summaryrefslogtreecommitdiff
path: root/deps/v8/src/assembler.h
blob: a2a1c7319139473ceebe72415aef00734b97462d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

#ifndef V8_ASSEMBLER_H_
#define V8_ASSEMBLER_H_

#include <forward_list>
#include <iosfwd>
#include <map>

#include "src/allocation.h"
#include "src/code-reference.h"
#include "src/contexts.h"
#include "src/deoptimize-reason.h"
#include "src/double.h"
#include "src/external-reference.h"
#include "src/flags.h"
#include "src/globals.h"
#include "src/label.h"
#include "src/objects.h"
#include "src/register-configuration.h"
#include "src/reglist.h"
#include "src/reloc-info.h"

namespace v8 {

// Forward declarations.
class ApiFunction;

namespace internal {

// Forward declarations.
class EmbeddedData;
class InstructionStream;
class Isolate;
class SCTableReference;
class SourcePosition;
class StatsCounter;
class StringConstantBase;

// -----------------------------------------------------------------------------
// Optimization for far-jmp like instructions that can be replaced by shorter.

class JumpOptimizationInfo {
 public:
  bool is_collecting() const { return stage_ == kCollection; }
  bool is_optimizing() const { return stage_ == kOptimization; }
  void set_optimizing() { stage_ = kOptimization; }

  bool is_optimizable() const { return optimizable_; }
  void set_optimizable() { optimizable_ = true; }

  // Used to verify the instruction sequence is always the same in two stages.
  size_t hash_code() const { return hash_code_; }
  void set_hash_code(size_t hash_code) { hash_code_ = hash_code; }

  std::vector<uint32_t>& farjmp_bitmap() { return farjmp_bitmap_; }

 private:
  enum { kCollection, kOptimization } stage_ = kCollection;
  bool optimizable_ = false;
  std::vector<uint32_t> farjmp_bitmap_;
  size_t hash_code_ = 0u;
};

class HeapObjectRequest {
 public:
  explicit HeapObjectRequest(double heap_number, int offset = -1);
  explicit HeapObjectRequest(CodeStub* code_stub, int offset = -1);
  explicit HeapObjectRequest(const StringConstantBase* string, int offset = -1);

  enum Kind { kHeapNumber, kCodeStub, kStringConstant };
  Kind kind() const { return kind_; }

  double heap_number() const {
    DCHECK_EQ(kind(), kHeapNumber);
    return value_.heap_number;
  }

  CodeStub* code_stub() const {
    DCHECK_EQ(kind(), kCodeStub);
    return value_.code_stub;
  }

  const StringConstantBase* string() const {
    DCHECK_EQ(kind(), kStringConstant);
    return value_.string;
  }

  // The code buffer offset at the time of the request.
  int offset() const {
    DCHECK_GE(offset_, 0);
    return offset_;
  }
  void set_offset(int offset) {
    DCHECK_LT(offset_, 0);
    offset_ = offset;
    DCHECK_GE(offset_, 0);
  }

 private:
  Kind kind_;

  union {
    double heap_number;
    CodeStub* code_stub;
    const StringConstantBase* string;
  } value_;

  int offset_;
};

// -----------------------------------------------------------------------------
// Platform independent assembler base class.

enum class CodeObjectRequired { kNo, kYes };

struct V8_EXPORT_PRIVATE AssemblerOptions {
  // Prohibits using any V8-specific features of assembler like (isolates,
  // heap objects, external references, etc.).
  bool v8_agnostic_code = false;
  // Recording reloc info for external references and off-heap targets is
  // needed whenever code is serialized, e.g. into the snapshot or as a WASM
  // module. This flag allows this reloc info to be disabled for code that
  // will not survive process destruction.
  bool record_reloc_info_for_serialization = true;
  // Recording reloc info can be disabled wholesale. This is needed when the
  // assembler is used on existing code directly (e.g. JumpTableAssembler)
  // without any buffer to hold reloc information.
  bool disable_reloc_info_for_patching = false;
  // Enables access to exrefs by computing a delta from the root array.
  // Only valid if code will not survive the process.
  bool enable_root_array_delta_access = false;
  // Enables specific assembler sequences only used for the simulator.
  bool enable_simulator_code = false;
  // Enables use of isolate-independent constants, indirected through the
  // root array.
  // (macro assembler feature).
  bool isolate_independent_code = false;
  // Enables the use of isolate-independent builtins through an off-heap
  // trampoline. (macro assembler feature).
  bool inline_offheap_trampolines = false;
  // On some platforms, all code is within a given range in the process,
  // and the start of this range is configured here.
  Address code_range_start = 0;
  // Enable pc-relative calls/jumps on platforms that support it. When setting
  // this flag, the code range must be small enough to fit all offsets into
  // the instruction immediates.
  bool use_pc_relative_calls_and_jumps = false;

  // Constructs V8-agnostic set of options from current state.
  AssemblerOptions EnableV8AgnosticCode() const;

  static AssemblerOptions Default(
      Isolate* isolate, bool explicitly_support_serialization = false);
};

class V8_EXPORT_PRIVATE AssemblerBase : public Malloced {
 public:
  AssemblerBase(const AssemblerOptions& options, void* buffer, int buffer_size);
  virtual ~AssemblerBase();

  const AssemblerOptions& options() const { return options_; }

  bool emit_debug_code() const { return emit_debug_code_; }
  void set_emit_debug_code(bool value) { emit_debug_code_ = value; }

  bool predictable_code_size() const { return predictable_code_size_; }
  void set_predictable_code_size(bool value) { predictable_code_size_ = value; }

  uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
  void set_enabled_cpu_features(uint64_t features) {
    enabled_cpu_features_ = features;
  }
  // Features are usually enabled by CpuFeatureScope, which also asserts that
  // the features are supported before they are enabled.
  bool IsEnabled(CpuFeature f) {
    return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
  }
  void EnableCpuFeature(CpuFeature f) {
    enabled_cpu_features_ |= (static_cast<uint64_t>(1) << f);
  }

  bool is_constant_pool_available() const {
    if (FLAG_enable_embedded_constant_pool) {
      return constant_pool_available_;
    } else {
      // Embedded constant pool not supported on this architecture.
      UNREACHABLE();
    }
  }

  JumpOptimizationInfo* jump_optimization_info() {
    return jump_optimization_info_;
  }
  void set_jump_optimization_info(JumpOptimizationInfo* jump_opt) {
    jump_optimization_info_ = jump_opt;
  }

  // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
  // cross-snapshotting.
  static void QuietNaN(HeapObject* nan) { }

  int pc_offset() const { return static_cast<int>(pc_ - buffer_); }

  // This function is called when code generation is aborted, so that
  // the assembler could clean up internal data structures.
  virtual void AbortedCodeGeneration() { }

  // Debugging
  void Print(Isolate* isolate);

  static const int kMinimalBufferSize = 4*KB;

  static void FlushICache(void* start, size_t size);
  static void FlushICache(Address start, size_t size) {
    return FlushICache(reinterpret_cast<void*>(start), size);
  }

  // Used to print the name of some special registers.
  static const char* GetSpecialRegisterName(int code) { return "UNKNOWN"; }

 protected:
  // Add 'target' to the {code_targets_} vector, if necessary, and return the
  // offset at which it is stored.
  int AddCodeTarget(Handle<Code> target);
  Handle<Code> GetCodeTarget(intptr_t code_target_index) const;
  // Update to the code target at {code_target_index} to {target}.
  void UpdateCodeTarget(intptr_t code_target_index, Handle<Code> target);
  // Reserves space in the code target vector.
  void ReserveCodeTargetSpace(size_t num_of_code_targets) {
    code_targets_.reserve(num_of_code_targets);
  }

  // The buffer into which code and relocation info are generated. It could
  // either be owned by the assembler or be provided externally.
  byte* buffer_;
  int buffer_size_;
  bool own_buffer_;
  std::forward_list<HeapObjectRequest> heap_object_requests_;
  // The program counter, which points into the buffer above and moves forward.
  // TODO(jkummerow): This should probably have type {Address}.
  byte* pc_;

  void set_constant_pool_available(bool available) {
    if (FLAG_enable_embedded_constant_pool) {
      constant_pool_available_ = available;
    } else {
      // Embedded constant pool not supported on this architecture.
      UNREACHABLE();
    }
  }

  // {RequestHeapObject} records the need for a future heap number allocation,
  // code stub generation or string allocation. After code assembly, each
  // platform's {Assembler::AllocateAndInstallRequestedHeapObjects} will
  // allocate these objects and place them where they are expected (determined
  // by the pc offset associated with each request).
  void RequestHeapObject(HeapObjectRequest request);

  bool ShouldRecordRelocInfo(RelocInfo::Mode rmode) const {
    DCHECK(!RelocInfo::IsNone(rmode));
    if (options().disable_reloc_info_for_patching) return false;
    if (RelocInfo::IsOnlyForSerializer(rmode) &&
        !options().record_reloc_info_for_serialization && !emit_debug_code()) {
      return false;
    }
    return true;
  }

 private:
  // Before we copy code into the code space, we sometimes cannot encode
  // call/jump code targets as we normally would, as the difference between the
  // instruction's location in the temporary buffer and the call target is not
  // guaranteed to fit in the instruction's offset field. We keep track of the
  // code handles we encounter in calls in this vector, and encode the index of
  // the code handle in the vector instead.
  std::vector<Handle<Code>> code_targets_;

  const AssemblerOptions options_;
  uint64_t enabled_cpu_features_;
  bool emit_debug_code_;
  bool predictable_code_size_;

  // Indicates whether the constant pool can be accessed, which is only possible
  // if the pp register points to the current code object's constant pool.
  bool constant_pool_available_;

  JumpOptimizationInfo* jump_optimization_info_;

  // Constant pool.
  friend class FrameAndConstantPoolScope;
  friend class ConstantPoolUnavailableScope;
};

// Avoids emitting debug code during the lifetime of this scope object.
class DontEmitDebugCodeScope {
 public:
  explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
      : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
    assembler_->set_emit_debug_code(false);
  }
  ~DontEmitDebugCodeScope() {
    assembler_->set_emit_debug_code(old_value_);
  }
 private:
  AssemblerBase* assembler_;
  bool old_value_;
};


// Avoids using instructions that vary in size in unpredictable ways between the
// snapshot and the running VM.
class PredictableCodeSizeScope {
 public:
  PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
  ~PredictableCodeSizeScope();

 private:
  AssemblerBase* const assembler_;
  int const expected_size_;
  int const start_offset_;
  bool const old_value_;
};


// Enable a specified feature within a scope.
class CpuFeatureScope {
 public:
  enum CheckPolicy {
    kCheckSupported,
    kDontCheckSupported,
  };

#ifdef DEBUG
  CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
                  CheckPolicy check = kCheckSupported);
  ~CpuFeatureScope();

 private:
  AssemblerBase* assembler_;
  uint64_t old_enabled_;
#else
  CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
                  CheckPolicy check = kCheckSupported) {}
  ~CpuFeatureScope() {  // NOLINT (modernize-use-equals-default)
    // Define a destructor to avoid unused variable warnings.
  }
#endif
};

// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a CpuFeatureScope before use.
// Example:
//   if (assembler->IsSupported(SSE3)) {
//     CpuFeatureScope fscope(assembler, SSE3);
//     // Generate code containing SSE3 instructions.
//   } else {
//     // Generate alternative code.
//   }
class CpuFeatures : public AllStatic {
 public:
  static void Probe(bool cross_compile) {
    STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
    if (initialized_) return;
    initialized_ = true;
    ProbeImpl(cross_compile);
  }

  static unsigned SupportedFeatures() {
    Probe(false);
    return supported_;
  }

  static bool IsSupported(CpuFeature f) {
    return (supported_ & (1u << f)) != 0;
  }

  static inline bool SupportsOptimizer();

  static inline bool SupportsWasmSimd128();

  static inline unsigned icache_line_size() {
    DCHECK_NE(icache_line_size_, 0);
    return icache_line_size_;
  }

  static inline unsigned dcache_line_size() {
    DCHECK_NE(dcache_line_size_, 0);
    return dcache_line_size_;
  }

  static void PrintTarget();
  static void PrintFeatures();

 private:
  friend class ExternalReference;
  friend class AssemblerBase;
  // Flush instruction cache.
  static void FlushICache(void* start, size_t size);

  // Platform-dependent implementation.
  static void ProbeImpl(bool cross_compile);

  static unsigned supported_;
  static unsigned icache_line_size_;
  static unsigned dcache_line_size_;
  static bool initialized_;
  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
};

// -----------------------------------------------------------------------------
// Utility functions

// Computes pow(x, y) with the special cases in the spec for Math.pow.
double power_helper(double x, double y);
double power_double_int(double x, int y);
double power_double_double(double x, double y);


// -----------------------------------------------------------------------------
// Constant pool support

class ConstantPoolEntry {
 public:
  ConstantPoolEntry() = default;
  ConstantPoolEntry(int position, intptr_t value, bool sharing_ok,
                    RelocInfo::Mode rmode = RelocInfo::NONE)
      : position_(position),
        merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
        value_(value),
        rmode_(rmode) {}
  ConstantPoolEntry(int position, Double value,
                    RelocInfo::Mode rmode = RelocInfo::NONE)
      : position_(position),
        merged_index_(SHARING_ALLOWED),
        value64_(value.AsUint64()),
        rmode_(rmode) {}

  int position() const { return position_; }
  bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
  bool is_merged() const { return merged_index_ >= 0; }
  int merged_index() const {
    DCHECK(is_merged());
    return merged_index_;
  }
  void set_merged_index(int index) {
    DCHECK(sharing_ok());
    merged_index_ = index;
    DCHECK(is_merged());
  }
  int offset() const {
    DCHECK_GE(merged_index_, 0);
    return merged_index_;
  }
  void set_offset(int offset) {
    DCHECK_GE(offset, 0);
    merged_index_ = offset;
  }
  intptr_t value() const { return value_; }
  uint64_t value64() const { return value64_; }
  RelocInfo::Mode rmode() const { return rmode_; }

  enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };

  static int size(Type type) {
    return (type == INTPTR) ? kPointerSize : kDoubleSize;
  }

  enum Access { REGULAR, OVERFLOWED };

 private:
  int position_;
  int merged_index_;
  union {
    intptr_t value_;
    uint64_t value64_;
  };
  // TODO(leszeks): The way we use this, it could probably be packed into
  // merged_index_ if size is a concern.
  RelocInfo::Mode rmode_;
  enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
};


// -----------------------------------------------------------------------------
// Embedded constant pool support

class ConstantPoolBuilder {
 public:
  ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);

  // Add pointer-sized constant to the embedded constant pool
  ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
                                     bool sharing_ok) {
    ConstantPoolEntry entry(position, value, sharing_ok);
    return AddEntry(entry, ConstantPoolEntry::INTPTR);
  }

  // Add double constant to the embedded constant pool
  ConstantPoolEntry::Access AddEntry(int position, Double value) {
    ConstantPoolEntry entry(position, value);
    return AddEntry(entry, ConstantPoolEntry::DOUBLE);
  }

  // Add double constant to the embedded constant pool
  ConstantPoolEntry::Access AddEntry(int position, double value) {
    return AddEntry(position, Double(value));
  }

  // Previews the access type required for the next new entry to be added.
  ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;

  bool IsEmpty() {
    return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
           info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
           info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
           info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
  }

  // Emit the constant pool.  Invoke only after all entries have been
  // added and all instructions have been emitted.
  // Returns position of the emitted pool (zero implies no constant pool).
  int Emit(Assembler* assm);

  // Returns the label associated with the start of the constant pool.
  // Linking to this label in the function prologue may provide an
  // efficient means of constant pool pointer register initialization
  // on some architectures.
  inline Label* EmittedPosition() { return &emitted_label_; }

 private:
  ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
                                     ConstantPoolEntry::Type type);
  void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
  void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
                 ConstantPoolEntry::Type type);

  struct PerTypeEntryInfo {
    PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
    bool overflow() const {
      return (overflow_start >= 0 &&
              overflow_start < static_cast<int>(entries.size()));
    }
    int regular_reach_bits;
    int regular_count;
    int overflow_start;
    std::vector<ConstantPoolEntry> entries;
    std::vector<ConstantPoolEntry> shared_entries;
  };

  Label emitted_label_;  // Records pc_offset of emitted pool
  PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
};

// Base type for CPU Registers.
//
// 1) We would prefer to use an enum for registers, but enum values are
// assignment-compatible with int, which has caused code-generation bugs.
//
// 2) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the class in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
template <typename SubType, int kAfterLastRegister>
class RegisterBase {
  // Internal enum class; used for calling constexpr methods, where we need to
  // pass an integral type as template parameter.
  enum class RegisterCode : int { kFirst = 0, kAfterLast = kAfterLastRegister };

 public:
  static constexpr int kCode_no_reg = -1;
  static constexpr int kNumRegisters = kAfterLastRegister;

  static constexpr SubType no_reg() { return SubType{kCode_no_reg}; }

  template <int code>
  static constexpr SubType from_code() {
    static_assert(code >= 0 && code < kNumRegisters, "must be valid reg code");
    return SubType{code};
  }

  constexpr operator RegisterCode() const {
    return static_cast<RegisterCode>(reg_code_);
  }

  template <RegisterCode reg_code>
  static constexpr int code() {
    static_assert(
        reg_code >= RegisterCode::kFirst && reg_code < RegisterCode::kAfterLast,
        "must be valid reg");
    return static_cast<int>(reg_code);
  }

  template <RegisterCode reg_code>
  static constexpr RegList bit() {
    return RegList{1} << code<reg_code>();
  }

  static SubType from_code(int code) {
    DCHECK_LE(0, code);
    DCHECK_GT(kNumRegisters, code);
    return SubType{code};
  }

  // Constexpr version (pass registers as template parameters).
  template <RegisterCode... reg_codes>
  static constexpr RegList ListOf() {
    return CombineRegLists(RegisterBase::bit<reg_codes>()...);
  }

  // Non-constexpr version (pass registers as method parameters).
  template <typename... Register>
  static RegList ListOf(Register... regs) {
    return CombineRegLists(regs.bit()...);
  }

  bool is_valid() const { return reg_code_ != kCode_no_reg; }

  int code() const {
    DCHECK(is_valid());
    return reg_code_;
  }

  RegList bit() const { return RegList{1} << code(); }

  inline constexpr bool operator==(SubType other) const {
    return reg_code_ == other.reg_code_;
  }
  inline constexpr bool operator!=(SubType other) const {
    return reg_code_ != other.reg_code_;
  }

 protected:
  explicit constexpr RegisterBase(int code) : reg_code_(code) {}
  int reg_code_;
};

template <typename SubType, int kAfterLastRegister>
inline std::ostream& operator<<(std::ostream& os,
                                RegisterBase<SubType, kAfterLastRegister> reg) {
  return reg.is_valid() ? os << "r" << reg.code() : os << "<invalid reg>";
}

}  // namespace internal
}  // namespace v8
#endif  // V8_ASSEMBLER_H_