FunctionType, Expression::kNextBitFieldIndex, 3> {};
  class Pretenure : public BitField<bool, FunctionTypeBits::kNext, 1> {};
  class HasDuplicateParameters : public BitField<bool, Pretenure::kNext, 1> {};
  class DontOptimizeReasonField
      : public BitField<BailoutReason, HasDuplicateParameters::kNext, 8> {};
  class RequiresInstanceMembersInitializer
      : public BitField<bool, DontOptimizeReasonField::kNext, 1> {};
  class HasBracesField
      : public BitField<bool, RequiresInstanceMembersInitializer::kNext, 1> {};
  class OneshotIIFEBit : public BitField<bool, HasBracesField::kNext, 1> {};

  // expected_property_count_ is the sum of instance fields and properties.
  // It can vary depending on whether a function is lazily or eagerly parsed.
  int expected_property_count_;
  int parameter_count_;
  int function_length_;
  int function_token_position_;
  int suspend_count_;
  int function_literal_id_;

  const AstConsString* raw_name_;
  DeclarationScope* scope_;
  ZonePtrList<Statement> body_;
  const AstConsString* raw_inferred_name_;
  Handle<String> inferred_name_;
  ProducedPreparseData* produced_preparse_data_;
};

// Property is used for passing information
// about a class literal's properties from the parser to the code generator.
class ClassLiteralProperty final : public LiteralProperty {
 public:
  enum Kind : uint8_t { METHOD, GETTER, SETTER, FIELD };

  Kind kind() const { return kind_; }

  bool is_static() const { return is_static_; }

  bool is_private() const { return is_private_; }

  void set_computed_name_var(Variable* var) {
    DCHECK_EQ(FIELD, kind());
    DCHECK(!is_private());
    private_or_computed_name_var_ = var;
  }

  Variable* computed_name_var() const {
    DCHECK_EQ(FIELD, kind());
    DCHECK(!is_private());
    return private_or_computed_name_var_;
  }

  void set_private_name_var(Variable* var) {
    DCHECK(is_private());
    private_or_computed_name_var_ = var;
  }
  Variable* private_name_var() const {
    DCHECK(is_private());
    return private_or_computed_name_var_;
  }

 private:
  friend class AstNodeFactory;

  ClassLiteralProperty(Expression* key, Expression* value, Kind kind,
                       bool is_static, bool is_computed_name, bool is_private);

  Kind kind_;
  bool is_static_;
  bool is_private_;
  Variable* private_or_computed_name_var_;
};

class InitializeClassMembersStatement final : public Statement {
 public:
  using Property = ClassLiteralProperty;

  ZonePtrList<Property>* fields() const { return fields_; }

 private:
  friend class AstNodeFactory;

  InitializeClassMembersStatement(ZonePtrList<Property>* fields, int pos)
      : Statement(pos, kInitializeClassMembersStatement), fields_(fields) {}

  ZonePtrList<Property>* fields_;
};

class ClassLiteral final : public Expression {
 public:
  using Property = ClassLiteralProperty;

  ClassScope* scope() const { return scope_; }
  Variable* class_variable() const { return class_variable_; }
  Expression* extends() const { return extends_; }
  FunctionLiteral* constructor() const { return constructor_; }
  ZonePtrList<Property>* properties() const { return properties_; }
  int start_position() const { return position(); }
  int end_position() const { return end_position_; }
  bool has_name_static_property() const {
    return HasNameStaticProperty::decode(bit_field_);
  }
  bool has_static_computed_names() const {
    return HasStaticComputedNames::decode(bit_field_);
  }

  bool is_anonymous_expression() const {
    return IsAnonymousExpression::decode(bit_field_);
  }
  bool IsAnonymousFunctionDefinition() const {
    return is_anonymous_expression();
  }

  FunctionLiteral* static_fields_initializer() const {
    return static_fields_initializer_;
  }

  FunctionLiteral* instance_members_initializer_function() const {
    return instance_members_initializer_function_;
  }

 private:
  friend class AstNodeFactory;

  ClassLiteral(ClassScope* scope, Variable* class_variable, Expression* extends,
               FunctionLiteral* constructor, ZonePtrList<Property>* properties,
               FunctionLiteral* static_fields_initializer,
               FunctionLiteral* instance_members_initializer_function,
               int start_position, int end_position,
               bool has_name_static_property, bool has_static_computed_names,
               bool is_anonymous)
      : Expression(start_position, kClassLiteral),
        end_position_(end_position),
        scope_(scope),
        class_variable_(class_variable),
        extends_(extends),
        constructor_(constructor),
        properties_(properties),
        static_fields_initializer_(static_fields_initializer),
        instance_members_initializer_function_(
            instance_members_initializer_function) {
    bit_field_ |= HasNameStaticProperty::encode(has_name_static_property) |
                  HasStaticComputedNames::encode(has_static_computed_names) |
                  IsAnonymousExpression::encode(is_anonymous);
  }

  int end_position_;
  ClassScope* scope_;
  Variable* class_variable_;
  Expression* extends_;
  FunctionLiteral* constructor_;
  ZonePtrList<Property>* properties_;
  FunctionLiteral* static_fields_initializer_;
  FunctionLiteral* instance_members_initializer_function_;
  class HasNameStaticProperty
      : public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
  class HasStaticComputedNames
      : public BitField<bool, HasNameStaticProperty::kNext, 1> {};
  class IsAnonymousExpression
      : public BitField<bool, HasStaticComputedNames::kNext, 1> {};
};


class NativeFunctionLiteral final : public Expression {
 public:
  Handle<String> name() const { return name_->string(); }
  const AstRawString* raw_name() const { return name_; }
  v8::Extension* extension() const { return extension_; }

 private:
  friend class AstNodeFactory;

  NativeFunctionLiteral(const AstRawString* name, v8::Extension* extension,
                        int pos)
      : Expression(pos, kNativeFunctionLiteral),
        name_(name),
        extension_(extension) {}

  const AstRawString* name_;
  v8::Extension* extension_;
};


class SuperPropertyReference final : public Expression {
 public:
  Expression* home_object() const { return home_object_; }

 private:
  friend class AstNodeFactory;

  // We take in ThisExpression* only as a proof that it was accessed.
  SuperPropertyReference(Expression* home_object, int pos)
      : Expression(pos, kSuperPropertyReference), home_object_(home_object) {
    DCHECK(home_object->IsProperty());
  }

  Expression* home_object_;
};


class SuperCallReference final : public Expression {
 public:
  VariableProxy* new_target_var() const { return new_target_var_; }
  VariableProxy* this_function_var() const { return this_function_var_; }

 private:
  friend class AstNodeFactory;

  // We take in ThisExpression* only as a proof that it was accessed.
  SuperCallReference(VariableProxy* new_target_var,
                     VariableProxy* this_function_var, int pos)
      : Expression(pos, kSuperCallReference),
        new_target_var_(new_target_var),
        this_function_var_(this_function_var) {
    DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target"));
    DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function"));
  }

  VariableProxy* new_target_var_;
  VariableProxy* this_function_var_;
};

// This AST Node is used to represent a dynamic import call --
// import(argument).
class ImportCallExpression final : public Expression {
 public:
  Expression* argument() const { return argument_; }

 private:
  friend class AstNodeFactory;

  ImportCallExpression(Expression* argument, int pos)
      : Expression(pos, kImportCallExpression), argument_(argument) {}

  Expression* argument_;
};

// This class is produced when parsing the () in arrow functions without any
// arguments and is not actually a valid expression.
class EmptyParentheses final : public Expression {
 private:
  friend class AstNodeFactory;

  explicit EmptyParentheses(int pos) : Expression(pos, kEmptyParentheses) {
    mark_parenthesized();
  }
};

// Represents the spec operation `GetTemplateObject(templateLiteral)`
// (defined at https://tc39.github.io/ecma262/#sec-gettemplateobject).
class GetTemplateObject final : public Expression {
 public:
  const ZonePtrList<const AstRawString>* cooked_strings() const {
    return cooked_strings_;
  }
  const ZonePtrList<const AstRawString>* raw_strings() const {
    return raw_strings_;
  }

  Handle<TemplateObjectDescription> GetOrBuildDescription(Isolate* isolate);

 private:
  friend class AstNodeFactory;

  GetTemplateObject(const ZonePtrList<const AstRawString>* cooked_strings,
                    const ZonePtrList<const AstRawString>* raw_strings, int pos)
      : Expression(pos, kGetTemplateObject),
        cooked_strings_(cooked_strings),
        raw_strings_(raw_strings) {}

  const ZonePtrList<const AstRawString>* cooked_strings_;
  const ZonePtrList<const AstRawString>* raw_strings_;
};

class TemplateLiteral final : public Expression {
 public:
  const ZonePtrList<const AstRawString>* string_parts() const {
    return string_parts_;
  }
  const ZonePtrList<Expression>* substitutions() const {
    return substitutions_;
  }

 private:
  friend class AstNodeFactory;
  TemplateLiteral(const ZonePtrList<const AstRawString>* parts,
                  const ZonePtrList<Expression>* substitutions, int pos)
      : Expression(pos, kTemplateLiteral),
        string_parts_(parts),
        substitutions_(substitutions) {}

  const ZonePtrList<const AstRawString>* string_parts_;
  const ZonePtrList<Expression>* substitutions_;
};

// ----------------------------------------------------------------------------
// Basic visitor
// Sub-class should parametrize AstVisitor with itself, e.g.:
//   class SpecificVisitor : public AstVisitor<SpecificVisitor> { ... }

template <class Subclass>
class AstVisitor {
 public:
  void Visit(AstNode* node) { impl()->Visit(node); }

  void VisitDeclarations(Declaration::List* declarations) {
    for (Declaration* decl : *declarations) Visit(decl);
  }

  void VisitStatements(const ZonePtrList<Statement>* statements) {
    for (int i = 0; i < statements->length(); i++) {
      Statement* stmt = statements->at(i);
      Visit(stmt);
    }
  }

  void VisitExpressions(const ZonePtrList<Expression>* expressions) {
    for (int i = 0; i < expressions->length(); i++) {
      // The variable statement visiting code may pass null expressions
      // to this code. Maybe this should be handled by introducing an
      // undefined expression or literal? Revisit this code if this
      // changes.
      Expression* expression = expressions->at(i);
      if (expression != nullptr) Visit(expression);
    }
  }

 protected:
  Subclass* impl() { return static_cast<Subclass*>(this); }
};

#define GENERATE_VISIT_CASE(NodeType)                                   \
  case AstNode::k##NodeType:                                            \
    return this->impl()->Visit##NodeType(static_cast<NodeType*>(node));

#define GENERATE_FAILURE_CASE(NodeType) \
  case AstNode::k##NodeType:            \
    UNREACHABLE();

#define GENERATE_AST_VISITOR_SWITCH()        \
  switch (node->node_type()) {               \
    AST_NODE_LIST(GENERATE_VISIT_CASE)       \
    FAILURE_NODE_LIST(GENERATE_FAILURE_CASE) \
  }

#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS()               \
 public:                                                    \
  void VisitNoStackOverflowCheck(AstNode* node) {           \
    GENERATE_AST_VISITOR_SWITCH()                           \
  }                                                         \
                                                            \
  void Visit(AstNode* node) {                               \
    if (CheckStackOverflow()) return;                       \
    VisitNoStackOverflowCheck(node);                        \
  }                                                         \
                                                            \
  void SetStackOverflow() { stack_overflow_ = true; }       \
  void ClearStackOverflow() { stack_overflow_ = false; }    \
  bool HasStackOverflow() const { return stack_overflow_; } \
                                                            \
  bool CheckStackOverflow() {                               \
    if (stack_overflow_) return true;                       \
    if (GetCurrentStackPosition() < stack_limit_) {         \
      stack_overflow_ = true;                               \
      return true;                                          \
    }                                                       \
    return false;                                           \
  }                                                         \
                                                            \
 protected:                                                 \
  uintptr_t stack_limit() const { return stack_limit_; }    \
                                                            \
 private:                                                   \
  void InitializeAstVisitor(Isolate* isolate) {             \
    stack_limit_ = isolate->stack_guard()->real_climit();   \
    stack_overflow_ = false;                                \
  }                                                         \
                                                            \
  void InitializeAstVisitor(uintptr_t stack_limit) {        \
    stack_limit_ = stack_limit;                             \
    stack_overflow_ = false;                                \
  }                                                         \
                                                            \
  uintptr_t stack_limit_;                                   \
  bool stack_overflow_

#define DEFINE_AST_VISITOR_MEMBERS_WITHOUT_STACKOVERFLOW()    \
 public:                                                      \
  void Visit(AstNode* node) { GENERATE_AST_VISITOR_SWITCH() } \
                                                              \
 private:

// ----------------------------------------------------------------------------
// AstNode factory

class AstNodeFactory final {
 public:
  AstNodeFactory(AstValueFactory* ast_value_factory, Zone* zone)
      : zone_(zone),
        ast_value_factory_(ast_value_factory),
        empty_statement_(new (zone) class EmptyStatement()),
        this_expression_(new (zone) class ThisExpression()),
        failure_expression_(new (zone) class FailureExpression()) {}

  AstNodeFactory* ast_node_factory() { return this; }
  AstValueFactory* ast_value_factory() const { return ast_value_factory_; }

  VariableDeclaration* NewVariableDeclaration(int pos) {
    return new (zone_) VariableDeclaration(pos);
  }

  NestedVariableDeclaration* NewNestedVariableDeclaration(Scope* scope,
                                                          int pos) {
    return new (zone_) NestedVariableDeclaration(scope, pos);
  }

  FunctionDeclaration* NewFunctionDeclaration(FunctionLiteral* fun, int pos) {
    return new (zone_) FunctionDeclaration(fun, pos);
  }

  Block* NewBlock(int capacity, bool ignore_completion_value) {
    return new (zone_) Block(zone_, nullptr, capacity, ignore_completion_value);
  }

  Block* NewBlock(bool ignore_completion_value,
                  ZonePtrList<const AstRawString>* labels) {
    return labels != nullptr
               ? new (zone_) LabeledBlock(labels, ignore_completion_value)
               : new (zone_) Block(labels, ignore_completion_value);
  }

  Block* NewBlock(bool ignore_completion_value,
                  const ScopedPtrList<Statement>& statements) {
    Block* result = NewBlock(ignore_completion_value, nullptr);
    result->InitializeStatements(statements, zone_);
    return result;
  }

#define STATEMENT_WITH_LABELS(NodeType)                                \
  NodeType* New##NodeType(ZonePtrList<const AstRawString>* labels,     \
                          ZonePtrList<const AstRawString>* own_labels, \
                          int pos) {                                   \
    return new (zone_) NodeType(labels, own_labels, pos);              \
  }
  STATEMENT_WITH_LABELS(DoWhileStatement)
  STATEMENT_WITH_LABELS(WhileStatement)
  STATEMENT_WITH_LABELS(ForStatement)
#undef STATEMENT_WITH_LABELS

  SwitchStatement* NewSwitchStatement(ZonePtrList<const AstRawString>* labels,
                                      Expression* tag, int pos) {
    return new (zone_) SwitchStatement(zone_, labels, tag, pos);
  }

  ForEachStatement* NewForEachStatement(
      ForEachStatement::VisitMode visit_mode,
      ZonePtrList<const AstRawString>* labels,
      ZonePtrList<const AstRawString>* own_labels, int pos) {
    switch (visit_mode) {
      case ForEachStatement::ENUMERATE: {
        return new (zone_) ForInStatement(labels, own_labels, pos);
      }
      case ForEachStatement::ITERATE: {
        return new (zone_)
            ForOfStatement(labels, own_labels, pos, IteratorType::kNormal);
      }
    }
    UNREACHABLE();
  }

  ForOfStatement* NewForOfStatement(ZonePtrList<const AstRawString>* labels,
                                    ZonePtrList<const AstRawString>* own_labels,
                                    int pos, IteratorType type) {
    return new (zone_) ForOfStatement(labels, own_labels, pos, type);
  }

  ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
    return new (zone_) ExpressionStatement(expression, pos);
  }

  ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
    return new (zone_) ContinueStatement(target, pos);
  }

  BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
    return new (zone_) BreakStatement(target, pos);
  }

  ReturnStatement* NewReturnStatement(Expression* expression, int pos,
                                      int end_position = kNoSourcePosition) {
    return new (zone_) ReturnStatement(expression, ReturnStatement::kNormal,
                                       pos, end_position);
  }

  ReturnStatement* NewAsyncReturnStatement(
      Expression* expression, int pos, int end_position = kNoSourcePosition) {
    return new (zone_) ReturnStatement(
        expression, ReturnStatement::kAsyncReturn, pos, end_position);
  }

  WithStatement* NewWithStatement(Scope* scope,
                                  Expression* expression,
                                  Statement* statement,
                                  int pos) {
    return new (zone_) WithStatement(scope, expression, statement, pos);
  }

  IfStatement* NewIfStatement(Expression* condition, Statement* then_statement,
                              Statement* else_statement, int pos) {
    return new (zone_)
        IfStatement(condition, then_statement, else_statement, pos);
  }

  TryCatchStatement* NewTryCatchStatement(Block* try_block, Scope* scope,
                                          Block* catch_block, int pos) {
    return new (zone_) TryCatchStatement(try_block, scope, catch_block,
                                         HandlerTable::CAUGHT, pos);
  }

  TryCatchStatement* NewTryCatchStatementForReThrow(Block* try_block,
                                                    Scope* scope,
                                                    Block* catch_block,
                                                    int pos) {
    return new (zone_) TryCatchStatement(try_block, scope, catch_block,
                                         HandlerTable::UNCAUGHT, pos);
  }

  TryCatchStatement* NewTryCatchStatementForDesugaring(Block* try_block,
                                                       Scope* scope,
                                                       Block* catch_block,
                                                       int pos) {
    return new (zone_) TryCatchStatement(try_block, scope, catch_block,
                                         HandlerTable::DESUGARING, pos);
  }

  TryCatchStatement* NewTryCatchStatementForAsyncAwait(Block* try_block,
                                                       Scope* scope,
                                                       Block* catch_block,
                                                       int pos) {
    return new (zone_) TryCatchStatement(try_block, scope, catch_block,
                                         HandlerTable::ASYNC_AWAIT, pos);
  }

  TryFinallyStatement* NewTryFinallyStatement(Block* try_block,
                                              Block* finally_block, int pos) {
    return new (zone_) TryFinallyStatement(try_block, finally_block, pos);
  }

  DebuggerStatement* NewDebuggerStatement(int pos) {
    return new (zone_) DebuggerStatement(pos);
  }

  class EmptyStatement* EmptyStatement() {
    return empty_statement_;
  }

  class ThisExpression* ThisExpression() {
    // Clear any previously set "parenthesized" flag on this_expression_ so this
    // particular token does not inherit the it. The flag is used to check
    // during arrow function head parsing whether we came from parenthesized
    // exprssion parsing, since additional arrow function verification was done
    // there. It does not matter whether a flag is unset after arrow head
    // verification, so clearing at this point is fine.
    this_expression_->clear_parenthesized();
    return this_expression_;
  }

  class FailureExpression* FailureExpression() {
    return failure_expression_;
  }

  SloppyBlockFunctionStatement* NewSloppyBlockFunctionStatement(
      int pos, Variable* var, Token::Value init) {
    return new (zone_)
        SloppyBlockFunctionStatement(pos, var, init, EmptyStatement());
  }

  CaseClause* NewCaseClause(Expression* label,
                            const ScopedPtrList<Statement>& statements) {
    return new (zone_) CaseClause(zone_, label, statements);
  }

  Literal* NewStringLiteral(const AstRawString* string, int pos) {
    DCHECK_NOT_NULL(string);
    return new (zone_) Literal(string, pos);
  }

  // A JavaScript symbol (ECMA-262 edition 6).
  Literal* NewSymbolLiteral(AstSymbol symbol, int pos) {
    return new (zone_) Literal(symbol, pos);
  }

  Literal* NewNumberLiteral(double number, int pos);

  Literal* NewSmiLiteral(int number, int pos) {
    return new (zone_) Literal(number, pos);
  }

  Literal* NewBigIntLiteral(AstBigInt bigint, int pos) {
    return new (zone_) Literal(bigint, pos);
  }

  Literal* NewBooleanLiteral(bool b, int pos) {
    return new (zone_) Literal(b, pos);
  }

  Literal* NewNullLiteral(int pos) {
    return new (zone_) Literal(Literal::kNull, pos);
  }

  Literal* NewUndefinedLiteral(int pos) {
    return new (zone_) Literal(Literal::kUndefined, pos);
  }

  Literal* NewTheHoleLiteral() {
    return new (zone_) Literal(Literal::kTheHole, kNoSourcePosition);
  }

  ObjectLiteral* NewObjectLiteral(
      const ScopedPtrList<ObjectLiteral::Property>& properties,
      uint32_t boilerplate_properties, int pos, bool has_rest_property) {
    return new (zone_) ObjectLiteral(zone_, properties, boilerplate_properties,
                                     pos, has_rest_property);
  }

  ObjectLiteral::Property* NewObjectLiteralProperty(
      Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
      bool is_computed_name) {
    return new (zone_)
        ObjectLiteral::Property(key, value, kind, is_computed_name);
  }

  ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
                                                    Expression* value,
                                                    bool is_computed_name) {
    return new (zone_) ObjectLiteral::Property(ast_value_factory_, key, value,
                                               is_computed_name);
  }

  RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern, int flags,
                                  int pos) {
    return new (zone_) RegExpLiteral(pattern, flags, pos);
  }

  ArrayLiteral* NewArrayLiteral(const ScopedPtrList<Expression>& values,
                                int pos) {
    return new (zone_) ArrayLiteral(zone_, values, -1, pos);
  }

  ArrayLiteral* NewArrayLiteral(const ScopedPtrList<Expression>& values,
                                int first_spread_index, int pos) {
    return new (zone_) ArrayLiteral(zone_, values, first_spread_index, pos);
  }

  VariableProxy* NewVariableProxy(Variable* var,
                                  int start_position = kNoSourcePosition) {
    return new (zone_) VariableProxy(var, start_position);
  }

  VariableProxy* NewVariableProxy(const AstRawString* name,
                                  VariableKind variable_kind,
                                  int start_position = kNoSourcePosition) {
    DCHECK_NOT_NULL(name);
    return new (zone_) VariableProxy(name, variable_kind, start_position);
  }

  // Recreates the VariableProxy in this Zone.
  VariableProxy* CopyVariableProxy(VariableProxy* proxy) {
    return new (zone_) VariableProxy(proxy);
  }

  Variable* CopyVariable(Variable* variable) {
    return new (zone_) Variable(variable);
  }

  Property* NewProperty(Expression* obj, Expression* key, int pos) {
    return new (zone_) Property(obj, key, pos);
  }

  ResolvedProperty* NewResolvedProperty(VariableProxy* obj,
                                        VariableProxy* property,
                                        int pos = kNoSourcePosition) {
    return new (zone_) ResolvedProperty(obj, property, pos);
  }

  Call* NewCall(Expression* expression,
                const ScopedPtrList<Expression>& arguments, int pos,
                Call::PossiblyEval possibly_eval = Call::NOT_EVAL) {
    return new (zone_) Call(zone_, expression, arguments, pos, possibly_eval);
  }

  Call* NewTaggedTemplate(Expression* expression,
                          const ScopedPtrList<Expression>& arguments, int pos) {
    return new (zone_)
        Call(zone_, expression, arguments, pos, Call::TaggedTemplateTag::kTrue);
  }

  CallNew* NewCallNew(Expression* expression,
                      const ScopedPtrList<Expression>& arguments, int pos) {
    return new (zone_) CallNew(zone_, expression, arguments, pos);
  }

  CallRuntime* NewCallRuntime(Runtime::FunctionId id,
                              const ScopedPtrList<Expression>& arguments,
                              int pos) {
    return new (zone_)
        CallRuntime(zone_, Runtime::FunctionForId(id), arguments, pos);
  }

  CallRuntime* NewCallRuntime(const Runtime::Function* function,
                              const ScopedPtrList<Expression>& arguments,
                              int pos) {
    return new (zone_) CallRuntime(zone_, function, arguments, pos);
  }

  CallRuntime* NewCallRuntime(int context_index,
                              const ScopedPtrList<Expression>& arguments,
                              int pos) {
    return new (zone_) CallRuntime(zone_, context_index, arguments, pos);
  }

  UnaryOperation* NewUnaryOperation(Token::Value op,
                                    Expression* expression,
                                    int pos) {
    return new (zone_) UnaryOperation(op, expression, pos);
  }

  BinaryOperation* NewBinaryOperation(Token::Value op,
                                      Expression* left,
                                      Expression* right,
                                      int pos) {
    return new (zone_) BinaryOperation(op, left, right, pos);
  }

  NaryOperation* NewNaryOperation(Token::Value op, Expression* first,
                                  size_t initial_subsequent_size) {
    return new (zone_) NaryOperation(zone_, op, first, initial_subsequent_size);
  }

  CountOperation* NewCountOperation(Token::Value op,
                                    bool is_prefix,
                                    Expression* expr,
                                    int pos) {
    return new (zone_) CountOperation(op, is_prefix, expr, pos);
  }

  CompareOperation* NewCompareOperation(Token::Value op,
                                        Expression* left,
                                        Expression* right,
                                        int pos) {
    return new (zone_) CompareOperation(op, left, right, pos);
  }

  Spread* NewSpread(Expression* expression, int pos, int expr_pos) {
    return new (zone_) Spread(expression, pos, expr_pos);
  }

  StoreInArrayLiteral* NewStoreInArrayLiteral(Expression* array,
                                              Expression* index,
                                              Expression* value, int pos) {
    return new (zone_) StoreInArrayLiteral(array, index, value, pos);
  }

  Conditional* NewConditional(Expression* condition,
                              Expression* then_expression,
                              Expression* else_expression,
                              int position) {
    return new (zone_)
        Conditional(condition, then_expression, else_expression, position);
  }

  Assignment* NewAssignment(Token::Value op,
                            Expression* target,
                            Expression* value,
                            int pos) {
    DCHECK(Token::IsAssignmentOp(op));
    DCHECK_NOT_NULL(target);
    DCHECK_NOT_NULL(value);

    if (op != Token::INIT && target->IsVariableProxy()) {
      target->AsVariableProxy()->set_is_assigned();
    }

    if (op == Token::ASSIGN || op == Token::INIT) {
      return new (zone_)
          Assignment(AstNode::kAssignment, op, target, value, pos);
    } else {
      return new (zone_) CompoundAssignment(
          op, target, value, pos,
          NewBinaryOperation(Token::BinaryOpForAssignment(op), target, value,
                             pos + 1));
    }
  }

  Suspend* NewYield(Expression* expression, int pos,
                    Suspend::OnAbruptResume on_abrupt_resume) {
    if (!expression) expression = NewUndefinedLiteral(pos);
    return new (zone_) Yield(expression, pos, on_abrupt_resume);
  }

  YieldStar* NewYieldStar(Expression* expression, int pos) {
    return new (zone_) YieldStar(expression, pos);
  }

  Await* NewAwait(Expression* expression, int pos) {
    if (!expression) expression = NewUndefinedLiteral(pos);
    return new (zone_) Await(expression, pos);
  }

  Throw* NewThrow(Expression* exception, int pos) {
    return new (zone_) Throw(exception, pos);
  }

  FunctionLiteral* NewFunctionLiteral(
      const AstRawString* name, DeclarationScope* scope,
      const ScopedPtrList<Statement>& body, int expected_property_count,
      int parameter_count, int function_length,
      FunctionLiteral::ParameterFlag has_duplicate_parameters,
      FunctionLiteral::FunctionType function_type,
      FunctionLiteral::EagerCompileHint eager_compile_hint, int position,
      bool has_braces, int function_literal_id,
      ProducedPreparseData* produced_preparse_data = nullptr) {
    return new (zone_) FunctionLiteral(
        zone_, name, ast_value_factory_, scope, body, expected_property_count,
        parameter_count, function_length, function_type,
        has_duplicate_parameters, eager_compile_hint, position, has_braces,
        function_literal_id, produced_preparse_data);
  }

  // Creates a FunctionLiteral representing a top-level script, the
  // result of an eval (top-level or otherwise), or the result of calling
  // the Function constructor.
  FunctionLiteral* NewScriptOrEvalFunctionLiteral(
      DeclarationScope* scope, const ScopedPtrList<Statement>& body,
      int expected_property_count, int parameter_count) {
    return new (zone_) FunctionLiteral(
        zone_, ast_value_factory_->empty_string(), ast_value_factory_, scope,
        body, expected_property_count, parameter_count, parameter_count,
        FunctionLiteral::kAnonymousExpression,
        FunctionLiteral::kNoDuplicateParameters,
        FunctionLiteral::kShouldLazyCompile, 0, /* has_braces */ false,
        kFunctionLiteralIdTopLevel);
  }

  ClassLiteral::Property* NewClassLiteralProperty(
      Expression* key, Expression* value, ClassLiteralProperty::Kind kind,
      bool is_static, bool is_computed_name, bool is_private) {
    return new (zone_) ClassLiteral::Property(key, value, kind, is_static,
                                              is_computed_name, is_private);
  }

  ClassLiteral* NewClassLiteral(
      ClassScope* scope, Variable* variable, Expression* extends,
      FunctionLiteral* constructor,
      ZonePtrList<ClassLiteral::Property>* properties,
      FunctionLiteral* static_fields_initializer,
      FunctionLiteral* instance_members_initializer_function,
      int start_position, int end_position, bool has_name_static_property,
      bool has_static_computed_names, bool is_anonymous) {
    return new (zone_) ClassLiteral(
        scope, variable, extends, constructor, properties,
        static_fields_initializer, instance_members_initializer_function,
        start_position, end_position, has_name_static_property,
        has_static_computed_names, is_anonymous);
  }

  NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
                                                  v8::Extension* extension,
                                                  int pos) {
    return new (zone_) NativeFunctionLiteral(name, extension, pos);
  }

  DoExpression* NewDoExpression(Block* block, Variable* result_var, int pos) {
    VariableProxy* result = NewVariableProxy(result_var, pos);
    return new (zone_) DoExpression(block, result, pos);
  }

  SuperPropertyReference* NewSuperPropertyReference(Expression* home_object,
                                                    int pos) {
    return new (zone_) SuperPropertyReference(home_object, pos);
  }

  SuperCallReference* NewSuperCallReference(VariableProxy* new_target_var,
                                            VariableProxy* this_function_var,
                                            int pos) {
    return new (zone_)
        SuperCallReference(new_target_var, this_function_var, pos);
  }

  EmptyParentheses* NewEmptyParentheses(int pos) {
    return new (zone_) EmptyParentheses(pos);
  }

  GetTemplateObject* NewGetTemplateObject(
      const ZonePtrList<const AstRawString>* cooked_strings,
      const ZonePtrList<const AstRawString>* raw_strings, int pos) {
    return new (zone_) GetTemplateObject(cooked_strings, raw_strings, pos);
  }

  TemplateLiteral* NewTemplateLiteral(
      const ZonePtrList<const AstRawString>* string_parts,
      const ZonePtrList<Expression>* substitutions, int pos) {
    return new (zone_) TemplateLiteral(string_parts, substitutions, pos);
  }

  ImportCallExpression* NewImportCallExpression(Expression* args, int pos) {
    return new (zone_) ImportCallExpression(args, pos);
  }

  InitializeClassMembersStatement* NewInitializeClassMembersStatement(
      ZonePtrList<ClassLiteral::Property>* args, int pos) {
    return new (zone_) InitializeClassMembersStatement(args, pos);
  }

  Zone* zone() const { return zone_; }

 private:
  // This zone may be deallocated upon returning from parsing a function body
  // which we can guarantee is not going to be compiled or have its AST
  // inspected.
  // See ParseFunctionLiteral in parser.cc for preconditions.
  Zone* zone_;
  AstValueFactory* ast_value_factory_;
  class EmptyStatement* empty_statement_;
  class ThisExpression* this_expression_;
  class FailureExpression* failure_expression_;
};


// Type testing & conversion functions overridden by concrete subclasses.
// Inline functions for AstNode.

#define DECLARE_NODE_FUNCTIONS(type)                                         \
  bool AstNode::Is##type() const { return node_type() == AstNode::k##type; } \
  type* AstNode::As##type() {                                                \
    return node_type() == AstNode::k##type ? reinterpret_cast<type*>(this)   \
                                           : nullptr;                        \
  }                                                                          \
  const type* AstNode::As##type() const {                                    \
    return node_type() == AstNode::k##type                                   \
               ? reinterpret_cast<const type*>(this)                         \
               : nullptr;                                                    \
  }
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
FAILURE_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS

}  // namespace internal
}  // namespace v8

#endif  // V8_AST_AST_H_