summaryrefslogtreecommitdiff
path: root/deps/v8/src/assembler.h
blob: 28ec2a68c61f333cb63f28dd0159f1e620a97c48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

#ifndef V8_ASSEMBLER_H_
#define V8_ASSEMBLER_H_

#include <forward_list>
#include <iosfwd>
#include <map>

#include "src/allocation.h"
#include "src/code-reference.h"
#include "src/contexts.h"
#include "src/deoptimize-reason.h"
#include "src/double.h"
#include "src/external-reference.h"
#include "src/flags.h"
#include "src/globals.h"
#include "src/label.h"
#include "src/objects.h"
#include "src/register-configuration.h"
#include "src/reglist.h"

namespace v8 {

// Forward declarations.
class ApiFunction;

namespace internal {

// Forward declarations.
class EmbeddedData;
class InstructionStream;
class Isolate;
class SCTableReference;
class SourcePosition;
class StatsCounter;

// -----------------------------------------------------------------------------
// Optimization for far-jmp like instructions that can be replaced by shorter.

class JumpOptimizationInfo {
 public:
  bool is_collecting() const { return stage_ == kCollection; }
  bool is_optimizing() const { return stage_ == kOptimization; }
  void set_optimizing() { stage_ = kOptimization; }

  bool is_optimizable() const { return optimizable_; }
  void set_optimizable() { optimizable_ = true; }

  // Used to verify the instruction sequence is always the same in two stages.
  size_t hash_code() const { return hash_code_; }
  void set_hash_code(size_t hash_code) { hash_code_ = hash_code; }

  std::vector<uint32_t>& farjmp_bitmap() { return farjmp_bitmap_; }

 private:
  enum { kCollection, kOptimization } stage_ = kCollection;
  bool optimizable_ = false;
  std::vector<uint32_t> farjmp_bitmap_;
  size_t hash_code_ = 0u;
};

class HeapObjectRequest {
 public:
  explicit HeapObjectRequest(double heap_number, int offset = -1);
  explicit HeapObjectRequest(CodeStub* code_stub, int offset = -1);

  enum Kind { kHeapNumber, kCodeStub };
  Kind kind() const { return kind_; }

  double heap_number() const {
    DCHECK_EQ(kind(), kHeapNumber);
    return value_.heap_number;
  }

  CodeStub* code_stub() const {
    DCHECK_EQ(kind(), kCodeStub);
    return value_.code_stub;
  }

  // The code buffer offset at the time of the request.
  int offset() const {
    DCHECK_GE(offset_, 0);
    return offset_;
  }
  void set_offset(int offset) {
    DCHECK_LT(offset_, 0);
    offset_ = offset;
    DCHECK_GE(offset_, 0);
  }

 private:
  Kind kind_;

  union {
    double heap_number;
    CodeStub* code_stub;
  } value_;

  int offset_;
};

// -----------------------------------------------------------------------------
// Platform independent assembler base class.

enum class CodeObjectRequired { kNo, kYes };

struct V8_EXPORT_PRIVATE AssemblerOptions {
  // Recording reloc info for external references and off-heap targets is
  // needed whenever code is serialized, e.g. into the snapshot or as a WASM
  // module. This flag allows this reloc info to be disabled for code that
  // will not survive process destruction.
  bool record_reloc_info_for_serialization = true;
  // Recording reloc info can be disabled wholesale. This is needed when the
  // assembler is used on existing code directly (e.g. JumpTableAssembler)
  // without any buffer to hold reloc information.
  bool disable_reloc_info_for_patching = false;
  // Enables access to exrefs by computing a delta from the root array.
  // Only valid if code will not survive the process.
  bool enable_root_array_delta_access = false;
  // Enables specific assembler sequences only used for the simulator.
  bool enable_simulator_code = false;
  // Enables use of isolate-independent constants, indirected through the
  // root array.
  // (macro assembler feature).
  bool isolate_independent_code = false;
  // Enables the use of isolate-independent builtins through an off-heap
  // trampoline. (macro assembler feature).
  bool inline_offheap_trampolines = false;
  // On some platforms, all code is within a given range in the process,
  // and the start of this range is configured here.
  Address code_range_start = 0;
  // Enable pc-relative calls/jumps on platforms that support it. When setting
  // this flag, the code range must be small enough to fit all offsets into
  // the instruction immediates.
  bool use_pc_relative_calls_and_jumps = false;

  static AssemblerOptions Default(
      Isolate* isolate, bool explicitly_support_serialization = false);
};

class AssemblerBase : public Malloced {
 public:
  AssemblerBase(const AssemblerOptions& options, void* buffer, int buffer_size);
  virtual ~AssemblerBase();

  const AssemblerOptions& options() const { return options_; }

  bool emit_debug_code() const { return emit_debug_code_; }
  void set_emit_debug_code(bool value) { emit_debug_code_ = value; }

  bool predictable_code_size() const { return predictable_code_size_; }
  void set_predictable_code_size(bool value) { predictable_code_size_ = value; }

  uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
  void set_enabled_cpu_features(uint64_t features) {
    enabled_cpu_features_ = features;
  }
  // Features are usually enabled by CpuFeatureScope, which also asserts that
  // the features are supported before they are enabled.
  bool IsEnabled(CpuFeature f) {
    return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
  }
  void EnableCpuFeature(CpuFeature f) {
    enabled_cpu_features_ |= (static_cast<uint64_t>(1) << f);
  }

  bool is_constant_pool_available() const {
    if (FLAG_enable_embedded_constant_pool) {
      return constant_pool_available_;
    } else {
      // Embedded constant pool not supported on this architecture.
      UNREACHABLE();
    }
  }

  JumpOptimizationInfo* jump_optimization_info() {
    return jump_optimization_info_;
  }
  void set_jump_optimization_info(JumpOptimizationInfo* jump_opt) {
    jump_optimization_info_ = jump_opt;
  }

  // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
  // cross-snapshotting.
  static void QuietNaN(HeapObject* nan) { }

  int pc_offset() const { return static_cast<int>(pc_ - buffer_); }

  // This function is called when code generation is aborted, so that
  // the assembler could clean up internal data structures.
  virtual void AbortedCodeGeneration() { }

  // Debugging
  void Print(Isolate* isolate);

  static const int kMinimalBufferSize = 4*KB;

  static void FlushICache(void* start, size_t size);
  static void FlushICache(Address start, size_t size) {
    return FlushICache(reinterpret_cast<void*>(start), size);
  }

  // Used to print the name of some special registers.
  static const char* GetSpecialRegisterName(int code) { return "UNKNOWN"; }

 protected:
  // Add 'target' to the {code_targets_} vector, if necessary, and return the
  // offset at which it is stored.
  int AddCodeTarget(Handle<Code> target);
  Handle<Code> GetCodeTarget(intptr_t code_target_index) const;
  // Update to the code target at {code_target_index} to {target}.
  void UpdateCodeTarget(intptr_t code_target_index, Handle<Code> target);
  // Reserves space in the code target vector.
  void ReserveCodeTargetSpace(size_t num_of_code_targets) {
    code_targets_.reserve(num_of_code_targets);
  }

  // The buffer into which code and relocation info are generated. It could
  // either be owned by the assembler or be provided externally.
  byte* buffer_;
  int buffer_size_;
  bool own_buffer_;
  std::forward_list<HeapObjectRequest> heap_object_requests_;
  // The program counter, which points into the buffer above and moves forward.
  // TODO(jkummerow): This should probably have type {Address}.
  byte* pc_;

  void set_constant_pool_available(bool available) {
    if (FLAG_enable_embedded_constant_pool) {
      constant_pool_available_ = available;
    } else {
      // Embedded constant pool not supported on this architecture.
      UNREACHABLE();
    }
  }

  // {RequestHeapObject} records the need for a future heap number allocation or
  // code stub generation. After code assembly, each platform's
  // {Assembler::AllocateAndInstallRequestedHeapObjects} will allocate these
  // objects and place them where they are expected (determined by the pc offset
  // associated with each request).
  void RequestHeapObject(HeapObjectRequest request);

 private:
  // Before we copy code into the code space, we sometimes cannot encode
  // call/jump code targets as we normally would, as the difference between the
  // instruction's location in the temporary buffer and the call target is not
  // guaranteed to fit in the instruction's offset field. We keep track of the
  // code handles we encounter in calls in this vector, and encode the index of
  // the code handle in the vector instead.
  std::vector<Handle<Code>> code_targets_;

  const AssemblerOptions options_;
  uint64_t enabled_cpu_features_;
  bool emit_debug_code_;
  bool predictable_code_size_;

  // Indicates whether the constant pool can be accessed, which is only possible
  // if the pp register points to the current code object's constant pool.
  bool constant_pool_available_;

  JumpOptimizationInfo* jump_optimization_info_;

  // Constant pool.
  friend class FrameAndConstantPoolScope;
  friend class ConstantPoolUnavailableScope;
};

// Avoids emitting debug code during the lifetime of this scope object.
class DontEmitDebugCodeScope BASE_EMBEDDED {
 public:
  explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
      : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
    assembler_->set_emit_debug_code(false);
  }
  ~DontEmitDebugCodeScope() {
    assembler_->set_emit_debug_code(old_value_);
  }
 private:
  AssemblerBase* assembler_;
  bool old_value_;
};


// Avoids using instructions that vary in size in unpredictable ways between the
// snapshot and the running VM.
class PredictableCodeSizeScope {
 public:
  PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
  ~PredictableCodeSizeScope();

 private:
  AssemblerBase* const assembler_;
  int const expected_size_;
  int const start_offset_;
  bool const old_value_;
};


// Enable a specified feature within a scope.
class CpuFeatureScope BASE_EMBEDDED {
 public:
  enum CheckPolicy {
    kCheckSupported,
    kDontCheckSupported,
  };

#ifdef DEBUG
  CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
                  CheckPolicy check = kCheckSupported);
  ~CpuFeatureScope();

 private:
  AssemblerBase* assembler_;
  uint64_t old_enabled_;
#else
  CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
                  CheckPolicy check = kCheckSupported) {}
  // Define a destructor to avoid unused variable warnings.
  ~CpuFeatureScope() {}
#endif
};


// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a CpuFeatureScope before use.
// Example:
//   if (assembler->IsSupported(SSE3)) {
//     CpuFeatureScope fscope(assembler, SSE3);
//     // Generate code containing SSE3 instructions.
//   } else {
//     // Generate alternative code.
//   }
class CpuFeatures : public AllStatic {
 public:
  static void Probe(bool cross_compile) {
    STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
    if (initialized_) return;
    initialized_ = true;
    ProbeImpl(cross_compile);
  }

  static unsigned SupportedFeatures() {
    Probe(false);
    return supported_;
  }

  static bool IsSupported(CpuFeature f) {
    return (supported_ & (1u << f)) != 0;
  }

  static inline bool SupportsOptimizer();

  static inline bool SupportsWasmSimd128();

  static inline unsigned icache_line_size() {
    DCHECK_NE(icache_line_size_, 0);
    return icache_line_size_;
  }

  static inline unsigned dcache_line_size() {
    DCHECK_NE(dcache_line_size_, 0);
    return dcache_line_size_;
  }

  static void PrintTarget();
  static void PrintFeatures();

 private:
  friend class ExternalReference;
  friend class AssemblerBase;
  // Flush instruction cache.
  static void FlushICache(void* start, size_t size);

  // Platform-dependent implementation.
  static void ProbeImpl(bool cross_compile);

  static unsigned supported_;
  static unsigned icache_line_size_;
  static unsigned dcache_line_size_;
  static bool initialized_;
  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
};

// Specifies whether to perform icache flush operations on RelocInfo updates.
// If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
// instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
// skipped (only use this if you will flush the icache manually before it is
// executed).
enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };

// -----------------------------------------------------------------------------
// Relocation information


// Relocation information consists of the address (pc) of the datum
// to which the relocation information applies, the relocation mode
// (rmode), and an optional data field. The relocation mode may be
// "descriptive" and not indicate a need for relocation, but simply
// describe a property of the datum. Such rmodes are useful for GC
// and nice disassembly output.

class RelocInfo {
 public:
  // This string is used to add padding comments to the reloc info in cases
  // where we are not sure to have enough space for patching in during
  // lazy deoptimization. This is the case if we have indirect calls for which
  // we do not normally record relocation info.
  static const char* const kFillerCommentString;

  // The minimum size of a comment is equal to two bytes for the extra tagged
  // pc and kPointerSize for the actual pointer to the comment.
  static const int kMinRelocCommentSize = 2 + kPointerSize;

  // The maximum size for a call instruction including pc-jump.
  static const int kMaxCallSize = 6;

  // The maximum pc delta that will use the short encoding.
  static const int kMaxSmallPCDelta;

  enum Mode : int8_t {
    // Please note the order is important (see IsRealRelocMode, IsGCRelocMode,
    // and IsShareableRelocMode predicates below).

    CODE_TARGET,
    RELATIVE_CODE_TARGET,  // LAST_CODE_TARGET_MODE
    EMBEDDED_OBJECT,       // LAST_GCED_ENUM

    JS_TO_WASM_CALL,
    WASM_CALL,  // FIRST_SHAREABLE_RELOC_MODE
    WASM_STUB_CALL,

    RUNTIME_ENTRY,
    COMMENT,

    EXTERNAL_REFERENCE,  // The address of an external C++ function.
    INTERNAL_REFERENCE,  // An address inside the same function.

    // Encoded internal reference, used only on MIPS, MIPS64 and PPC.
    INTERNAL_REFERENCE_ENCODED,

    // An off-heap instruction stream target. See http://goo.gl/Z2HUiM.
    OFF_HEAP_TARGET,

    // Marks constant and veneer pools. Only used on ARM and ARM64.
    // They use a custom noncompact encoding.
    CONST_POOL,
    VENEER_POOL,

    DEOPT_SCRIPT_OFFSET,
    DEOPT_INLINING_ID,  // Deoptimization source position.
    DEOPT_REASON,       // Deoptimization reason index.
    DEOPT_ID,           // Deoptimization inlining id.

    // This is not an actual reloc mode, but used to encode a long pc jump that
    // cannot be encoded as part of another record.
    PC_JUMP,

    // Pseudo-types
    NUMBER_OF_MODES,
    NONE,  // never recorded value

    LAST_CODE_TARGET_MODE = RELATIVE_CODE_TARGET,
    FIRST_REAL_RELOC_MODE = CODE_TARGET,
    LAST_REAL_RELOC_MODE = VENEER_POOL,
    LAST_GCED_ENUM = EMBEDDED_OBJECT,
    FIRST_SHAREABLE_RELOC_MODE = WASM_CALL,
  };

  STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt);

  RelocInfo() = default;

  RelocInfo(Address pc, Mode rmode, intptr_t data, Code* host,
            Address constant_pool = kNullAddress)
      : pc_(pc),
        rmode_(rmode),
        data_(data),
        host_(host),
        constant_pool_(constant_pool) {}

  static inline bool IsRealRelocMode(Mode mode) {
    return mode >= FIRST_REAL_RELOC_MODE && mode <= LAST_REAL_RELOC_MODE;
  }
  // Is the relocation mode affected by GC?
  static inline bool IsGCRelocMode(Mode mode) { return mode <= LAST_GCED_ENUM; }
  static inline bool IsShareableRelocMode(Mode mode) {
    return mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE;
  }
  static inline bool IsCodeTarget(Mode mode) { return mode == CODE_TARGET; }
  static inline bool IsCodeTargetMode(Mode mode) {
    return mode <= LAST_CODE_TARGET_MODE;
  }
  static inline bool IsRelativeCodeTarget(Mode mode) {
    return mode == RELATIVE_CODE_TARGET;
  }
  static inline bool IsEmbeddedObject(Mode mode) {
    return mode == EMBEDDED_OBJECT;
  }
  static inline bool IsRuntimeEntry(Mode mode) {
    return mode == RUNTIME_ENTRY;
  }
  static inline bool IsWasmCall(Mode mode) { return mode == WASM_CALL; }
  static inline bool IsWasmStubCall(Mode mode) {
    return mode == WASM_STUB_CALL;
  }
  static inline bool IsComment(Mode mode) {
    return mode == COMMENT;
  }
  static inline bool IsConstPool(Mode mode) {
    return mode == CONST_POOL;
  }
  static inline bool IsVeneerPool(Mode mode) {
    return mode == VENEER_POOL;
  }
  static inline bool IsDeoptPosition(Mode mode) {
    return mode == DEOPT_SCRIPT_OFFSET || mode == DEOPT_INLINING_ID;
  }
  static inline bool IsDeoptReason(Mode mode) {
    return mode == DEOPT_REASON;
  }
  static inline bool IsDeoptId(Mode mode) {
    return mode == DEOPT_ID;
  }
  static inline bool IsExternalReference(Mode mode) {
    return mode == EXTERNAL_REFERENCE;
  }
  static inline bool IsInternalReference(Mode mode) {
    return mode == INTERNAL_REFERENCE;
  }
  static inline bool IsInternalReferenceEncoded(Mode mode) {
    return mode == INTERNAL_REFERENCE_ENCODED;
  }
  static inline bool IsOffHeapTarget(Mode mode) {
    return mode == OFF_HEAP_TARGET;
  }
  static inline bool IsNone(Mode mode) { return mode == NONE; }
  static inline bool IsWasmReference(Mode mode) {
    return IsWasmPtrReference(mode);
  }
  static inline bool IsWasmPtrReference(Mode mode) {
    return mode == WASM_CALL || mode == JS_TO_WASM_CALL;
  }

  static inline bool IsOnlyForSerializer(Mode mode) {
    return mode == EXTERNAL_REFERENCE || mode == OFF_HEAP_TARGET;
  }

  static constexpr int ModeMask(Mode mode) { return 1 << mode; }

  // Accessors
  Address pc() const { return pc_; }
  Mode rmode() const {  return rmode_; }
  intptr_t data() const { return data_; }
  Code* host() const { return host_; }
  Address constant_pool() const { return constant_pool_; }

  // Apply a relocation by delta bytes. When the code object is moved, PC
  // relative addresses have to be updated as well as absolute addresses
  // inside the code (internal references).
  // Do not forget to flush the icache afterwards!
  V8_INLINE void apply(intptr_t delta);

  // Is the pointer this relocation info refers to coded like a plain pointer
  // or is it strange in some way (e.g. relative or patched into a series of
  // instructions).
  bool IsCodedSpecially();

  // The static pendant to IsCodedSpecially, just for off-heap targets. Used
  // during deserialization, when we don't actually have a RelocInfo handy.
  static bool OffHeapTargetIsCodedSpecially();

  // If true, the pointer this relocation info refers to is an entry in the
  // constant pool, otherwise the pointer is embedded in the instruction stream.
  bool IsInConstantPool();

  // Returns the deoptimization id for the entry associated with the reloc info
  // where {kind} is the deoptimization kind.
  // This is only used for printing RUNTIME_ENTRY relocation info.
  int GetDeoptimizationId(Isolate* isolate, DeoptimizeKind kind);

  Address wasm_call_address() const;
  Address wasm_stub_call_address() const;
  Address js_to_wasm_address() const;

  uint32_t wasm_call_tag() const;

  void set_wasm_call_address(
      Address, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
  void set_wasm_stub_call_address(
      Address, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
  void set_js_to_wasm_address(
      Address, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  void set_target_address(
      Address target,
      WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  // this relocation applies to;
  // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
  V8_INLINE Address target_address();
  V8_INLINE HeapObject* target_object();
  V8_INLINE Handle<HeapObject> target_object_handle(Assembler* origin);
  V8_INLINE void set_target_object(
      Heap* heap, HeapObject* target,
      WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
  V8_INLINE Address target_runtime_entry(Assembler* origin);
  V8_INLINE void set_target_runtime_entry(
      Address target,
      WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
  V8_INLINE Address target_off_heap_target();
  V8_INLINE Cell* target_cell();
  V8_INLINE Handle<Cell> target_cell_handle();
  V8_INLINE void set_target_cell(
      Cell* cell, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
  V8_INLINE void set_target_external_reference(
      Address, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  // Returns the address of the constant pool entry where the target address
  // is held.  This should only be called if IsInConstantPool returns true.
  V8_INLINE Address constant_pool_entry_address();

  // Read the address of the word containing the target_address in an
  // instruction stream.  What this means exactly is architecture-independent.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.  Architecture-independent code shouldn't
  // dereference the pointer it gets back from this.
  V8_INLINE Address target_address_address();

  // This indicates how much space a target takes up when deserializing a code
  // stream.  For most architectures this is just the size of a pointer.  For
  // an instruction like movw/movt where the target bits are mixed into the
  // instruction bits the size of the target will be zero, indicating that the
  // serializer should not step forwards in memory after a target is resolved
  // and written.  In this case the target_address_address function above
  // should return the end of the instructions to be patched, allowing the
  // deserializer to deserialize the instructions as raw bytes and put them in
  // place, ready to be patched with the target.
  V8_INLINE int target_address_size();

  // Read the reference in the instruction this relocation
  // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE.
  V8_INLINE Address target_external_reference();

  // Read the reference in the instruction this relocation
  // applies to; can only be called if rmode_ is INTERNAL_REFERENCE.
  V8_INLINE Address target_internal_reference();

  // Return the reference address this relocation applies to;
  // can only be called if rmode_ is INTERNAL_REFERENCE.
  V8_INLINE Address target_internal_reference_address();

  // Wipe out a relocation to a fixed value, used for making snapshots
  // reproducible.
  V8_INLINE void WipeOut();

  template <typename ObjectVisitor>
  inline void Visit(ObjectVisitor* v);

#ifdef DEBUG
  // Check whether the given code contains relocation information that
  // either is position-relative or movable by the garbage collector.
  static bool RequiresRelocation(const CodeDesc& desc);
#endif

#ifdef ENABLE_DISASSEMBLER
  // Printing
  static const char* RelocModeName(Mode rmode);
  void Print(Isolate* isolate, std::ostream& os);  // NOLINT
#endif  // ENABLE_DISASSEMBLER
#ifdef VERIFY_HEAP
  void Verify(Isolate* isolate);
#endif

  static const int kApplyMask;  // Modes affected by apply.  Depends on arch.

 private:
  // On ARM/ARM64, note that pc_ is the address of the instruction referencing
  // the constant pool and not the address of the constant pool entry.
  Address pc_;
  Mode rmode_;
  intptr_t data_ = 0;
  Code* host_;
  Address constant_pool_ = kNullAddress;
  friend class RelocIterator;
};


// RelocInfoWriter serializes a stream of relocation info. It writes towards
// lower addresses.
class RelocInfoWriter BASE_EMBEDDED {
 public:
  RelocInfoWriter() : pos_(nullptr), last_pc_(nullptr) {}

  byte* pos() const { return pos_; }
  byte* last_pc() const { return last_pc_; }

  void Write(const RelocInfo* rinfo);

  // Update the state of the stream after reloc info buffer
  // and/or code is moved while the stream is active.
  void Reposition(byte* pos, byte* pc) {
    pos_ = pos;
    last_pc_ = pc;
  }

  // Max size (bytes) of a written RelocInfo. Longest encoding is
  // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta.
  static constexpr int kMaxSize = 1 + 4 + 1 + 1 + kPointerSize;

 private:
  inline uint32_t WriteLongPCJump(uint32_t pc_delta);

  inline void WriteShortTaggedPC(uint32_t pc_delta, int tag);
  inline void WriteShortData(intptr_t data_delta);

  inline void WriteMode(RelocInfo::Mode rmode);
  inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode);
  inline void WriteIntData(int data_delta);
  inline void WriteData(intptr_t data_delta);

  byte* pos_;
  byte* last_pc_;

  DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
};


// A RelocIterator iterates over relocation information.
// Typical use:
//
//   for (RelocIterator it(code); !it.done(); it.next()) {
//     // do something with it.rinfo() here
//   }
//
// A mask can be specified to skip unwanted modes.
class RelocIterator: public Malloced {
 public:
  // Create a new iterator positioned at
  // the beginning of the reloc info.
  // Relocation information with mode k is included in the
  // iteration iff bit k of mode_mask is set.
  explicit RelocIterator(Code* code, int mode_mask = -1);
  explicit RelocIterator(EmbeddedData* embedded_data, Code* code,
                         int mode_mask);
  explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
  explicit RelocIterator(const CodeReference code_reference,
                         int mode_mask = -1);
  explicit RelocIterator(Vector<byte> instructions,
                         Vector<const byte> reloc_info, Address const_pool,
                         int mode_mask = -1);
  RelocIterator(RelocIterator&&) = default;
  RelocIterator& operator=(RelocIterator&&) = default;

  // Iteration
  bool done() const { return done_; }
  void next();

  // Return pointer valid until next next().
  RelocInfo* rinfo() {
    DCHECK(!done());
    return &rinfo_;
  }

 private:
  RelocIterator(Code* host, Address pc, Address constant_pool, const byte* pos,
                const byte* end, int mode_mask);

  // Advance* moves the position before/after reading.
  // *Read* reads from current byte(s) into rinfo_.
  // *Get* just reads and returns info on current byte.
  void Advance(int bytes = 1) { pos_ -= bytes; }
  int AdvanceGetTag();
  RelocInfo::Mode GetMode();

  void AdvanceReadLongPCJump();

  void ReadShortTaggedPC();
  void ReadShortData();

  void AdvanceReadPC();
  void AdvanceReadInt();
  void AdvanceReadData();

  // If the given mode is wanted, set it in rinfo_ and return true.
  // Else return false. Used for efficiently skipping unwanted modes.
  bool SetMode(RelocInfo::Mode mode) {
    return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
  }

  const byte* pos_;
  const byte* end_;
  RelocInfo rinfo_;
  bool done_ = false;
  const int mode_mask_;

  DISALLOW_COPY_AND_ASSIGN(RelocIterator);
};

// -----------------------------------------------------------------------------
// Utility functions

// Computes pow(x, y) with the special cases in the spec for Math.pow.
double power_helper(Isolate* isolate, double x, double y);
double power_double_int(double x, int y);
double power_double_double(double x, double y);


// -----------------------------------------------------------------------------
// Constant pool support

class ConstantPoolEntry {
 public:
  ConstantPoolEntry() {}
  ConstantPoolEntry(int position, intptr_t value, bool sharing_ok,
                    RelocInfo::Mode rmode = RelocInfo::NONE)
      : position_(position),
        merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
        value_(value),
        rmode_(rmode) {}
  ConstantPoolEntry(int position, Double value,
                    RelocInfo::Mode rmode = RelocInfo::NONE)
      : position_(position),
        merged_index_(SHARING_ALLOWED),
        value64_(value.AsUint64()),
        rmode_(rmode) {}

  int position() const { return position_; }
  bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
  bool is_merged() const { return merged_index_ >= 0; }
  int merged_index(void) const {
    DCHECK(is_merged());
    return merged_index_;
  }
  void set_merged_index(int index) {
    DCHECK(sharing_ok());
    merged_index_ = index;
    DCHECK(is_merged());
  }
  int offset(void) const {
    DCHECK_GE(merged_index_, 0);
    return merged_index_;
  }
  void set_offset(int offset) {
    DCHECK_GE(offset, 0);
    merged_index_ = offset;
  }
  intptr_t value() const { return value_; }
  uint64_t value64() const { return value64_; }
  RelocInfo::Mode rmode() const { return rmode_; }

  enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };

  static int size(Type type) {
    return (type == INTPTR) ? kPointerSize : kDoubleSize;
  }

  enum Access { REGULAR, OVERFLOWED };

 private:
  int position_;
  int merged_index_;
  union {
    intptr_t value_;
    uint64_t value64_;
  };
  // TODO(leszeks): The way we use this, it could probably be packed into
  // merged_index_ if size is a concern.
  RelocInfo::Mode rmode_;
  enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
};


// -----------------------------------------------------------------------------
// Embedded constant pool support

class ConstantPoolBuilder BASE_EMBEDDED {
 public:
  ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);

  // Add pointer-sized constant to the embedded constant pool
  ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
                                     bool sharing_ok) {
    ConstantPoolEntry entry(position, value, sharing_ok);
    return AddEntry(entry, ConstantPoolEntry::INTPTR);
  }

  // Add double constant to the embedded constant pool
  ConstantPoolEntry::Access AddEntry(int position, Double value) {
    ConstantPoolEntry entry(position, value);
    return AddEntry(entry, ConstantPoolEntry::DOUBLE);
  }

  // Add double constant to the embedded constant pool
  ConstantPoolEntry::Access AddEntry(int position, double value) {
    return AddEntry(position, Double(value));
  }

  // Previews the access type required for the next new entry to be added.
  ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;

  bool IsEmpty() {
    return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
           info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
           info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
           info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
  }

  // Emit the constant pool.  Invoke only after all entries have been
  // added and all instructions have been emitted.
  // Returns position of the emitted pool (zero implies no constant pool).
  int Emit(Assembler* assm);

  // Returns the label associated with the start of the constant pool.
  // Linking to this label in the function prologue may provide an
  // efficient means of constant pool pointer register initialization
  // on some architectures.
  inline Label* EmittedPosition() { return &emitted_label_; }

 private:
  ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
                                     ConstantPoolEntry::Type type);
  void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
  void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
                 ConstantPoolEntry::Type type);

  struct PerTypeEntryInfo {
    PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
    bool overflow() const {
      return (overflow_start >= 0 &&
              overflow_start < static_cast<int>(entries.size()));
    }
    int regular_reach_bits;
    int regular_count;
    int overflow_start;
    std::vector<ConstantPoolEntry> entries;
    std::vector<ConstantPoolEntry> shared_entries;
  };

  Label emitted_label_;  // Records pc_offset of emitted pool
  PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
};

// Base type for CPU Registers.
//
// 1) We would prefer to use an enum for registers, but enum values are
// assignment-compatible with int, which has caused code-generation bugs.
//
// 2) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the class in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
template <typename SubType, int kAfterLastRegister>
class RegisterBase {
  // Internal enum class; used for calling constexpr methods, where we need to
  // pass an integral type as template parameter.
  enum class RegisterCode : int { kFirst = 0, kAfterLast = kAfterLastRegister };

 public:
  static constexpr int kCode_no_reg = -1;
  static constexpr int kNumRegisters = kAfterLastRegister;

  static constexpr SubType no_reg() { return SubType{kCode_no_reg}; }

  template <int code>
  static constexpr SubType from_code() {
    static_assert(code >= 0 && code < kNumRegisters, "must be valid reg code");
    return SubType{code};
  }

  constexpr operator RegisterCode() const {
    return static_cast<RegisterCode>(reg_code_);
  }

  template <RegisterCode reg_code>
  static constexpr int code() {
    static_assert(
        reg_code >= RegisterCode::kFirst && reg_code < RegisterCode::kAfterLast,
        "must be valid reg");
    return static_cast<int>(reg_code);
  }

  template <RegisterCode reg_code>
  static constexpr RegList bit() {
    return RegList{1} << code<reg_code>();
  }

  static SubType from_code(int code) {
    DCHECK_LE(0, code);
    DCHECK_GT(kNumRegisters, code);
    return SubType{code};
  }

  // Constexpr version (pass registers as template parameters).
  template <RegisterCode... reg_codes>
  static constexpr RegList ListOf() {
    return CombineRegLists(RegisterBase::bit<reg_codes>()...);
  }

  // Non-constexpr version (pass registers as method parameters).
  template <typename... Register>
  static RegList ListOf(Register... regs) {
    return CombineRegLists(regs.bit()...);
  }

  bool is_valid() const { return reg_code_ != kCode_no_reg; }

  int code() const {
    DCHECK(is_valid());
    return reg_code_;
  }

  RegList bit() const { return RegList{1} << code(); }

  inline constexpr bool operator==(SubType other) const {
    return reg_code_ == other.reg_code_;
  }
  inline constexpr bool operator!=(SubType other) const {
    return reg_code_ != other.reg_code_;
  }

 protected:
  explicit constexpr RegisterBase(int code) : reg_code_(code) {}
  int reg_code_;
};

template <typename SubType, int kAfterLastRegister>
inline std::ostream& operator<<(std::ostream& os,
                                RegisterBase<SubType, kAfterLastRegister> reg) {
  return reg.is_valid() ? os << "r" << reg.code() : os << "<invalid reg>";
}

}  // namespace internal
}  // namespace v8
#endif  // V8_ASSEMBLER_H_